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ABSTRACT. Truncated Newton full waveform inversion is an attractive alternative to conventional gradient-
based optimization algorithms. This method accounts for the Hessian within the inversion; however, it is
implemented in a "Hessian-free" fashion, without explicit calculation or storage of the Hessian matrix. At each
iteration, we obtain the search direction through a conjugate-gradient (CG) solution of the Newton linear system,
which requires only evaluations of Hessian-vector products. Due to the additional cost associated with inner CG
iterations, it is indispensable to apply a preconditioning strategy on the CG algorithm to improve its convergence,
reducing the number of CG iterations. In this work, we study two preconditioned CG schemes. We propose
a scheme based on model reparameterization that adopts a preconditioner operator that combines smoothness
and the illumination compensation effect of the pseudo-Hessian. We also investigate a more conventional
preconditioning scheme that uses only the pseudo-Hessian preconditioner. The numerical experiments show that
preconditioning using model reparameterization, which combines pseudo-Hessian compensation with smoothing,
outperforms the more conventional preconditioning scheme that exclusively uses the pseudo-Hessian operator.

Keywords: seismic imaging; optimization methods; second-order optimization methods.

INTRODUCTION

Full waveform inversion (FWT) is recognized as a pow-
erful tool to estimate high-resolution velocity models
of the subsurface by iteratively minimizing the mis-
fit between the observed and synthetic seismic data
(Virieux and Operto, 2009). This nonlinear opti-
mization problem is commonly solved through first-
order gradient-based algorithms, such as the steepest-
descent and nonlinear conjugate gradient methods, or
the L-BFGS quasi-Newton algorithm.

Recently, second-order optimization algorithms,
such as the truncated Newton and truncated Gauss-
Newton methods, have been explored in FWI (Pan
et al.; 2017; Matharu and Sacchi, 2019; Liu et al.,
2020). These approaches use the gradient and Hes-
sian of the misfit function in the inversion. The Hes-
sian operator has the potential to improve the quality
of the model estimation and the convergence, refo-
cusing the information on poorly illuminated param-
eters. In addition, it better accounts multi-scattered
wavefields, providing benefits when highly contrasted
media are investigated (Métivier et al., 2017).

The truncated Newton and truncated Gauss-
Newton methods for FWI have been developed based
on the second-order adjoint state formulation (Ficht-
ner and Trampert, 2011). At each inversion itera-
tion, the model update is obtained by approximately
solving the Newton linear system using a matrix-free
conjugate-gradient (CG) algorithm. Thus, only the
action of the Hessian operator on an arbitrary vector
(i.e., Hessian-vector product) is required, instead of
forming the Hessian operator explicitly.

Due to the high computational cost of the eval-
uation of the Hessian action, it is important to im-
prove the convergence of the CG algorithm, in or-
der to reduce the number of CG iterations. This can
be achieved by applying an effective preconditioning
strategy on CG algorithm. Preconditioning makes the
problem better conditioned and, consequently, can
improve the convergence significantly (Nocedal and
Wright, 2006).

In this study, we investigate two preconditioning
strategies for truncated Newton and truncated Gauss-
Newton FWI. First, we analyze a more conventional
preconditioned CG scheme (Golub and Van Loan,
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2013), in which we use a pseudo-Hessian precondi-
tioner (Shin et al., 2001). Secondly, we develop a pre-
conditioned CG scheme based on model reparameter-
ization (Harlan, 1995), in which we adopt as precondi-
tioner an operator that combines smoothness and the
illumination compensation effect of pseudo-Hessian.
The numerical examples compare the performance of
both schemes. We find that preconditioning based on
model reparameterization outperforms the more con-
ventional preconditioning strategy that uses only the
pseudo-Hessian operator.

METHODS

Acoustic full-waveform inversion attempts to obtain
physical parameters of the subsurface by minimizing
the misfit between observed and modeled wavefields
using the wave equation

L &p(t,x;xs)
c(x)? ot?

—VQp(t,JT;ﬂUs) = S(t;x8)7 (1)

where c(x) is the velocity model, p(t, z; x5) is the pres-
sure field and s(t; z,) represents the source pulse in-
jected at position x,.

The inverse problem consists of finding the model
parameter m that minimizes the least-squares misfit
functional

1
J(m) = 5 ZZ ||p0bs(tu mT;xS) _p(taxr;x87m)||27
(2)

where p°®*(t, z,; ) is the observed wavefield at posi-
tion x,. of the receivers and p(t, z,; zs) is the modeled
wavefield at position x,.. We consider as model pa-

rameterization the squared slowness m = ﬁ

The Newton optimization approach is derived
from the second-order Taylor series expansion of the
misfit functional

1

J(m+Am) = J(m)+Am7” g(m)+ iAmTH(m)Am,

(3)

in which g(m) = 2Z denotes the gradient, and H(m)

denotes the Hessian matrix of misfit functional. The

search direction Am is obtained by solving the linear
system

H(m)Am = —g(m), (4)

Thus, the solution that minimizes Equation 2 is
iteratively computed updating an initial model along
a direction Am:

m* ! = m”* 4 4FAm*, (5)
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where k denotes the iteration number and ~ is a scalar
step length computed through a line-search method
that satisfies the weak Wolfe conditions (Nocedal and
Wright, 2006).

The truncated Newton method computes an ap-
proximate solution of the linear system 4 using a
conjugate- gradient (CG) algorithm. This approach
requires only the action of the Hessian operator on
an arbitrary vector in the model space (i.e., Hessian-
vector product), instead of forming the Hessian oper-
ator explicitly.

Algorithm 1 summarizes the application of
second-order optimization methods to FWI. Essen-
tially, the algorithm consists of an outer loop of non-
linear iterations in which the model ¢(m) is updated,
and an inner loop of linear iterations, where the con-
jugate gradient method is used to calculate the direc-
tion Am.

In order to implement second-order optimization
algorithms, we need the gradient of the objective func-
tion 2 and the action of the Hessian operator on
an arbitrary vector. Using the adjoint-state method
(Plessix, 2006; Chavent, 2010) we can compute the
gradient by solving firstly the forward wave equation 1
and then the adjoint equation backward in time

1 9?°v 2
C($)2 W -V A(t,X, XS) - e(t’XT7XS>’ (6)

where A(t,x;x,) is the adjoint wavefield and the
source term, e(t,Xq;xs) = .. [p°"(t,x;xs) —
p(t, x; Xs)]0(x—x,), is the data residual. Having com-
puted the wavefields, the gradient with respect to the
model parameter m (squared slowness) is obtained by
cross-correlation

g(m) :Z/O th(t,x;xs)w, (7)

The Hessian-vector product can be derived
through the second-order adjoint-state method
(Fichtner and Trampert, 2011). Constructing the
Hessian-vector product H(m)u requires the compu-
tation of four different wavefields: the incident field
p(t,x) by solving equation 1, the adjoint field A(t, x)
by solving equation 6, and two scattered wavefields,
Iy (t,x) and Ty(t,x), by solving additional forward
and adjoint problems. The scattered forward field
Ts(t,x) is the solution of

1 0°Ty(t,x;%s)
2(x) ot?

— Vng(t,x; Xs)

2 5)
0 p(t,x;Xs)
ot2 ’

= —u(x)

where u(x) represents the arbitrary vector u in the
model space. Note this acts as scattering source. The
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Algorithm 1 FWI with truncated Newton method

Input:
initial model my;
maximum number of iterations Ky ax;
minimum misfit ¢y
Initialization:
k=0;
while k£ < knax and ¢ > ¢y, do
1. Evaluate gradient g(m*) and misfit ¢*;

2. Obtain the search direction Am* by solving the Newton linear system:

H(m)Am = —g(m)
3. Find step length ~; with line-search algorithm
4. Model update:
mFtt = my, + yFAmF;
k=k+1
end while

scattered adjoint field I'; (¢,x) is obtained by solving
backward in time

1 02T (t,x;%s)
2(x) ot?

- <u(X)aA(gt2X7XS) + Z 0(x — x,)Ta(t, x; xs)> ,
(9)

— V2F1(t, X;Xg) =

Using the computed wavefields, the Hessian-vector
product with respect to the squared slowness model
m is given by

T 2 .
H(m)ju =" VO 0T (1, %; x,) 2L Xi %) p(g;’XS)

O?A(t,x;x,) (10

T
dtls(t, x; X4
+ [ armate ) R

The computational cost of this operation is twice
the gradient cost, since two extra wave-propagation
prob- lems are solved. Alternatively, the truncated
Gauss-Newton method is based on an approximation
of the full Hessian operator. The Gauss-Newton Hes-
sian approximation neglects the second-order terms
of full Hessian; furthermore, it is always semipositive
definite, whereas the full Hessian may not be semipos-
itive definite (Métivier et al., 2017). In practice, this
approach has the advantage of having a lower com-
putational cost compared to the truncated Newton
method, as the action of Gauss-Newton Hessian re-
quires the computation of three different wavefields:
the incident field p(t,x) by solving equation 1, the
scattered field I'a(¢,x) by solving equation 8, and the

scattered field 'y (¢,x) by solving backward in time

1 9%Ii(t,x;%xs)
2(x) ot?

— Z 0(x — x,)a(t, x;x5),

— V2I‘1(t7 X;Xs) =
(11)

Then, the Gauss-Newton Hessian-vector product
can be given by

T 2 .

Hey(m)u = 2/0 dtT' (¢, x; Xs)%;c,xs)’

(12)

Note that the expression for the Hessian-vector
product is reduced to only one term; therefore, there
is no need to recompute field 'y (¢, x; X ) for the cross-
correlation as in equation. 10. Furthermore, this op-
eration does not require the computation of the ad-
joint field A(t, x).

Algorithms 2 and 3 outline the fundamental
computational procedures for constructing the time-
domain Full Newton and Gauss-Newton Hessian-
vector products, respectively.

Solving the linear system by preconditioned
CG algorithm

The conjugate-gradient (CG) method can be used to
solve the linear system which determines the search
direction Am. However, the Hessian matrix is often
ill-conditioned and it is not a positive-definite opera-
tor. In order to ensure the positive-definiteness and
stabilize the solution, we apply a damping term to the
Hessian in equation 4; this leads to a damped linear
system

(H+ AI)Am = —g, (13)

where I is the identity matrix, and A is the regular-
ization parameter that aims to ensure that H + AI
is positive definite. Therefore, the chosen value of A

Braz. J. Geophys., 42, 1, 2024
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Algorithm 2 full Newton Hessian-vector product computation

for t =1 to N; do
update incident field p(¢,x);
update scattered field I'y (¢, x);
end for
for t = N; to 1 do
update adjoint field A(¢,x);
update scattered field 'y (¢, x);
reconstruct fields p(¢,x) and T'a(t, x);

build the Hessian-vector product H(m)u in time-domain;

end for

Algorithm 3 Gauss-Newton Hessian-vector product computation

for t =1 to N; do
update incident field p(t,x);
update scattered field I'y (¢, x);
end for
for t = N; to 1 do
update scattered field I'q (¢, x);
reconstruct fields p(t, x);

build the Hessian-vector product Hgy (m)u in time-domain;

end for

must ensure the convergence of the conjugate gradient
algorithm. The solution to the system of equations 3
corresponds to the minimization of a quadratic func-
tion with a penalty term

p(Am) = %AmTHAm +Am'g + gAmTIAm,

(14)

The CG method may suffer from slow conver-

gence. In order to improve the conditioning of the

linear system and accelerate convergence, we can use

preconditioning. Commonly, preconditioning is intro-

duced by multiplying both sides of the linear system
by a suitable preconditioner P as follows:

PH + M)Am = Pg, (15)

For the effectiveness of this approach, the operator
P is chosen so that the condition number of PH is less
than the condition number of H. Ideally, P should be
an approximation of the inverse Hessian, so one con-
venient preconditioner is based on a pseudo-Hessian
operator (Shin et al., 2001) that can be cast as

i) = [ an( TN

The pseudo-Hessian has shown to be useful in
FWI since it is widely used to preconditioning
gradient-based algorithms. Using pseudo-Hessian, we
can obtain a diagonal approximation of the inverse

Hessian
1
) Can

PH _ .
P = diag (7—[ + O max{H}
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where 6 € [0,1] is a threshold parameter that is cho-
sen to avoid division by very small numbers.

Another approach to preconditioning a linear sys-
tem is based on model reparameterization (Har-
lan, 1995; Claerbout and Fomel, 2008). From the
quadratic function

o(Am) = %AmTHAm — Am’g, (18)

preconditioning is introduced using the variable
change

Am = Pv, (19)

where P is the preconditioning operator that enforces
desirable characteristics on the solution. Thus, the
quadratic function can be rewritten as

1
o(v) = 5vTPTHPv —vIPTg, (20)

To ensure the stability of the solution, we imple-
ment the conjugate gradient algorithm that minimizes
the quadratic function with a penalty term

1 A
p(v) = §VTPTHPV —vIPTg + §VtIV, (21)

The preconditioned linear system corresponding
to the minimization of the quadratic function (equa-
tion 21) is:

P H(m)P + \v = —P7g(m), (22)

After solving this system using the conjugate gra-
dient algorithm, the model update direction, Am,
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is obtained by applying the variable transformation
given in equation 19.

We investigate the effect of two preconditioning
strategies in truncated Newton and truncated Gauss-
Newton FWI. In the first strategy investigated, we ap-
ply the pseudo-Hessian preconditioner, pra , to the
linear system given in equation 15. Accordingly, the
search direction is obtained using the preconditioned
CG algorithm displayed in Algorithm 4. This rep-
resents a more conventional preconditioning scheme
applied to truncated Newton FWI (Métivier et al.,
2017; Pan et al., 2017).

The second preconditioning strategy estimates the
search direction by solving the linear system given in
equation 22. In this case, we propose as precondi-
tioner a combined operator

PS =sprf (23)

in which the pseudo-Hessian preconditioner PP acts
to compensate for subsurface illumination and S be-
haves like a smoothing filter that acts to enforce
smoothness in the search direction. As shown by
Fomel and Claerbout (2003), smoothing precondition-
ing can provide faster convergence at early iterations
by focusing on the low wavenumbers of the expected
solution of the linear system. Algorithm 5 shows the
corresponding preconditioned CG scheme.

A critical aspect in implementing the truncated
Newton method is the negative curvature detection
test, d’Hd < 0, as utilized in the subsequent algo-
rithms. This test ensures that the estimated direction
corresponds to a descent direction. If negative curva-
ture is detected, the CG algorithm is halted, and the
previous descent direction is returned. Two other im-
portant parameters present in these algorithms, which
are user-defined, include the maximum number of lin-
ear iterations, N,,qz, and the tolerance level, E,,;pn.
These parameters serve as stopping criteria for the
conjugate gradient algorithm and dictate the preci-
sion of the solution. The selection of these parameters
necessitates a trade-off between ensuring convergence
and managing the added computational cost associ-
ated with the truncated Newton and Gauss-Newton
methods for estimating the minimization direction.

NUMERICAL EXAMPLES

In this section, we apply truncated Newton (FN)
and truncated Gauss-Newton (GN) FWI on a sim-
ple Gaussian- anomaly model, followed by a modified
Marmousi II model. We also illustrate the effect of
two different preconditioning schemes (Algorithm 4
and Algorithm 5) in these methods and compare the
results with the steepest-descent (SD) and L-BFGS
methods. In the experiments, the stopping criteria for
the CG algorithms were N4, = 10 and €,,;, = 0.1.
The step lengths v were computed through line-search
algorithm from Moré and Thuente (1994).

The first example is a Gaussian-anomaly model

(Fig. 1a) that consists of a 51 x 100 grid, with a grid
interval of 10 m in the horizontal and vertical direc-
tions. The data set were modeled using 49 shots with
an interval of 20 m and a depth of 20 m; 100 receivers
were arranged from 10 to 1000 m every 10 m at the
depth of 20 m. The source function was a Ricker
wavelet with a dominant frequency of 10 Hz. The
initial model was a constant velocity of 2000 m/s.

Initially, we illustrate the effects of different pre-
conditioning strategies on the first search direction
computed for the initial constant model of 2000 m/s.
Figure 1b displays the direction obtained with the ini-
tial gradient, preconditioned by the pseudo-Hessian.
Subsequently, in Figures 1lc and 1d, we present the
directions obtained using the truncated Newton (FN)
method, incorporating the preconditioning schemes
outlined in Algorithm 4 and Algorithm 5, respectively.

Notably, the estimated search directions demon-
strate that Truncated Newton produces a significantly
superior direction compared to the preconditioned
gradient. It is worth mentioning that Truncated New-
ton yields well-scaled directions with velocity dimen-
sions. Furthermore, when comparing the results of
the two preconditioning schemes, as illustrated in Fig-
ures 1lc and 1d, we observe that the second scheme
appears to be more effective in attenuating the neg-
ative (blue) artifacts situated on the left side of the
model. Additionally, the positive (yellow) artifacts
located in the upper-right part of the model also ap-
pear slightly reduced in the results obtained using the
second preconditioning algorithm.

Figure 2 shows the models recovered in 40 iter-
ations with SD (Fig. 2a), L-BFGS (Fig. 2b), FN us-
ing preconditioning schemes described in Algorithm 4
(Fig. 2¢) and Algorithm 5 (Fig. 2d), GN using precon-
ditioning schemes described in Algorithm 4 (Fig. 2e)
and Algorithm 5 (Fig. 2f). We can see that the recov-
ered anomalies with second-order optimization meth-
ods, FN and GN, are closer to the true model than
results obtained with SD and L-BFGS.

The convergence rate and computational cost of
these optimization algorithms are analyzed through
two types of convergence curves, one in terms of non-
linear iterations and another in terms of direct prob-
lems solved. Note that gradient computation requires
the solution of two direct problems, full Hessian ac-
tion and GaussNewton Hessian action requires the so-
lution of four and three direct problems, respectively.
In addition, for each nonlinear iteration of FN and
GN, there are inner CG linear iterations.

Figure 3a shows that FN and GN have consider-
ably higher convergence rates than SD and L-BFGS.
Nonetheless, Figure 3b illustrates the high compu-
tational cost associated with these second-order op-
timization methods. Comparing the performance of
two preconditioning schemes applied to FN and GN,
we note that preconditioning based on model repa-
rameterization (Algorithm 5) has a better conver-
gence rate and lower computational cost. We also

Braz. J. Geophys., 42, 1, 2024
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Algorithm 4 Preconditioned CG scheme to solve P(H + \I)Am = —Pg

Input:
current model m;
gradient g(m);
pseudo-Hessian preconditioning operator P
damping parameter A;
Output: search direction Am
Initialization:
Am; =0, r' = —g, d' =Pr!, j =1,
while j < Ny .x and € > €y, do
s; = H(m)d;;
// negative curvature test
if <Sj7dj> + )\<dj,dj> < 0 then

_ pPH,

if j =1 then
Am = —Pg;
else
Am = Amyj;
end if
stop;
end if
(r’! Pr’)

= (d-f,sf>+)\(dj,dj>;

Am’t! = Am/ + ad? ;
/Tl =1l — a(s? + \d);
(x9+1 pritly

b="mn i
dyi1 = Prit! 4 Bd;
e = iz,
- sll?
J=J+14

end while

Algorithm 5 Preconditioned CG scheme to solve PT(HP + M)v = —PTg

Input:
current model m;
gradient g(m);
combined preconditioning operator P = spf,
damping parameter A;
Output: search direction Am
Initialization:
vi=o,r'=d'=-PTg, j=1;
while j < Np.x and € > ey, do
s; = PTH(m)Pd;;
// negative curvature test
if <Sj7PdJ‘> —+ A<d]‘, dJ> S O then
if j =1 then Am = —Pg;
elseAm = Pvy;
end if
stop;
end if

J pJ
o= @)

(@7 s7) T\ (d7,d7)

vitl =vi 4+ ad’;

/Tl =1l — a(s? + \d);
(eI +1 pit1y

ﬁ (c7, 07y
It = i+l ﬂd‘j;
RSk

€= !
~ lell?
J=J+1L

end while

Am = Pv;

Braz. J. Geophys., 42, 1, 2024



SILVA AND COSTA 7

Distance(m)

(@)o 500 1000 km/s
0 3
S
< . 2
o
(]
()
500 15
Distance(m)
(c) o 500 1000 km/s
0 0.1
S .
£ R 0
2 -
()
500 0.1

Depth (m)

Depth (m)

Distance(m)

(b) o 500 1000
0
1
-
-
— 0
-
500 1
(d) Distance(m)
0 500 1000 km/s
0 01
L )
— 0
o
500 0.1

Figure 1: (a) True Gaussian-anomaly model. Initial search directions for the constant 2000 m/s model; (b)
Gradient direction with pseudo-Hessian preconditioning; (¢) FN direction using preconditioning scheme from
Algorithm 4; and (d) FN direction using preconditioning scheme from Algorithm 5.

observe that GN experiments provide better perfor-
mance compared to the FN experiments.

The second example corresponds to a portion of
Marmousi IT (Martin et al., 2002). The model, shown
in Figure 4a, consists of 151 x 401 grid with a grid
interval of 10 m in the horizontal and vertical direc-
tions. The data set was modeled using 49 shots with
an interval of 80 m and a depth of 10 m. A total of
401 receivers were arranged from 0 to 4000 m every
10 m at the depth of 10 m. The source function was
a Ricker wavelet with a dominant frequency of 8 Hz.

Figure 4b shows the initial model, which is a
smoothed version of the true model. We compare
the inversion results obtained after 20 nonlinear it-
erations with L-BFGS (Fig. 4c¢), FN using precon-
ditioning scheme described in Algorithm 4 (Fig. 4d)
and Algorithm 5 (Fig. 4e), GN using precondition-
ing schemes described in Algorithm 4 (Fig. 4f) and
Algorithm 5 (Fig. 4g). Note that the quality of the
recovered models obtained with all methods is simi-
lar.

We compare the behavior of optimization meth-
ods through convergence curves shown in Figure 5.
We can see that after 20 iterations the data misfit
for FN and GN is significantly smaller compared to
L-BFGS. The FN experiments show a slightly better
convergence rate compared to the GN experiments.
However, the computational cost of FN is higher.

The performance difference between precondition-
ing schemes is more evident in terms of the number
of direct problems solved (see Fig. 5b). We note that
the preconditioning based on model reparameteriza-
tion (Algorithm 5) provides a lower computational
cost for both FN and GN.

CONCLUSIONS

We investigate preconditioning strategies in truncated
Newton and truncated Gauss-Newton FWI. In these
methods, the search direction is determined by solv-
ing the Newton linear system via CG algorithm. We
present two preconditioning strategies that lead to
different preconditioned CG schemes (Algorithm 4
and Algorithm 5).

Inversion experiments were carried out on a Gaus-
sian anomaly model and a modified Marmousi II
model. The results obtained with second-order opti-
mization methods (truncated Newton and truncated
Gauss-Newton) were compared with gradient-based
methods like steepest descent and L-BFGS. The ex-
periments demonstrated that second-order methods
provide considerably faster convergence, but they are
computationally expensive. This is due to the addi-
tional cost of inner linear CG iterations per outer non-
linear iteration. Furthermore, the truncated Gauss-
Newton appears to be more advantageous due to its
lower computational cost compared to the truncated
Newton.

Regarding the investigated preconditioning strate-
gies, the convergence curves show that the precon-
ditioning scheme based on model reparameterization
(Algorithm 5) provides lower computational cost since
the number of direct problems solved is smaller com-
pared to another scheme (Algorithm 4). This indi-
cates a reduced number of inner CG iterations.

Hence, our numerical experiments show that
preconditioning based on model reparameterization
clearly outperforms the more conventional pseudo-
Hessian preconditioning on truncated Newton FWI.

Braz. J. Geophys., 42, 1, 2024
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Figure 2: Models recovered in 40 iterations with (a) SD, (b) L-BFGS, FN using preconditioning schemes from
(c) Algorithm 4 and (d) Algorithm 5, GN using preconditioning scheme from (e) Algorithm 4 and (f) Algo-
rithm 5.
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Figure 3: Curves of (a) convergence and (b) computational cost for SD, L-BFGS, FN and GN. Preconditioning
schemes summarized in Algorithm 4 and Algorithm 5 are referred to as PCG-1 and PCG-2, respectively.
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Figure 4: (a) Modified Marmousi II model. (b) Initial model. Inversion results obtained with (c) L-BFGS, FN
using preconditioning schemes from (d) Algorithm 4 and (e) Algorithm 5, GN using preconditioning scheme
from (f) Algorithm 4 and (g) Algorithm 5.
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Figure 5: Curves of (a) convergence and (b) computational cost for L-BFGS, FN and GN. Preconditioning
schemes summarized in Algorithm 4 and Algorithm 5 are referred to as PCG-1 and PCG-2, respectively.
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