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ABSTRACT. Truncated Newton full waveform inversion is an attractive alternative to conventional gradient-

based optimization algorithms. This method accounts for the Hessian within the inversion; however, it is 

implemented in a "Hessian-free" fashion, without explicit calculation or storage of the Hessian matrix. At each 

iteration, we obtain the search direction through a conjugate-gradient (CG) solution of the Newton linear system, 

which requires only evaluations of Hessian-vector products. Due to the additional cost associated with inner CG 

iterations, it is indispensable to apply a preconditioning strategy on the CG algorithm to improve its convergence, 

reducing the number of CG iterations. In this work, we study two preconditioned CG schemes. We propose a 

scheme based on model reparameterization that adopts a preconditioner operator that combines smoothness and 

the illumination compensation effect of the pseudo-Hessian. We also investigate a more conventional 

preconditioning scheme that uses only the pseudo-Hessian preconditioner. The numerical experiments show that 

preconditioning using model reparameterization, which combines pseudo-Hessian compensation with smoothing, 

outperforms the more conventional preconditioning scheme that exclusively uses the pseudo-Hessian operator.

Keywords: seismic imaging; optimization methods; second-order optimization methods

INTRODUCTION

Full waveform inversion (FWI) is recognized as a powerful tool for estimate high-resolution velocity models of 

the subsurface by iteratively minimizing the misfit between the observed and synthetic seismic data (Virieux 

and Operto, 2009). This nonlinear optimization problem is commonly solved through first-order gradient-based 

algorithms, such as the steepest-descent and nonlinear conjugate gradient methods, or the L-BFGS quasi-Newton 

algorithm.

Recently, second-order optimization algorithms, such as the truncated Newton and truncated Gauss-Newton 

methods, have been explored in FWI (Pan et al., 2017; Matharu and Sacchi, 2019; Liu et al., 2020). These 

approaches use the gradient and Hessian of the misfit function in the inversion. The Hessian operator has the 

potential to improve the quality of the model estimation and the convergence, refocusing the information on 

poorly illuminated parameters. In addition, it better accounts multi-scattered wavefields, providing benefits 

when highly contrasted media are investigated (Métivier et al., 2017).

The truncated Newton and truncated Gauss-Newton method for FWI have been developed based on the 

second-order adjoint state formulation (Fichtner and Trampert, 2011; Métivier et al., 2017). At each inversion 

iteration, the model update is obtained by approximately solving the Newton linear system using a matrix-free 

conjugate-gradient (CG) algorithm. Thus, only the action of the Hessian operator on an arbitrary vector (i.e.,
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2 PRECONDITIONED TRUNCATED NEWTON FWI

Hessian-vector product) is required, instead of forming the Hessian operator explicitly.

Due to the high computational cost of the evaluation of the Hessian action, it is important to improve the

convergence of the CG algorithm, in order to reduce the number of CG iterations. This can be achieved by

applying an effective preconditioning strategy on CG algorithm. Preconditioning makes the problem better

conditioned, and consequently, it can improve the convergence significantly (Nocedal and Wright, 2006).

In this study, we investigated two preconditioning strategies for truncated Newton and truncated Gauss-

Newton FWI. First, we analyze a more conventional preconditioned CG scheme (Golub and Van Loan, 2013),

in which we use a pseudo-Hessian preconditioner (Shin et al., 2001). Secondly, we develop a preconditioned CG

scheme based on model reparameterization (Harlan, 1995), in which we adopt as preconditioner an operator

that combines smoothness and the illumination compensation effect of pseudo-Hessian. The numerical examples

compare the performance of both schemes. We find that preconditioning based on model reparameterization

outperforms the more conventional preconditioning strategy that uses only the pseudo-Hessian operator.

METHODS

Acoustic full-waveform inversion attempts to obtain physical parameters of the subsurface by minimizing the

misfit between observed and modeled wavefields using the wave equation

1

c(x)2
∂2p (t,x;xs)

∂t2
−∇2p (t,x;xs) = s (t;xs) , (1)

where c(x) is the velocity model, p (t,x;xs) is the pressure field and s (t;xs) represents the source pulse injected

at position xs.

The inverse problem consists of finding the model parameter m that minimizes the least-squares misfit

functional

J (m) =
1

2

∑
s

∑
r

∥∥pobs (t,xr;xs)− p (t,xr;xs;m)
∥∥2 , (2)

where pobs (t,xr;xs) is the observed wavefield at receivers position xr and p (t,xr;xs) is the modeled wavefield

at position xr. We consider as model parameterization the squared slowness m = 1
c(x)2 .

The Newton optimization approach is derived from the second-order Taylor series expansion of the misfit

functional

J(m + ∆m) = J(m) + ∆mTg(m) +
1

2
∆mTH(m)∆m, (3)

in which g(m) = ∂J
∂m denotes the gradient, and H(m) denotes the Hessian matrix of misfit functional. The

search direction ∆m is obtained by solving the linear system

H(m)∆m = −g(m). (4)

Thus, the solution that minimizes equation (2) is iteratively computed updating an initial model along a

direction ∆m:

mk+1 = mk + γk∆mk, (5)

where k denotes the iteration number and γ is a scalar step length computed through a line-search method that
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satisfies the weak Wolfe conditions (Nocedal and Wright, 2006).

The truncated Newton method computes an approximate solution of the linear system (4) using a conjugate-

gradient (CG) algorithm. This approach requires only the action of the Hessian operator on an arbitrary vector

in the model space (i.e., Hessian-vector product), instead of forming the Hessian operator explicitly.

Algorithm 1 summarizes the application of second-order optimization methods to FWI. Essentially, the

algorithm consists of an outer loop of nonlinear iterations in which the model c(m) is updated, and an inner

loop of linear iterations where the conjugate gradient method is used to calculate the direction ∆m.

Algorithm 1: FWI with truncated Newton method
Input:
initial model m0;
maximum number of iterations kmax;
minimum misfit φmin;
Initialization:
k = 0;
while k ≤ kmax & φ > φmin do

1. Evaluate gradient g(mk) and misfit φk;

2. Obtain the search direction ∆mk

by solving the Newton linear system:

H(m)∆m = −g(m)

3. Find step length γk with line-search algorithm

4. Model update:

mk+1 = mk + γk∆mk;

5. k = k + 1
end

In order to implement second-order optimization algorithms, we need the gradient of the objective function

(2) and the action of the Hessian operator on an arbitrary vector. Using the adjoint-state method (Plessix,

2006; Chavent, 2010) we can compute the gradient by solving firstly the forward wave equation (1) and then

the adjoint equation backward in time

1

c(x)2
∂2Λ (t,x;xs)

∂t2
−∇2Λ (t,x;xs) = e (t,xr;xs) , (6)

where Λ (t,x;xs) is the adjoint wavefield and the source term, e (t,xr;xs) =
∑

r

[
pobs(t,x;xs)− p(t,x;xs)

]
δ(x− xr),

is the data residual. Having computed the wavefields, the gradient with respect to the model parameter m

(squared slowness) is obtained by cross-correlation

g(m) =
∑
s

∫ T

0

dtΛ(t,x;xs)
∂2p(t,x;xs)

∂t2
. (7)

The Hessian-vector product can be derived through the second-order adjoint-state method (Fichtner and 

Trampert, 2011). Constructing the Hessian-vector product H(m)u requires the computation of four different 

wavefields: t he i ncident fi eld p(t, x)  by  so lving eq uation (1), th e ad joint fie ld Λ(t, x) by sol ving equ ation (6), 

and two scattered wavefields, Γ1(t, x) and Γ2(t, x), by solving additional forward and adjoint problems. The
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4 PRECONDITIONED TRUNCATED NEWTON FWI

scattered forward field Γ2(t,x) is the solution of

1

c2(x)

∂2Γ2(t,x;xs)

∂t2
−∇2Γ2(t,x;xs) = −u(x)

∂2p(t,x;xs)

∂t2
, (8)

where u(x) represents the arbitrary vector u in the model space. Note this acts as scattering source. The

scattered adjoint field Γ1(t,x) is obtained by solving backward in time

1

c2(x)

∂2Γ1(t,x;xs)

∂t2
−∇2Γ1(t,x;xs) = −

(
u(x)

∂2Λ(t,x;xs)

∂t2

+
∑
r

δ(x− xr) Γ2(t,x;xs)

)
.

(9)

Using the computed wavefields, the Hessian-vector product with respect to the squared slowness model m is

given by

H(m)u =
∑
s

[∫ T

0

dtΓ1(t,x;xs)
∂2p(t,x;xs)

∂t2

+

∫ T

0

dtΓ2(t,x;xs)
∂2Λ(t,x;xs)

∂t2

]
.

(10)

The computational cost of this operation is twice the gradient cost, since two extra wave-propagation prob-

lems are solved. Alternatively, the truncated Gauss-Newton method is based on an approximation of the full

Hessian operator. The Gauss-Newton Hessian approximation neglects the second-order terms of full Hessian,

furthermore, it is always semipositive definite, whereas the full Hessian may not be semipositive definite (Mé-

tivier et al., 2017). In practice, this approach has the advantage of having a lower computational cost compared

to truncated Newton method, as the action of Gauss-Newton Hessian requires the computation of three differ-

ent wavefields: the incident field p(t,x) by solving equation (1), the scattered field Γ2(t,x) by solving equation

(8), and the scattered field Γ1(t,x) by the solving backward in time

1

c2(x)

∂2Γ1(t,x;xs)

∂t2
−∇2Γ1(t,x;xs) = −

∑
r

δ(x− xr) Γ2(t,x;xs). (11)

Then, the Gauss-Newton Hessian-vector product can be given by

HGN (m)u =
∑
s

∫ T

0

dtΓ1(t,x;xs)
∂2p(t,x;xs)

∂t2
. (12)

Note that the expression for the Hessian-vector product is reduced to only one term, therefore, there is no need

to recompute field Γ2(t,x;xs) for the cross-correlation as in expression (10). Furthermore, this operation does

not require the computation of adjoint field Λ(t,x).

Algorithms 2 and 3 outline the fundamental computational procedures for constructing the time-domain

Full Newton and Gauss-Newton Hessian-vector products, respectively.

Solving the linear system by preconditioned CG algorithm

The conjugate-gradient (CG) method can be used to solve the linear system which determines the search

direction ∆m. However, the Hessian matrix is often ill-conditioned and it is not a positive-definite operator. In
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5

Algorithm 2: full Newton Hessian-vector product computation
for t = 1 to Nt do

update incident field p(t,x);
update scattered field Γ2(t,x);

end
for t = Nt to 1 do

update adjoint field Λ(t,x);
update scattered field Γ1(t,x);
reconstruct fields p(t,x) and Γ2(t,x);
build the Hessian-vector product H(m)u in time-domain;

end

Algorithm 3: Gauss-Newton Hessian-vector product computation
for t = 1 to Nt do

update incident field p(t,x);
update scattered field Γ2(t,x);

end
for t = Nt to 1 do

update scattered field Γ1(t,x);
reconstruct fields p(t,x);
build the Hessian-vector product HGN (m)u in time-domain;

end

order to ensure the positive-definiteness and stabilize the solution, we apply a damping term to the Hessian in

eq. (4), this leads to a damped linear system

(H + λI) ∆m = −g , (13)

where I is the identity matrix, and λ is the regularization parameter that aims to ensure that H+λI is positive

definite. Therefore, the chosen value of λ must ensure the convergence of the conjugate gradient algorithm. The

solution to the system of equations (13) corresponds to the minimization of a quadratic function with a penalty

term

φ(∆m) =
1

2
∆mTH∆m + ∆mTg +

λ

2
∆mTI∆m . (14)

The CG method may suffer from slow convergence. In order to improve the conditioning of the linear

system and accelerate convergence, we can use preconditioning. Commonly, preconditioning is introduced by

multiplying both sides of the linear system by a suitable preconditioner P as follows:

P (H + λI) ∆m = −Pg . (15)

For the effectiveness of this approach, the operator P is chosen so that the condition number of PH is

less than the condition number of H. Ideally, P should be an approximation of the inverse Hessian, so one

convenient preconditioner is based on a pseudo-Hessian operator (Shin et al., 2001) that can be cast as

H(m) =
∑
s

∫ T

0

dt

(
∂2p(t,x;xs)

∂t2

)2

. (16)

The pseudo-Hessian has shown to be useful in FWI since it is widely used to preconditioning gradient-based
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6 PRECONDITIONED TRUNCATED NEWTON FWI

algorithms. Using pseudo-Hessian, we can obtain a diagonal approximation of the inverse Hessian

PPH = diag
(

1

H+ θmax {H}

)
, (17)

where θ ∈ [0, 1] is a threshold parameter that is chosen to avoid division by very small numbers.

Another approach to preconditioning a linear system is based on model reparameterization (Harlan, 1995;

Claerbout and Fomel, 2008). From the quadratic function

φ(∆m) =
1

2
∆m>H∆m−∆m>g, (18)

preconditioning is introduced using the variable change

∆m = Pv, (19)

where P is the preconditioning operator that enforces desirable characteristics on the solution. Thus, the

quadratic function can be rewritten as

φ(v) =
1

2
v>P>HPv − v>P>g. (20)

To ensure the stability of the solution, we implement the conjugate gradient algorithm that minimizes the

quadratic function with a penalty term

φ(v) =
1

2
v>P>HPv − v>P>g +

λ

2
v>I v, (21)

The preconditioned linear system corresponding to the minimization of the quadratic function (21) is

(
P>H(m)P + λI

)
v = −P>g(m). (22)

After solving this system using the conjugate gradient algorithm, the model update direction, ∆m, is obtained

by applying the variable change (19).

We investigate the effect of two preconditioning strategies in truncated Newton and truncated Gauss-Newton

FWI. In the first investigated strategy, we apply the pseudo-Hessian preconditioner, PPH , to the linear system

(15). Accordingly, the search direction is obtained using the preconditioned CG algorithm displayed in Algorithm

4. This represents a more conventional preconditioning scheme applied to truncated Newton FWI (Pan et al.,

2017; Métivier et al., 2017).

The second preconditioning strategy estimates the search direction by solving the linear system (22). In this

case, we propose as preconditioner a combined operator

PS = SPPH , (23)

in which the pseudo-Hessian preconditioner PPH acts to compensate for subsurface illumination and S behaves

like a smoothing filter that acts to enforce smoothness in the search direction. As shown by Fomel and Claerbout
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7

(2003), smoothing preconditioning can provide faster convergence at early iterations by focusing on the low

wavenumbers of the expected solution of the linear system. Algorithm 5 shows the corresponding preconditioned

CG scheme.

A critical aspect in implementing the truncated Newton method is the negative curvature detection test,

d>Hd ≤ 0, as utilized in the subsequent algorithms. This test ensures that the estimated direction corresponds

to a descent direction. If negative curvature is detected, the CG algorithm is halted, and the previous descent

direction is returned. Two other important parameters present in these algorithms, which are user-defined, in-

clude the maximum number of linear iterations, Nmax, and the tolerance level, εmin. These parameters serve

as stopping criteria for the conjugate gradient algorithm and dictate the precision of the solution. The selection

of these parameters necessitates a trade-off between ensuring convergence and managing the added computa-

tional cost associated with the truncated Newton and Gauss-Newton methods for estimating the minimization

direction.

Algorithm 4: Preconditioned CG scheme to solve P (H + λI) ∆m = −Pg

Input:
current model m;
gradient g(m);
pseudo-Hessian preconditioning operator P = PPH ;
damping parameter λ;
Output: search direction ∆m
Initialization:
∆m1 = 0, r1 = −g, d1 = Pr1, j = 1;
while j ≤ Nmax & ε > εmin do

sj = H (m)dj ;
// negative curvature test
if

〈
sj ,dj

〉
+ λ

〈
dj ,dj

〉
≤ 0 then

if j = 1 then
∆m = −Pg;

else
∆m = ∆mj ;

end
stop;

end

α =
〈rj ,Prj〉

〈dj ,sj〉+λ〈dj ,dj〉 ;

∆mj+1 = ∆mj + αdj ;
rj+1 = rj − α

(
sj + λdj

)
;

β =
〈rj+1,Prj+1〉
〈rj ,Prj〉 ;

dj+1 = Prj+1 + βdj ;

ε =
‖rj+1‖2

‖g‖2 ;

j = j + 1;
end

NUMERICAL EXAMPLES

In this section, we apply truncated Newton (FN) and truncated Gauss-Newton (GN) FWI on a simple Gaussian-

anomaly model, followed by a modified M armousi I I m odel. We a lso i llustrate t he e ffect o f t wo different 

preconditioning schemes (Algorithm 4 and Algorithm 5) in these methods and compare the results with the
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8 PRECONDITIONED TRUNCATED NEWTON FWI

Algorithm 5: Preconditioned CG scheme to solve
(
P>HP + λI

)
v = −P>g

Input:
current model m;
gradient g(m);
combined preconditioning operator P = SPPH ;
damping parameter λ;
Output: search direction ∆m
Initialization:
v1 = 0, r1 = d1 = −P>g, j = 1;
while j ≤ Nmax & ε > εmin do

sj = P>H (m)Pdj ;
// negative curvature test
if

〈
sj ,Pdj

〉
+ λ

〈
dj ,dj

〉
≤ 0 then

if j = 1 then
∆m = −Pg;

else
∆m = Pvj ;

end
stop;

end

α =
〈rj ,rj〉

〈dj ,sj〉+λ〈dj ,dj〉 ;

vj+1 = vj + αdj ;
rj+1 = rj − α

(
sj + λdj

)
;

β =
〈rj+1,rj+1〉
〈rj ,rj〉 ;

dj+1 = rj+1 + βdj ;

ε =
‖rj+1‖2

‖g‖2 ;

j = j + 1;
end
∆m = Pv

steepest-descent (SD) and L-BFGS methods. In the experiments, the stopping criteria for the CG algorithms

were Nmax = 10 and εmin = 0.1. The step lengths γ were computed through line-search algorithm from Moré

and Thuente (1994).

The first example is a Gaussian-anomaly model (Fig. 1a) that consists of a 51 x 100 grid, with a grid interval

of 10 m in the horizontal and vertical directions. The data set were modeled using 49 shots with an interval of

20 m and a depth of 20 m; 100 receivers were arranged from 10 to 1000 m every 10 m at the depth of 20 m. The

source function was a Ricker wavelet with a dominant frequency of 10 Hz. The initial model was a constant

velocity of 2000 m/s.

Initially, we illustrate the effects of different preconditioning strategies on the first search direction computed

for the initial constant model of 2000 m/s. Figure 1b displays the direction obtained with the initial gradient,

preconditioned by the pseudo-Hessian. Subsequently, in Figures 1c and 1d, we present the directions obtained

using the truncated Newton (FN) method, incorporating the preconditioning schemes outlined in Algorithm 4

and Algorithm 5, respectively.

Notably, the estimated search directions demonstrate that Truncated Newton produces a significantly supe-

rior direction compared to the preconditioned gradient. It is worth mentioning that Truncated Newton yields

well-scaled directions with velocity dimensions. Furthermore, when comparing the results of the two precon-

ditioning schemes, as illustrated in Figures 1c and 1d, we observe that the second scheme appears to be more
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effective in attenuating the negative (blue) artifacts situated on the left side of the model. Additionally, the pos-

itive (yellow) artifacts located in the upper-right part of the model also appear slightly reduced in the results

obtained using the second preconditioning algorithm.

Figure 2 shows the models recovered in 40 iterations with SD (Fig. 2a), L-BFGS (Fig. 2b), FN using

preconditioning schemes described in Algorithm 4 (Fig. 2c) and Algorithm 5 (Fig. 2d), GN using preconditioning

schemes described in Algorithm 4 (Fig. 2e) and Algorithm 5 (Fig. 2f). We can see that the recovered anomalies

with second-order optimization methods, FN and GN, are closer to the true model than results obtained with

SD and L-BFGS.

The convergence rate and computational cost of these optimization algorithms are analyzed through two

types of convergence curves, one in terms of nonlinear iterations and another in terms of direct problems solved.

Note that gradient computation requires the solution of two direct problems, full Hessian action and Gauss-

Newton Hessian action requires the solution of four and three direct problems, respectively. In addition, for

each nonlinear iteration of FN and GN, there are inner CG linear iterations.

Figure 3a shows that FN and GN have considerably higher convergence rates than SD and L-BFGS. Nonethe-

less, Figure 3b illustrates the high computational cost associated with these second-order optimization methods.

Comparing the performance of two preconditioning schemes applied to FN and GN, we note that precondition-

ing based on model reparameterization (Algorithm 5) has a better convergence rate and lower computational

cost. We also observe that GN experiments provide better performance compared to the FN experiments.

The second example corresponds to a portion of Marmousi II (Martin et al., 2002). The model, shown in

Figure 4a, consists of 151 x 401 grid with a grid interval of 10 m in the horizontal and vertical directions. The

data set was modeled using 49 shots with an interval of 80 m and a depth of 10 m. A total of 401 receivers were

arranged from 0 to 4000 m every 10 m at the depth of 10 m. The source function was a Ricker wavelet with a

dominant frequency of 8 Hz.

Figure 4b shows the initial model, which is a smoothed version of the true model. We compare the inversion

results obtained after 20 nonlinear iterations with L-BFGS (Fig. 4c), FN using preconditioning scheme described

in Algorithm 4 (Fig. 4d) and Algorithm 5 (Fig. 4e), GN using preconditioning schemes described in Algorithm

4 (Fig. 4f) and Algorithm 5 (Fig. 4g). Note that the quality of the recovered models obtained with all methods

is similar.

We compare the behavior of optimization methods through convergence curves shown in Figure 5. We

can see that after 20 iterations the data misfit for FN and GN is significantly smaller compared to L-BFGS.

The FN experiments show a slightly better convergence rate compared to the GN experiments. However, the

computational cost of FN is higher.

The performance difference between preconditioning schemes is more evident in terms of the number of

direct problems solved (see Fig. 5b). We note that the preconditioning based on model reparameterization

(Algorithm 5) provides a lower computational cost for both FN and GN.

Braz. J. Geophys. 42, 1, 2024

Silva and Costa

Draft 



10 PRECONDITIONED TRUNCATED NEWTON FWI

Figure 1: (a) True Gaussian-anomaly model. Initial search directions for the constant 2000 m/s model: (b)
Gradient direction with pseudo-Hessian preconditioning, (c) FN direction using preconditioning scheme from
Algorithm 4 and (d) FN direction using preconditioning scheme from Algorithm 5.

Figure 2: Models recovered in 40 iterations with (a) SD, (b) L-BFGS, FN using preconditioning schemes from
(c) Algorithm 4 and (d) Algorithm 5, GN using preconditioning scheme from (e) Algorithm 4 and (f) Algorithm
5.

CONCLUSION

We investigate preconditioning strategies in truncated Newton and truncated Gauss-Newton FWI. In these

methods, the search direction is determined by solving the Newton linear system via CG algorithm. We present
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(a) (b)

Figure 3: Curves of (a) convergence and (b) computational cost for SD, L-BFGS, FN and GN. Preconditioning
schemes summarized in Algorithm 4 and Algorithm 5 are referred to as PCG-1 and PCG-2, respectively.

two preconditioning strategies that lead to different preconditioned CG schemes (Algorithm 4 and Algorithm

5).

Inversion experiments were carried out on a Gaussian anomaly model and a modified Marmousi II model.

The results obtained with second-order optimization methods (truncated Newton and truncated Gauss-Newton)

were compared with gradient-based methods like steepest descent and L-BFGS. The experiments demonstrated

that second-order methods provide considerably faster convergence, but they are computationally expensive.

This is due to the additional cost of inner linear CG iterations per outer nonlinear iteration. Furthermore, the

truncated Gauss-Newton appears to be more advantageous due to its lower computational cost compared to

the truncated Newton.

Regarding the investigated preconditioning strategies, the convergence curves show that the preconditioning

scheme based on model reparameterization (Algorithm 5) provides lower computational cost since the number of

direct problems solved is smaller compared to another scheme (Algorithm 4). This indicates a reduced number

of inner CG iterations.

Hence, our numerical experiments show that preconditioning based on model reparameterization clearly

outperforms the more conventional pseudo-Hessian preconditioning on truncated Newton FWI.
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12 PRECONDITIONED TRUNCATED NEWTON FWI

Figure 4: (a) Modified Marmousi II model.(b) Initial model. Inversion results obtained with (c) L-BFGS, FN
using preconditioning schemes from (d) Algorithm 4 and (e) Algorithm 5, GN using preconditioning scheme
from (f) Algorithm 4 and (g) Algorithm 5.
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(a) (b)

Figure 5: Curves of (a) convergence and (b) computational cost for L-BFGS, FN and GN. Preconditioning
schemes summarized in Algorithm 4 and Algorithm 5 are referred to as PCG-1 and PCG-2, respectively.
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