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ABSTRACT. The reconstruction based on the partial CRS stacking operator presents higher signal-to-noise
ratio and better continuity of events. However, irregularly sampled land data often introduce errors in the
CRS attributes, creating artifacts that contaminate the seismic data. Recently, the combination of Fourier and
CRS-based reconstruction algorithms has significantly solved these problems. The approach consists of applying
a Fourier-based interpolation method as a regularization operator to the original data and then searching the
CRS attributes in the reconstructed data. The CRS attributes determined in this way are more accurate and
can be applied in two different forms, either in the interpolation and regularization of the original data or in
the denoising of the Fourier-based reconstructed data. We propose to compare the combination of the MWNI
and MPFI Fourier-based interpolation methods with the CRS-based one in order to evaluate which is the best
preconditioner of the prestack data to search the CRS attributes. We applied the proposed flowcharts combining
the interpolation methods mentioned above to the land seismic data from the Tacutu basin, which are vintage
low fold and noisy data. The reconstructed data obtained by the combinations show significant improvements
compared to the data reconstructed using the algorithms separately. In other words, the weaknesses and
limitations of each method are overcome when they are applied in combination. The MWNI+CRS combination
flow produces the best results, with the stacked section of the reconstructed data showing better noise removal,
enhancement of coherent events, and better definition and continuity of steeply dipping events.

Keywords: land seismic data, processing, regularization, interpolation, imaging.

INTRODUCTION Fourier Transform (ALFT) (Xu et al., 2005), Match-
ing Pursuit Fourier Interpolation (MPFI) (Nguyen
and Winnett, 2011), and Projection Onto Convex

Reconstruction of seismic data is used in estimating i : X
Sets (POCS) interpolation (Abma and Kabir, 2006).

missing traces, filling gaps between shots and increas-

ing the signal-to-noise ratio of surveys (Schonewille
et al., 2003, 2009). Reconstruction methods also serve
to homogenize fold and to assemble datasets with a
regular distribution of azimuths and with an atten-
uated acquisition footprint (Hunt et al., 2010). Sev-
eral multidimensional methods for regularization and
interpolation of seismic data are currently available.
The most popular methods are those based on Fourier
kernels, such as Minimum Weighted Norm Interpola-
tion (MWNI) (Liu and Sacchi, 2004), Anti-Leakage

The Common Reflection Surface (CRS) stack op-
erator and its wavefront attributes were adopted
for prestack data interpolation and regulariza-
tion (Baykulov and Gajewski, 2009; Hoecht et al.,
2009). CRS-based interpolation generally produces
prestack data with high signal-to-noise ratio and en-
hanced reflections. Contrary to Fourier-based meth-
ods, which are inherently signal processing tools, CRS
methods are based on kinematic propagation mod-
els and, therefore, incorporate approximated wave
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propagation physics into reconstruction. Hoecht et al.
(2009) introduced two interpolation schemes, target-
oriented and operator-oriented methods, using the
finite-offset CRS stack operator. These methods were
successfully applied to synthetic and field data exam-
ples. Similarly, Baykulov and Gajewski (2009) pro-
posed a 2D prestack data interpolation and enhance-
ment algorithm called partial CRS stack, which uses
the zero-offset CRS stacking operator.

Several studies have demonstrated the potential of
the CRS-based reconstruction to improve the results
of other known applications. Soleimani and Roshan-
del Kahoo (2016) combined CRS-based interpolation
and a trace distribution method to fill gaps and es-
timate a regular distribution of traces across all bins
and azimuths of 3D seismic data. In other words,
the seismic traces are interpolated in areas with gaps
by CRS-based interpolation. Then these traces are
distributed throughout the empty bins applying a
trace distribution method that allocates interpolated
traces to selected bins. Garabito et al. (2021) com-
bined CRS-based prestack data regularization and
reverse time migration (RTM). They show that the
combination of CRS interpolation and RTM is ade-
quate to produce high-quality results from low-quality
land data. Muhtar et al. (2021) applied regulariza-
tion and interpolation by including the wavefront at-
tributes based on the CRS method before the velocity
variation with azimuth (VVAz) inversion. Based on
the evaluation of the 3D seismic data after regulariza-
tion, the amplitude versus offset (AVO) phenomena
and the VVAz inversion results are relatively consis-
tent with the model. A similar result is found for the
case of real 3D seismic data.

To apply the interpolation algorithm called partial
CRS stacking, the wavefront attributes must initially
be extracted from the data. Low-quality land seis-
mic data, with missing traces and large gaps between
shots, can negatively impact the search for wavefront
attributes. The latter can lead to the generation of
false events that contaminate seismic images. These
false events appear as artifacts in the stacked and mi-
grated images, destroying the continuity of reflectors.
Due to these problems, some authors have proposed
new strategies to improve the estimation of wavefront
kinematic attributes. Schwarz et al. (2015) proposed
an extension of the standard scheme for obtaining
CRS attributes. They also included slope information
that is extracted from surfaces with zero-offset. They
showed, with simple synthetic examples and for com-
plex field data from the eastern Mediterranean, that
the presented method allows efficient analysis and re-
finement of the entire prestack slope, which can help
to further automate the picking-intensive process of
stereo-tomography.

Recently, Rad and Hickey (2022) studied the pro-
cessing of shallow seismic data applying a strat-
egy that combines mute and CRS reconstruction.
They showed that the CRS method can improve the
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processing of near-surface seismic data by improv-
ing prestack gathers, semblance picking for velocity
model building, and zero-offset stacked data. The
CRS-based local stacking was able to mitigate the
data loss associated with optimum-windowing based
muting of coherent noise. In addition, the enhanced
CRS-based data enable improved near-surface veloc-
ity model building, producing higher coherence and
more focused semblance peaks. The CRS stacking
shows higher smoothness and provides more continu-
ity of events in the zero-offset data. Applications to a
synthetic and two-field dataset collected in high and
low velocity environments show the efficiency and fea-
sibility of the proposed approach.

To overcome the limitations of the CRS-based in-
terpolation, such as the generation of false coherent
events or artifacts due to large gaps in the data, Bez-
erra et al. (2021) proposed a new workflow, com-
bining the MPFTI interpolation algorithm based on
Fourier reconstruction and CRS-based prestack data
interpolation. The results showed a significant im-
provement of the Tacutu basin data in relation to the
combined algorithms applied separately, better solv-
ing steep curvature events. This methodology was
formalized and expanded by Bezerra et al. (2022),
along with the presentation of another similar work-
flow, where CRS-based interpolation is applied to the
original data, with the preconditioned CRS attributes
obtained from the reconstructed data by the MWNI
algorithm. The results showed a significant improve-
ment of the Parnaiba basin data where the gaps are
filled in more correctly. Moreover, the shallow reflec-
tions showed better continuity.

We propose a comparative study with these new
processing workflows to identify the advantages and
drawbacks of the MWNI and MPFI algorithms to
precondition the input data before searching for
the CRS wavefront attributes. We also compare
the CRS-based regularization and interpolation using
the wavefront attributes extracted from the original
and preconditioned data. Furthermore, we employ
CRS-based reconstruction to data preconditioned via
MWNTI and MPFI methods. We adopted the prestack
time migration (PSTM) migration image as the main
metric to evaluate the reconstruction quality and the
RMSE (relative mean square error) and SNR (signal-
to-noise ratio) metrics to quantitatively evaluate the
results of all algorithms. We present a brief review
of all data reconstruction methods and apply them
to the seismic line acquired in the onshore Brazilian
Tacutu basin. The interpolation and regularization
of this particular dataset is a challenge because of its
low signal-to-noise ratio and complex geology.

METHODOLOGY

This section briefly describes all methods used in this
study. First, we introduce the reconstruction do-
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mains used by each method. Next, we present the
three reconstruction methods in the following order
MWNI, MPFT and CRS-based interpolation. Finally,
we present the two workflows used for comparisons.

Reconstruction Domains

The Fourier transform-based reconstruction methods,
specifically the MWNI and MPFI, operate in the
frequency-wavenumber (f-k) domain. The data are
mapped from the time-space (t-x) to the frequency-
space (f-x) domain by the 1D Fourier transform.
The source-receiver reconstruction coordinates are
adopted for both Fourier-based algorithms. In the
MWNI and MPFI algorithms, the interpolation ef-
fectively occurs in the spatial coordinate for one fre-
quency slice at a time, i.e., in the f-k domain. After
completing the reconstruction, the data are mapped
back to the t-xr domain, using the inverse Fourier
transform.

In sampling subsurface seismic events, only a cer-
tain range of the entire available frequency band is
relevant for the reconstruction of seismic data. To
optimize the processing of seismic data reconstruc-
tion in the f-z domain, frequency limits must be cho-
sen carefully. If the frequency range used is too wide,
this can result in higher (unnecessary) computational
costs, because using very high frequencies, which nor-
mally have low amplitudes, will not improve the re-
construction events. Conversely, if a very short fre-
quency range is used, smaller than the frequency con-
tent or frequency band of the data, significant signal
losses will occur.

With regard to the reconstruction of prestack data
based on the CRS stacking method, all the processes
involved are carried out in the ¢-z domain. In other
word, the search for the wavefront attributes of the
CRS operator and the partial CRS stacking interpo-
lation are performed in the same ¢-z domain.

Minimum Weighted Norm
(MWNI)

Interpolation

The MWNI algorithm is applied in the frequency-
wavenumber (f-k) domain. The Fourier coefficients
that model the data are estimated by regularized in-
version, for each frequency slice. In general, MWNI
and all Fourier-based reconstruction algorithms are
applied on space-time windows to minimize the num-
ber of dips (wavenumbers) that the algorithm needs
to iteratively retrieve (Sacchi et al., 1998; Zwartjes
and Gisolf, 2007; Stanton and Sacchi, 2013).

The MWNI requires regularly gridded input data.
The latter permits the use of the Fast Fourier Trans-
form (FFT) in its inversion kernel. The MWNI algo-
rithm entails solving an inverse problem that includes
a wavenumber domain regularization term. It mini-
mizes a wavenumber weighted norm that incorporates
a prior spectral signature of the unknown k-space
data spectrum (Liu and Sacchi, 2004). The problem

is solved via the Iteratively Reweighted Least-Squares
(IRLS) method with an inner solver given by the Con-
jugate Gradient (CG) method. The method is fully
iterative and replaces the Matrix-time-vector multi-
plications by fast operations using FFTs (Zwartjes
and Sacchi, 2007; Trad, 2014). The MWNT algorithm

can be summarized as follows:

1. Initializing the weighting matrix as the identity
matrix. This constrains all wavenumbers within
the Fourier support.

2. Starting the IRLS loop with the initial model
equal to zero, where the model is the Fourier
optimal spectrum.

3. Finding the new approximation to the Fourier
spectrum using the CG scheme.

4. Updating the weighting matrix using the model
found by the CG scheme.

5. Using the model found by the CG scheme in the
new [RLS iteration as the initial model.

6. Repeating steps 2 to 5 until it reaches the max-
imum number of the defined iterations or a de-
sired misfit.

The IRLS algorithm involves solving the problem
for a known weighting matrix via the conjugate gra-
dient method. After the weight matrix is updated,
the problem is solved again via the conjugate gradi-
ent method (Zwartjes and Sacchi, 2007). To return
from the f-z domain, an inverse FFT is used to es-
timate the data in ¢t-z. In general, the CG method
(interior loop of IRLS) converges to a solution in a
few iterations (Chiu, 2014).

Matching Pursuit Fourier

(MPFT)

Interpolation

The Matching Pursuit method is a sparse approxima-
tion algorithm that seeks to find the best match pro-
jections between data and a redundant expansion of a
given dictionary, where the dictionary can be a collec-
tion of parameterized waveforms. In seismic interpo-
lation, the main applications use a dictionary formed
by expanding the Fourier transform kernel (Mallat
and Zhang, 1993). According to Schonewille et al.
(2013), the MPFI algorithm is an alternative to al-
gorithms that use binning, such as MWNI, as they
present better results in noisy data and with com-
plex coordinates. The Matching Pursuit algorithm
has been widely used in signal processing and its main
properties are well understood, such as the conver-
gence of the algorithm for any function in the space
covered by the dictionary, the monotonic decrease in
error at each step, and the energy conservation equa-
tion is satisfied at each step (Nguyen and Winnett,
2011).
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The input prestack data to the MPFI algorithm
are organized in the true acquisition coordinates; that
is, they do not need to be previously binned for a
regular grid. The flexibility of the MPFI to recon-
struct the input data for any desired grid is a ma-
jor attraction. Because MPFI uses Nonuniform Dis-
crete Fourier Transform (NDFT) in each iteration,
it becomes computationally expensive in multidimen-
sional interpolation, a significant disadvantage about
algorithms that use FFT, like the MWNI and POCS.
Assuming that few Fourier components represent reg-
ularly sampled data, that is, sparse representation of
data in the Fourier domain, the MPFI uses a greedy
algorithm to solve one wavenumber per iteration, in-
creasing the flexibility for noise attenuation. For each
frequency slice of the f-x domain, it transforms to the
f-k domain, finds the maximum energy Fourier coef-
ficients, iteratively applies the matching pursuit esti-
mated model and transforms back to the f-x domain.

The procedure to be performed by the MPFT al-
gorithm can be described as follows:

1. Initializing all components of the Fourier opti-
mal spectrum equal to zero.

2. Computing the Fourier spectrum of the input
data using the forward NDFT.

3. Finding the wavenumber corresponding to
the highest energy coefficient and computing
the Fourier coefficient corresponding to this
wavenumber.

4. Updating the input data by subtracting the con-
tribution of the optimally estimated coefficient.

5. Repeating steps 2 to 4 until the residual input
data is less than a defined maximum error or
until the algorithm reaches the maximum num-
ber of iterations.

An inverse NDFT of the Fourier optimal spectrum
is applied to return to the f-x domain. After going
through all the frequencies, the reconstructed data
can be transformed back to the t-x domain using the
inverse 1D FFT. The stopping criteria consider the
moment the residual norm is less than 10~2 or the
maximum number of iterations is met.

CRS-Based Interpolation

One of the most useful applications of the CRS stack-
ing operator is the interpolation and enhancement of
prestack data (Hoecht et al., 2009; Garabito, 2018;
Garabito et al., 2021). The CRS stacking method
was introduced to simulate Zero-Offset (ZO) stacked
data from multi-coverage seismic data, i.e., it approxi-
mates the true reflection traveltimes in the midpoint-
offset coordinates. Its main products are three sec-
tions of the wavefront kinematic attributes (known
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as CRS attributes) that can be applied to a variety
of seismic reflection problems. The CRS attributes
are the emergence angle of the ZO central ray, the
normal incidence point (NIP) wave and the normal
wave curvatures. These three wavefront attributes
are determined by employing global optimization, us-
ing as an objective function the measure of coherence
(semblance) of the seismic signal in the prestack data.
Once these CRS attributes are known for a given time
sample point in the ZO plane, the CRS stacking sur-
face is constructed. To simulate a ZO stacked section
with the CRS stack method, the amplitudes of the
seismic traces are summed, and the result is placed
at the evaluated point.

The interpolation algorithm introduced
by Baykulov and Gajewski (2009) used the CRS
operator locally and centred on the target trace lo-
cated in the midpoint-offset coordinates to sum the
amplitudes of neighbouring traces and build the in-
terpolated trace. The three attributes that define
the CRS operator are extracted from the prestack
data by applying an automatic search based on the
coherence measure of the seismic signal. In the ap-
plications presented in this work, we will use the
global strategy proposed in Garabito et al. (2012) to
search the three CRS attributes simultaneously. A
global optimization strategy ensures good accuracy
of the three CRS attributes, leading to more confi-
dent and high-quality results when applied in seismic
problems, such as prestack data interpolation, deter-
mination of the velocity model, prestack migration
etc. However, the CRS attributes can lead to false
coherent events in places where the data have spatial
sampling problems.

The CRS-based interpolation algorithm can be
summarized as:

1. Determining the three CRS attributes from
prestack data.

2. Defining the partial CRS stack operator, for a
target trace in the midpoint-offset coordinates
and a given time sample.

3. Summing the amplitudes over the partial CRS
stack operator and placing the result at the
point located in the center of the stacking oper-
ator.

4. Repeating the operation from step 3 for the en-
tire target trace.

Repeating steps 2 to 4 for all traces with constant off-
set of the seismic line, a common-offset (CO) gather
is interpolated and enhanced.

Applying the algorithm described above, we can
reconstruct all the prestack datasets in CO gathers.
Similarly, other seismic configuration gathers, such as
common-shot, can also be reconstructed. Note that
the partial CRS stack, the operator size or aperture
can define the degree of enhancement of the recon-
structed seismic signal.
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CRS-Based Denoising

We define CRS-Denoising as a process that enhances
coherent seismic events, which provide information on
geological structures, and attenuates random noise of
prestack seismic data.

To apply CRS-based denoising, the same algo-
rithm presented in the previous section for CRS-based
interpolation and regularization can be used. The
only difference is the input data, which are different in
both processes. For CRS-based denoising, the input
data must be previously regularized, i.e., they needs
to have regular spatial sampling, without traces and
stray shots.

Combination of Fourier and CRS-based Re-
construction Methods

Determining the precise CRS attributes is critical to
guarantee the quality of the results obtained by apply-
ing these attributes and the CRS operator to seismic
reflection problems, such as seismic stacking, seismic
migration, data interpolation etc. However, if the
prestack input data have large gaps or very sparse
sampling, the CRS attributes can be inaccurate and
noisy, even when using global optimization to search
for these attributes. This can lead to artifacts such
as false coherent events and problems with the conti-
nuity of events in interpolated and regularized data.

In order to overcome the shortcomings of interpo-
lation based on the CRS method, in this work we pro-
pose combining this method with interpolation based
on the Fourier transform, which is the standard for
processing seismic reflection data. Specifically, we
propose the use of Fourier interpolation to interpo-
late and regularize the input prestack seismic data
for the CRS method. We adopt the name "original
data" to designate pre-processed data before the reg-
ularization and interpolation stage.

Fourier+CRS Interpolation Workflow

The traditional CRS-based interpolation strategy
uses only the original prestack data, both to deter-
mine the three CRS attributes and to apply the in-
terpolation process. This workflow proposes to ap-
ply the attribute search in the Fourier-based recon-
structed data Bezerra et al. (2022).

Below are the main steps of this workflow:

1. Applying a Fourier-based reconstruction algo-
rithm to interpolate and regularize the original
prestack data.

2. Determining the three CRS attributes from the
Fourier-based reconstructed prestack data.

3. Interpolating the original prestack data using
the three enhanced CRS attributes obtained in
step 2 by the CRS partial stacking operator.

Fourier+CRS Denoising Workflow

This second workflow proposes to use the accurate
attributes obtained in step 2 of the previous work-
flow and the CRS partial stacking operator to the
denoising of the prestack data reconstructed using a
Fourier based method (Bezerra et al., 2021). In other
words, instead of applying interpolation to the origi-
nal prestack data, as in step 3 of the previous work-
flow, in this work we propose to apply the CRS-based
interpolation to the reconstructed prestack datasets
by the MWNI and MPFT Fourier-based interpolation
algorithms.

Because the input data for applying the CRS-
based interpolation algorithm are already interpo-
lated and regularized, this process is called CRS-
based denoising.

In the following section, we show the results of ap-
plying the proposed workflows to real data of a seismic
line from the Tacutu basin. Initially, we applied the
Fourier-based interpolation algorithms (MWNI and
MPFTI) and the CRS-based interpolation individually.
We then compared the results of applying the pro-
posed workflows, i.e., using the data reconstructed by
the MWNI and MPFTI algorithms as input data for
the CRS interpolation method.

RESULTS AND DISCUSSIONS

In this section, we present the results using the
Fourier-based reconstruction algorithms, MWNI and
MPFI, to precondition the search for the CRS wave-
front attributes that determine the interpolation qual-
ity, that is, the random noise removal and the im-
provement in the continuity of events of the algo-
rithm based on partial CRS stacking. In this case, the
objective is to study how the possible combinations
of these algorithms with two different workflows can
handle the seismic data reconstruction with large gaps
(lack of shots) and sparse sampling intervals (large
distances between shots and traces), in the presence
of diving events and severe contamination by random
noise present in 2D seismic data from Brazilian ter-
restrial basins.

The minimum and maximum frequencies used
to the Fourier-based reconstruction algorithms are
fmin = 5 and fiee = 75 Hz, respectively. In fact,
most reflection seismic data have their frequency con-
tent close to these values. However, these are not op-
timal values for any seismic survey or different types
of data. The results of the new combination strate-
gies are compared with the results of the respective
algorithms separately. We adopted the PSTM migra-
tion as the main result to assess the reconstruction
quality of all algorithms. We also used the RMSE
and SNR (Signal-to-Noise Ratio) metrics to evaluate
the results quantitatively.

Braz. J. Geophys., 42, 1, 2024
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The SNR is calculated as follows

SNR =10 IOgIO <||d|,§2> 5 (1)
Id —dli3

where d is the binning prestack data and d repre-
sents the prestack data interpolated by the MWNI,
MPFT and CRS algorithms. We also calculated the
RMSE using

Id — dli3

RMSE = ———= 2
EE @)

For the application examples in the seismic data
presented in this work, we used codes from the three
reconstruction algorithms written in MATLAB and
FORTRAN and parallelized to use 40 cores of a com-
puter with two 2.60 GHz processors and 256 GB of
RAM memory.

Tacutu Basin Data

The dataset is the seismic line 050-RL-090 of a land
survey carried out in the onshore Tacutu basin, north-
ern Brazil. The acquisition array is asymmetric split-
spread with minimum and maximum source-receiver
offsets of 150 and 2500 meters, respectively, and each
shot array with 96 receiver stations. The nominal in-
tervals between sources and receivers are 200 and 50
meters, respectively. The recording time is 4 s with a
sampling interval of 4 ms. Table 1 shows the acquisi-
tion parameters used to record the seismic line data.
Figure 1 shows the source-receiver coordinate distri-
bution of the original data, where black squares indi-
cate available data and white areas inside the diagonal
column indicate missing data. These data have poor
quality and a low nominal fold of 12 traces per CMP.
Figure 2a shows the common-shot gathers of three
consecutive shots extracted from the original data (or
pre-processed), where the central shot is missing. The
data quality is poor and has a low SNR, where reflec-
tion events are blurred and obscured by noise.

The following processing flow was applied before
the interpolation and regularization process in the
data used in this study: 1) geometry; 2) trace editing;
3) field static corrections; 4) spherical divergence com-
pensation; 5) coherent noise attenuation; 6) decon-
volution; 7) velocity analysis; and 8) residual static
correction. As mentioned before, the data resulting
from this pre-processing are called the original data.
Before using Fourier-based reconstruction, the NMO
correction is applied to the data to minimize the cur-
vature of the offset axis coordinate (Trad, 2014). It is
worth noting that the CRS operator does not require
NMO correction or spatial windowing of the data.
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Table 1: Acquisition parameters for Tacutu data line

050-RL-090.
Parameter Value
Acquisition Year 1981
Source type Explosive
Time Sample 4ms
Record Length 4s
Total Shot Point 170
Number of Channels 96
Total Station Points 8500
Total Traces 15489
Station Interval 50 m
Shot-point Interval 200 m

Spread Geometry

Line Extension

2500-150-0-150-2500 m
42200 m

[
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100 200 300 400 500 600 700 800
Receiver station number

Figure 1: Shot and receiver distribution map of the
Tacutu basin data. The black squares indicate avail-
able traces and the white areas within the diagonal
strip indicate missing traces. The large white areas
are the gaps that correspond to the missed shots.

The MWNI and MPFI reconstruction methods
were applied in the shot-receiver coordinates. The
choice of these reconstruction coordinates for the
Fourier-based interpolation is due to the low fold in
the CMPs. The data were split into seven (7) spatial
windows to ensure a better quality of the Fourier-
based interpolation algorithms. The total number of
live and missing (in parentheses) shots in each window
are 30(2), 23(1), 25(2), 27(5), 25(0), 26(3) and 30(3),
respectively. The total of shots present is 170, and
the desired interpolation is for a geometry with 186
shots. The data regularly sampled must have 101 re-
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ceiver stations. Starting from 15489 live traces, on the
parameters already defined, arrive at 18786 traces.
Table 2 summarizes the information about the acqui-
sition geometries of the original and regularized data.
The Fourier support (wavenumber vector size) used in
the inversion consists of 512 coeflicients in each spa-
tial dimension for each spatial window. The number
of iterations used by the Fourier-based methods are
IRLS = 3 and CG = 10 for MWNI, and it,,4, = 512
for MPFI. After interpolation, all the parts were put
together to form the reconstructed prestack data.

Table 2: Original and regularized geometries of the
050-RL-090 seismic line for the 2D data of the Tacutu
basin.

Data Original Regularized
Shot Number 170 186

Traces per Shot 96 101

Total Traces 15489 18786
Percentage (%) 82.4 100

Figures 2b, 2¢ and 2d show the common-shot
gathers of the data reconstructed by the MWNI,
MPFI and CRS algorithms, respectively, with the
same three shots presented in Figure 2a. The center
shot and missing traces were reconstructed, but the
common-shot gathers of the MWNI and MPFT algo-
rithms (Fig. 2b and 2c¢) show only a small improve-
ment in quality, where reflection events are partially
visible but not with good continuity. We also apply
to the Tacutu data the standard interpolation strat-
egy based on the CRS partial stacking, which uses the
wavefront attributes extracted from the original data.

The CRS result (Fig. 2d) shows a significant im-
provement, where the reflection events appear sur-
prisingly resolved and with strong amplitudes. In
general, an improvement in the signal-to-noise ra-
tio is perceived, corroborated by the SNR metric,
which obtained a value of 6.73. However, we can
also observe some noise in the reconstructed shot
gathers, blurring the shallow events (between 0 and
0.5 s) and presenting small linear events with differ-
ent dips (between the black arrows). The MWNI,
MPFI and CRS-based reconstruction algorithms in-
terpolated the missed traces and shots but, as we ob-
served, the MWNI and MPFI offer lower quality re-
sults than the CRS-based interpolation and have some
noise and artifacts.

To mitigate these noises and artifacts, we apply
the first workflow (Fourier+CRS Interpolation). We
use the same global optimization algorithm tuning to
search for CRS attributes and the same CRS pro-
cessing parameters used for regularization and inter-

polation application of the standard CRS workflow
(Fig. 2d). We emphasize that the input data to search
the enhanced CRS attributes are produced from the
MWNI or MPFI algorithms, but the interpolation
based on the partial CRS stacking was applied to the
original prestack data using their respective accurate
CRS attributes.

Figures 3a and 3b show the common-shot gath-
ers of the data reconstructed by the first workflow
based on partial CRS stacking, using the data re-
constructed by the algorithms MWNI (MWNI + at-
tributes + CRS) and MPFI (MPFI + attributes +
CRS), respectively. It is possible to notice a small
improvement in the whole section, such as the con-
tinuity and coherence of events and the reduction of
random noise, mainly in relation to the noise atten-
uation that obscured the shallow events (between 0
and 0.5 s). However, it is still possible to identify the
linear noise in the central part.

To attenuate this residual linear noise and other
small artifacts, such as false events, present in the
results of the first workflow, we apply the second
workflow (Fourier+CRS Denoising). We emphasize
that in the second proposed strategy based on par-
tial CRS stacking, the data used to search for im-
proved CRS attributes are the data reconstructed by
the MWNI and MPFT algorithms, exactly as in the
first workflow. But these enhanced CRS attributes
are applied to remove the noise from the same recon-
structed data (MWNI and MPFI) by applying the
CRS partial stacking operator to the data with regu-
lar geometry, i.e., as a kind of denoising. Figures 3c
and 3d show the common-shot gathers of the recon-
structed data by the second workflow based on CRS
partial stacking, using the data reconstructed by the
MWNI (MWNI + CRS) and MPFI (MPFI + CRS)
algorithms, respectively. It is possible to notice a sig-
nificant improvement in the continuity of the surface
reflections (between 0 and 0.5 s), but mainly in the at-
tenuation of the linear noise in the central part, which
was practically completely removed.

Table 3 presents the RMSE and SNR metrics for
the results present in the common-shot gathers for
each individually tested algorithm and for the two
workflows. The values of both metrics are consistent
with the image analysis of the results, with a small di-
vergence in relation to the standard application of the
CRS partial stacking (CRS in Table 3), which appears
in a small advantage in relation to the results of the
first workflow (MWNI/MPFI + CRS Interpolation).
However, the metrics corroborate that the best re-
sults are those of the second workflow (MWNI/MPFI
+ CRS Denoising), with a significant advantage. This
is noticeable in Figures 3c and 3d in relation to the
other results, notably as a small contamination by
random and linear noise and better continuity and
coherence of events.
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Figure 2: Common-shot gathers extracted from the original and reconstructed datasets of the Tacutu basin. a)
original data, b) reconstructed data with MWNI method, c) reconstructed data with MPFI method and d) re-
constructed data with the CRS-based method using the wavefront attributes extracted from the original data.
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a) MWNI + CRS Interpolation, b) MPFI + CRS Interpolation, ¢) MWNI

Figure 3: Common-shot gathers extracted from the original and combination Fourier+CRS reconstructed
+ CRS Denoising and d) MPFI + CRS Denoising.

datasets of the Tacutu basin.
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Table 3: RMSE and SNR values for all algorithms
and workflows tested on the Tacutu data.

Algorithms / RMSE | SNR
Workflows (%) (db)

MWNI 807.96 | 2.06

MPFI 687.95 | 2.27

CRS 448.23 | 6.73

MWNI + CRS Interpolation | 49135 | 6.55
MPFI + CRS Interpolation 470.78 6.52
MWNI + CRS Denoising 160.73 | 9.07
MPFI + CRS Denoising 168.47 8.38

In Figure 4a we compare the coherence attribute
extracted from the original data with that extracted
from the reconstructed data by the MWNI and MPFI
algorithms. Figure 4a corresponds to the coherence
of the original data and shows erroneous high values
at the top of the section (between 0 and 0.2 s) that
are related to the noise caused by shot gaps and miss-
ing traces. Figure 4b shows the coherence obtained
from the data regularized by the MWNI algorithm,
where its values are more consistent, and shows a sig-
nificant improvement of the coherent events in the
inclined part. Figure 4c shows the coherence section
obtained from the data reconstructed by the MPFI
algorithm, showing a significant noise removal and
improvement of shallow events (between 0 and 0.2 s).
This result is similar to that obtained from the data
reconstructed by the MWNI algorithm (Figure 4b),
with a slight advantage for the MWNI.

In Figure 5a we compare the emergence angle at-
tribute extracted from the original data with that ex-
tracted from the reconstructed data by the MWNI
and MPFT algorithms. Figure Ha presents the emer-
gence angle extracted from the original data, where
it is possible to perceive a greater discontinuity of
events and a greater prevalence of noise (between 0
and 0.6 s). This noise was greatly attenuated and
the continuity of events improved dramatically in Fig-
ure 5b, which presents the emergence angle extracted
from the data regularized by the MWNI algorithm.

Braz. J. Geophys., 42, 1, 2024

Figure 5c shows the emergence angle section obtained
from the data reconstructed by the MPFI algorithm,
where a significant noise reduction and an improve-
ment in the continuity of the events are observed in
relation to the original data. This result is similar
to that obtained from the data reconstructed by the
MWNTI algorithm (Figure 5b), with a significant ad-
vantage for the MWNI, mainly in relation to the shal-
low part (between 0 and 0.6 s) and curved events.

In Figure 6a we compare the radius of curva-
ture of the NIP wave (Rnip) attribute extracted from
the original data with that extracted from the re-
constructed data by the MWNI and MPFI algo-
rithms. Figure 6a presents the Rnip extracted from
the original data, being perceptible the discontinuity
of the events caused by the strong prevalence of noise,
mainly by the linear noise in all section. The Rnip ex-
tracted from the MWNI reconstructed data (Fig. 6b)
is smoother than the curvature extracted from the
original data (Figure 6a). The former presents bet-
ter lateral continuity and less contamination by linear
noise. We can say the same for Figure 6¢c where we
present the Rnip section obtained from the data re-
constructed by the MPFI algorithm. This result is
similar to that obtained from the data reconstructed
by the MWNI algorithm (Figure 6b), with a signifi-
cant advantage for the MWNI, mainly regarding the
linear noise and the events smoothness. We do not
show the attribute of the radius of curvature of the
normal wave (Rn) due to the difficulty in perceiving
the differences.

The variation of the CRS attributes between the
events has to be smooth because the CRS operator is
an approximation of the paraxial ray theory, which is
valid for smoothly heterogeneous media. Due to this
fact, any strong non-physical fluctuation or any spu-
rious events must be corrected. The CRS attributes
obtained from the reconstructed MWNI and MPFI
data are smoother and have less anomalous fluctua-
tions, so they are more suitable for applications.

The preconditioning of the original data per-
formed by the MWNI and MPFTI algorithms was ef-
fective, i.e. they proposed interpolated and regular-
ized prestack data, with a slight enhancement of the
events and noise attenuation. The preconditioning
performed by the MWNI algorithm was more success-
ful in this case, due to its ability to preserve ampli-
tude, even in the presence of inclined events, where
the MPFT algorithm needs to use many iterations.
The truncation in 512 iterations impaired the preser-
vation of the events by the MPFT in parts of the data.
It ended up resulting in a lower reconstruction qual-
ity of the CRS partial stacking application. However,
we emphasize that the result is better than the stan-
dard application of the CRS. That is, any of these or
similar Fourier-based methods should produce more
satisfactory results than the standard CRS applica-
tion.
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Figure 4: Coherence semblance sections from CRS at-
tributes determined from a) original data, b) precon-
ditioned data with MWNI method and c¢) precondi-
tioned data with MPFI method. The CRS attributes
obtained from the MWNI data (b) show less noise in-
terference.

We applied the Kirchhoff prestack time migra-
tion (PSTM) to evaluate the reconstruction quality
of all datasets, using the same velocity model and mi-
gration parameters for a fair comparison. Figure 7a
shows the original data PSTM image, which, in gen-
eral, is noisy and has poor continuity of the reflec-
tion events. The shallow part of the image shows
an intense noise, interrupting the shallow reflection
events. The PSTM images obtained from the data re-
constructed by MWNT and MPFT algorithms (Figs. 7b
and 7c), in general, also have low quality but slightly
show an improvement of the reflector continuity of
the reflection events in the middle and deeper parts.

Figure 7d shows the PSTM image obtained from the
reconstructed data by standard CRS-based interpo-
lation workflow in the original data. As expected,
this result shows significant improvement, with dra-
matically increased signal-to-noise ratio and improved
continuity of the reflection events, especially in the
central and deeper parts. However, we can see that
the shallow part has several problems presenting arti-
facts with strong amplitudes that interrupt the conti-
nuity of shallow reflections. This limitation happens
because the CRS attributes are searched using an au-
tomatic coherence analysis, which allows the inclusion
of false coherent events.
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Figure 5: Emergence angle sections from CRS at-
tributes determined from a) original data, b) precon-
ditioned data with MWNI method and c¢) precondi-
tioned data with MPFI method. The CRS attributes
obtained from the MWNI data (b) show less noise in-
terference.
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Figure 6: NIP-wave (Rnip) sections from CRS at-
tributes determined from a) original data, b) precon-
ditioned data with MWNI method and c¢) precondi-
tioned data with MPFI method. The CRS attributes
obtained from the MWNI data (b) show less noise in-
terference.

Figures 7e and 7g show the migrated PSTM sec-
tions obtained from the reconstructed data by the first
workflow for the MWNI (MWNI + attributes + CRS)
and MPFI (MPFI + attributes + CRS) algorithms,
respectively. We can observe a strong improvement
in the continuity of the shallow reflectors and a re-
duction in the linear artifacts in relation to the stan-
dard CRS application (Figure 7d). These results are
similar to each other, with a slight advantage for the
MWNI preconditioning (Figure 7e). Figures 7f and 7h
show the migrated PSTM images obtained from the
reconstructed data by the second workflow for the
MWNI (MWNI + CRS) and MPFI (MPFI + CRS)
algorithms, respectively. They are cleaner and have
higher quality because the continuity of the reflectors

Braz. J. Geophys., 42, 1, 2024

was better resolved even in the shallowest parts. The
artifacts and the migration noise were also greatly at-
tenuated. These results are also similar to each other,
with a slight advantage for the MWNI precondition-
ing (Figure 7f).

CONCLUSIONS

We present the successful combination of two classes
of interpolation methods, the well-known MWNI and
MPFTI Fourier-based interpolation algorithms and the
CRS-based interpolation, applied to 2D land seismic
data.

Through applications to the data from the Tacutu
basin, we show that the independent application of
each method does not produce satisfactory results.
The MWNI and MPFI methods slightly improve the
quality of the regularized data and also of the mi-
grated images. The interpolation based on the stan-
dard CRS operator workflow produces results with a
high signal-to-noise ratio and improved reflections but
creates spurious or noisy events that contaminate the
migrated image and destroy the continuity, especially
for near-surface or shallow events.

To solve the shortcomings of the CRS-based data
reconstruction, we apply the search for CRS at-
tributes in the prestack data reconstructed by the
MWNI and MPFI methods. The improved CRS at-
tributes present significant differences in relation to
the original ones. They are smoother with most of
the non-physical fluctuations removed, presenting a
better quality and accuracy for applications in seis-
mic reflection problems. The application in land data
from the Tacutu basin of these approaches, combining
the interpolation methods, provides high-quality re-
sults. The coherent false events were attenuated, and
the artifacts caused in the migrated image were also
removed. We show that these workflows are the best
alternative for reprocessing old seismic data, mainly
with low quality (noise), coarse spatial sampling, and
low fold.

The application of the improved CRS attributes,
obtained from the reconstructed data by the MWNI
and MPFI algorithms, to regularize and interpolate
the original data by the CRS partial stacking op-
erator produces a great improvement in the qual-
ity of the reconstructed data. These improvements
are noticeable both in the common-shot gathers and
PSTM migrated images, verified by the metrics SNR
and RMSE. We also apply the CRS reconstruction
method to preconditioned data by the MWNI and
MPFT algorithms, which we call denoising. The re-
sults show a significant improvement over the first
strategy, with greater linear noise removal and bet-
ter continuity of events, enhancing reflections. In this
way, the extracted CRS attributes are smoother and
less contaminated by coherent noise produced by gaps
due to missed shots and traces and coarse spatial sam-

pling.
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The two workflows for combining Fourier-
based and CRS-based interpolation methods provide
prestack data of improved quality and without arti-
facts. These are an alternative to the standard pro-
cessing of land data with low quality (noisy and low
coverage).

The computational cost of the MWNI+CRS strat-
egy is close to that of the standard CRS, as the
CPU time of MWNI is less than 1% of the CRS. The
MPFI+CRS strategy, on the other hand, has a higher
computational cost, due to the MPFI having a much
higher CPU time than the MWNI. The adoption of
the Fast MPFI algorithm should reduce the total com-
putational cost of the MPFI+CRS strategy, mak-
ing it more competitive compared to MWNI+CRS.
Since the MWNI and MPFI interpolation compu-
tational time is very low for 2D datasets, it does
not significantly affect or increases the computational
time spent by the CRS-based interpolation method.
Future research will study the combination Fourier-
based and CRS-based methods for 5D interpolation.
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