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ABSTRACT. The incorporation of 4D seismic data can be done at model characterization and data assimilation 
steps, the latter applying the observed data to update the model properties. In this work, we evaluate the impact 
of 4DS data in the production forecasting results investigating the influence on these distinct steps. We employ a 
prior model set generated without 4DS data and another prior set with 4DS in the characterisation. We perform, 
then, the DA in three different ways: (1) using only well history data with a prior set without 4DS; (2) using well 
history and 4DS data with this same prior set; and (3) using well history and 4DS data with the prior set generated 
with 4DS data. We employ the Ensemble Smoother with Multiple Data Assimilation method for data assimilation 
and implement a procedure to adjust the well productivities and injectivities after DA. This work assesses the 
differences among the three DA cases in terms of field oil production forecasting, model attributes and model 
misfits, the latter evaluated in terms of the assimilated data set and of a different data set for validation purposes 
only. We apply the work to a real heavy oil turbiditic field located offshore Brazil. The case application 
demonstrates a successful data assimilation study on a real field integrating well history and 4DS data. The results 
show that the utilisation of 4DS in both model characterisation and DA steps brought value to the final uncertainty 
reduction results. The posterior model ensemble with 4DS data in model characterization and DA provided the 
lowest model misfits overall to the full data set, being the best choice for application in field production forecasting 
studies. The case without 4DS data provided significantly more pessimistic field oil production than the cases 
with 4DS, making very evident the importance of employing 4DS at uncertainty reduction workflows. 

Keywords: Permanent Reservoir Monitoring; reservoir simulation; data assimilation; uncertainty reduction; 
heavy oil field 

INTRODUCTION 

The decision-making process in development and management activities of oil and gas fields has to 

deal with uncertainties related to the representation of the reservoir (uncertain rock, fluid and rock-fluid 

properties), which can be highly uncertain due to the impossibility of measuring properties at each 

spatial point of the reservoir volume. For this reason, simulation models are an important tool since it 
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can integrate all available information obtained from the reservoir, and represent it as model 

uncertainties. The final goal is to perform the most reliable as possible field production forecasting to 

take more assertive decisions. After a decision is made and applied in the field, the dynamic data in 

response to the change in field operation is measured and assimilated in the model updating process 

to support further decisions, framework named as closed-loop. There are several closed-loop 

methodologies published in the literature to handle the development and management of field 

production. Paiaman et al. (2021) present a review of such methods, being Brouwer et al. (2004) the 

first publication on life-cycle closed-loop practice. 

Schiozer et al. (2019) propose a general methodology to guide the closed-loop field development 

and management (CLFDM) dividing the process at steps, grouped in four main parts identified by 

colours in Figure 1. This methodology allows performing reservoir simulation studies under a well-

structured framework that facilitates the conduction of tasks and decisions, making the decision process 

less subjective. This work is mainly related to the red part (uncertainty reduction), with link to the green 

part (model characterisation and construction). 

 
Figure 1: Closed-loop reservoir development field development and 
management (CLFDM) workflow (Schiozer et al., 2019). 

The green part comprises the reservoir characterisation and modelling process. It initiates by 

gathering all available data about the field, such as general geological information (e.g. analogue 

outcrops, stratigraphic chart), seismic data, well logs, well testing, PLT (production logging tool), and 

petrophysical laboratory measurements. All this information is then used to build a detailed geological 

model. The final product of the model characterisation and modelling process is a prior ensemble of 

simulation models, normally after upscaling of the geological model, which will be employed in the red 

part of the workflow in Figure 1. 

The red part consists of the data assimilation (DA) process, a probabilistic process that assimilates, 

using the prior simulation model ensemble as input, the dynamic observed data at the field. The global 

objective is to reduce the variance of the uncertain reservoir properties while improving the model fit to 

Draft 



 Silva et al.         3 

Braz. J. Geophys., 42, 2, 2024 

the dynamic data. The output of the red part is an ensemble of models (posterior simulation model 

ensemble) that ideally honour all the observed data according to a tolerance. This posterior model 

ensemble is applied, then, in decision analysis (blue part in Figure 1). 

One key dynamic data that has become progressively more available is the 4D seismic (4DS) or 

time-lapse seismic data. It can provide important information on the fluid dynamics at inter-well locations 

or even stratigraphy (Maleki et al. 2017). There are mainly three different domains in which 4DS data 

can be applied in DA: (1) seismic amplitudes, (2) calculated pressure or saturation changes and (3) 

inverted impedances. In the first, we compare the acquired amplitude differences to the synthetically 

derived results of simulation models from forward modelling, which can be computationally expensive. 

Some studies use this type of data for 4DS data assimilation, such as van Gestel et al. (2011), Yin et 

al. (2019) and Soares et al. (2020). In the second domain, we invert seismic data to estimate pressure 

and saturation changes, which are directly used as input to improve the model fit (De Souza et al., 

2010), but this process is highly uncertain. In Fahimuddin et al. (2010), the authors conclude that the 

third domain (4DS impedance data) provides better well performance and seismic model fits in relation 

to 4DS amplitudes. Some examples of application of this type of domain can be found in Emerick and 

Reynolds (2013a), Lorentzen et al. (2020), Neto et al. (2021), and Silva Neto et al. (2021). Acoustic 

impedances are obtained by the inversion of seismic amplitudes, being the most common data used in 

DA studies nowadays (Oliver et al., 2021) and have been chosen as the domain to apply 4DS data in 

data assimilation. 

There are several manners of utilising 4DS data in conjunction with well history data in dynamic 

models. The work of Rosa et al. (2022) introduced some of them, being the iterative ensemble smoother 

(ES) a successful method to assimilate large amounts of seismic and well history data (Fossum and 

Lorentzen, 2019). The ensemble smoother with multiple data assimilation (ES-MDA), proposed by 

Emerick and Reynolds (2013b), is an extension of the ES method, which circumvents the issue of time-

consuming simulation restarts that occur at the sequential data assimilation originally introduced by 

Evensen (1994). ES-MDA is currently the state-of-the-art method in data assimilation according to 

Maschio et al. (2022), and it has been chosen as the method to perform the DA. 

Oliver et al. (2021) presents a history of 4DS application at data assimilation (DA) or, as named by 

the author, 4DS history matching. There exist numerous applications of ES-MDA in 4D seismic history 

matching. Some of them can be mentioned, such as Emerick and Reynolds (2013a), Leeuwenburgh 

and Arts (2014), da Nobrega et al. (2018), and Yin et al. (2019). 

According to Oliver et al. (2021), while methodologies for DA of 4DS data have demonstrated 

substantial value in synthetic model studies, the application to real fields has not been as successful. 

The effects of model error appear to be more pronounced in DA of 4DS data than in traditional DA of 

well history data due to the following reasons: additional need for modelling the seismic attributes from 

reservoir simulation models, and the demanded work to handle the data volume including the definition 

of a reliable petro-elastic model (PEM) and of an appropriate seismic attribute to be employed. Yet, 

applications to field cases appear to have been at least partially successful, although quantitative 
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assessment of the model misfits and the improvements in forecast is difficult (Oliver et al., 2021). 

Several authors employed the case studied in this work, named S-Field, at different steps of 4DS 

data analysis and uncertainty reduction. Maleki et al. (2021) introduce a stepwise workflow to reduce 

the uncertainties in the 4DS interpretation and to identify the improvements required for better reservoir 

surveillance. Maleki et al. (2022) illustrate the importance of employing multiple 4DS datasets for 

improved field management. Correia et al. (2023) extend a previously proposed workflow that generates 

prior simulation models with geological consistency to incorporate the 4DS data interpreted from Maleki 

et al. (2022) in the model characterisation and calibrate it through a forward geomodelling approach. 

Maschio et al. (2022) propose a methodology to generate and evaluate the performance of lower-fidelity 

models (LFM) combined with the application of ES-MDA method assimilating well history data. The 

authors employ a prior set of models generated before the work of Correia et al. (2023). Santos et al. 

(2022) present a workflow to quickly quantify the errors between simulation model ensembles and 

observed 4DS data by similarity indicators. Rosa et al. (2022) discuss the impact of using the original 

simulation grid (more refined) versus the most efficient LFM grid (coarser) from Maschio et al. (2022), 

and the effect of using different 4DS data resolutions in the results of DA and production forecasting. 

Among other conclusions, Rosa et al. (2022) state that the original grid is more sensitive to the different 

4D seismic inputs and yields estimates of acoustic impedance changes visually closer to the observed 

data than those obtained from the coarser grid. The other important conclusion from these authors in 

the context of the present work is the application of further 4DS information at two maps instead of a 

single map, which is able to predict important reservoir behaviours such as the gas trapping in the 

deepest interval. 

This work evaluates the impact of applying 4DS data in model characterisation and data 

assimilation steps to the field production forecast. Similar to Rosa et al. (2022), it utilises the original 

simulation grid and the 4DS information at two maps in the DA process, with the same settings of petro-

elastic modelling as it was done by Santos et al. (2022) and the previous authors. Different from Rosa 

et al. (2022), this work employs prior simulation model ensembles that are better calibrated to well 

history data than in the previous S-Field works, and separate prior sets incorporating or not the 4DS 

information in the model characterisation. Additionally, this work introduces procedures to help deciding 

which posterior model ensemble is better in relation to the field dynamic data (well history and 4DS 

data), what may be an important contribution to real field applications. The main novelty of the present 

work lies in the evaluation of 4D seismic data application at model characterization step in a data 

assimilation framework comparing the use of 4DS data with the (traditional) use of just well history data. 

Objective 
The objective of this work is to evaluate the impact to field production forecasting results of applying 4D 

seismic data in the uncertainty reduction workflow that traditionally utilises only well history data as 

dynamic information. We investigate, in a systematic manner, the use of 4DS in the model 

characterisation and data assimilation steps, and confront these results with the case in which only well 
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history data is used. 

METHODOLOGY 

Figure 2 shows a general scheme of the proposed methodology. It is developed in the context of the 

CLFDM workflow published by Schiozer et al. (2019), focused at the uncertainty reduction step (red 

part of Figure 1). 

  
Figure 2: General scheme of the proposed methodology, with 
the contributions highlighted with a yellow star. 

The main steps of the developed methodology are: (1) generation of prior model ensembles being 

one built with well history data and another one built with well history data + 4DS data, (2) data 

assimilation of dynamic data (4DS, well history data), (3) well productivity index (PI) and injectivity index 

(II) adjustment, (4) filtering with all available dynamic data, (5) validation analysis and (6) life-cycle 

production forecast. 

At the first step, we generate the different prior model ensembles to evaluate the influence from the 

4DS data incorporation at the model characterisation step. In the data assimilation (DA) step, we 

assimilate the dynamic data whose impact will be evaluated in the study. It is important to mention that 

we assimilate a very different number of data points when we assimilate or not the 4DS data, since this 

data set contains spatial information, which is not present at the well history data set. As a consequence, 

the assimilation of 4DS data is expected to lead to more uncertainty reduction (more reduction in the 

variability of model properties). 

The step 3, well PI and II adjustment, consists of adjusting the productivity and injectivity of the wells 

by using the end of the well history data period available in order to improve the simulation model results 

in the transition from past (history) to future (forecast) conditions. This is important to allow a proper 

comparison between the simulation model results and the well production and injection measured data 

during a time period that has not been employed at the uncertainty reduction process. This comparison 

is named as validation in this work (step 5 in the proposed methodology, Figure 2) and is intended to 
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evaluate the capacity of the posterior model ensemble to reproduce the measured data in the field. 

After the adjustment of well PI and II, we perform the filtering step with all available dynamic data 

(well history, 4DS data), and the models that can pass simultaneously the acceptance criteria of all 

dynamic data proceed to the validation analysis. This validation is made in an attempt to increase the 

confidence in applying the posterior model ensemble in the life-cycle production forecasting (step 6 of 

the methodology), and make more assertive decisions on field development and management activities.  

We assess the results in qualitative and quantitative means after the well PI and II adjustment by 

employing all the data that has been assimilated (4DS, well history data). Finally, we perform the 

validation analysis by confronting the simulation model results with all the measured data that has not 

being applied previously (blind test), and run the life-cycle production forecast. 

Well PI and II Adjustment 
After the data assimilation, we develop and apply a procedure to adjust the well productivities and 

injectivities. This is made because of the difficulties faced, with the ES-MDA method, to obtain 

satisfactory results from the simultaneous assimilation of well data time series and the PD (productivity 

deviation) function that was proposed in Almeida et al. (2018), Formentin et al. (2019). 

Similar to the previous works, we simulate the posterior model ensembles by switching the informed 

data series from well rate (Ql for producers and Qwi for injectors) to BHP at the last simulation time of 

well operation. Differently from the previous works, we adjust the well productivity and injectivity indexes 

(PI and II) after DA of the well data time series, according to Equations 1 and 2, respectively.  

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝 × 𝑄𝑄𝑙𝑙,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
𝑄𝑄𝑙𝑙,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙

 (1) 

𝑃𝑃𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑃𝑃𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑚𝑚𝑚𝑚𝑝𝑝𝑝𝑝 × 𝑄𝑄𝑤𝑤𝑤𝑤,𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
𝑄𝑄𝑤𝑤𝑤𝑤,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙

 (2) 

PIprevious and IIprevious are the indexes obtained after the DA previously completed. Ql,model and Qwi,model 

are the respective liquid production and water injection rate at the last simulation time of well operation, 

date when the informed data is switched from well rate to BHP. Ql,HIST and Qwi,HIST are the respective 

well rates from the history data on this date. As a consequence of the Equations 1 and 2, if the simulated 

model well rate equals the history data, the well productivity or injectivity does not need any adjustment, 

and the respective PI or II value will not be modified. The application of Equations 1 and 2 assumes 

that there is not a significant misfit between the simulated and the history BHP data at the last simulation 

time of well operation (BHP employed as informed data to the simulator). 

Validation Analysis 
After the adjustment of productivity and injectivity index of the wells, we extend the simulation time 

period from the end of the history period until the end of the measured data by keeping the BHP of the 

wells as informed data to the simulator. The well shutdown dates occurred in the field must be informed 

in the simulation model. 
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We perform the comparative analysis between the simulation model results and the measured data 

by employing the same time frequency of data that has been assimilated at the step 2 of the 

methodology. For example, if daily well rates were assimilated, then we employ daily well fluid rates in 

the validation analysis (not cumulative fluid volumes). This is recommended to be more rigorous in 

terms of the predictive capacity of the simulation models. 

APPLICATION 

Field Description and Data Available 
The case study is a real field of heavy oil (16º API), a turbiditic sandstone reservoir that is structurally 

and stratigraphically trapped located offshore Campos Basin, Brazil, named as S-Field. The field oil 

production started on October 1st, 2013 and the water injection, 143 days later. The time period of 

available well production and injection data, and seismic acquisitions is 2359 days (6.5 years). 

The well production and injection data include, on daily basis: oil production rate (Qo), water 

production rate (Qw), gas production rate (Qg) and average bottom-hole pressure (BHP) from eight oil 

production wells, and water injection rate (Qwi) and BHP from four water injectors. The wells follow, 

predominantly, a nearly horizontal trajectory in the reservoir. Figure 3 presents a grid top map view of 

base layer of the main sand with all well completions shown. The seismic data comprise three PRM 

(permanent reservoir monitoring) seismic acquisitions, being one base survey acquired 60 days after 

field production start-up and two monitors: m3 (911 days) and m5 (2299 days). 

 
Figure 3: Top map view of main sand base of S-Field simulation 
model (K-48) including all the well locations. Wells starting with 
“P” are oil producers and those with “I”, water injectors. 

We consider the history period from day 1 to 2298 (6.3 years), and validation period - in order to 

evaluate the predictive capacity of the models in relation to the measured data in the field - from day 

2299 to 2359 (2 months). 

Draft 



8   4DS DATA ASSIMILATION IN A HEAVY OIL TURBIDITE SANDSTONE FIELD 

Braz. J. Geophys., 42, 2, 2024 

Simulation Model 
The simulation grid is of corner-point type and the reservoir fluid is treated by a black-oil model. The 

bottom aquifer is modelled numerically and the aquifer body in the lateral vicinity of the reservoir grid is 

modelled analytically by Fetkovitch method. Table 1 presents the grid size for each reservoir interval. 

These intervals follow the same definitions of Rosa et al. (2022) in order to apply their two maps of 

observed 4DS data in the main sand of the reservoir. 

Table 1: Simulation grid size by reservoir interval. 

Reservoir interval 
Number of grid cells Average block size (m) 

Active grid cells 
NI NJ NK I J K 

Top-middle of main sand 218 113 38 50 50 1.5 174,460 

Middle-base of main sand 218 113 10 50 50 1.5 174,876 

Extra sand 218 113 10 50 50 8.0 54,392 

 

This work uses the liquid production rate (Ql) as boundary condition informed to the simulator for 

the production wells and water injection rate (Qwi) for the injectors at the data assimilation step (history 

period), and BHP at the last simulation time of well operation (last date of history) and during the 

validation period. 

Generation of Prior Model Ensembles with and without 4DS 
An ensemble of 200 equiprobable petrophysical image realisations of porosity, net-to-gross (NTG), 

horizontal absolute permeability and rock type, totalling 800 images with approximately 400,000 active 

grid blocks each, is generated in the model characterisation step of CLFDM workflow (Schiozer et al., 

2019). 

The sequential indicator simulation is employed to generate the rock type realisations. The 

sequential gaussian simulation technique generates the porosity, NTG and horizontal absolute 

permeability. The 3D impedance from base survey is utilized as a secondary variable for the generation 

of porosity. The uncertain variables used in the generation of the image realisations include the 

variogram range for rock type, porosity, horizontal absolute permeability and NTG, and the correlation 

coefficients between porosity and permeability (log-normal distribution), impedance and porosity 

(normal distribution), and NTG and porosity (normal distribution). After the generation of the image 

realisations, the images are calibrated with well history data. This model ensemble is employed and 

named in this work as Prior_no4DS, which is the prior simulation model ensemble with no application 

of 4DS data in the model characterisation. More details about the generation and calibration of the 

image realisations can be found in Correia et al. (2023). 

After 4DS interpretation, some geological features are incorporated in the geological model. Details 

of the interpreted 4DS insights are available in Maleki et al. (2021) and Maleki et al. (2022). The 

introduction of these 4DS insights into the model occurs as seismic trends through the geometrical 
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modelling technique for observed structural features, and the objects’ modelling approach for the 

observed sand channels. The features are interpreted from seismic signal as with small transmissibility 

(e.g. faults or limits between sand channels) and the transmissibility of grid blocks is set as uncertain in 

the geostatistical generation of images. As a result, this second prior model ensemble, named in this 

work as Prior_4DS, differs to the Prior_no4DS ensemble only in the incorporation of 4DS data in the 

model characterisation. More details about the incorporation of 4DS features in the model can be found 

in Correia et al. (2023). 

Data Assimilation Inputs 
We consider different types of model uncertainties. Table 2 shows the minimum and maximum values 

of multiphase flow properties by means of Corey model for each rock type; Table 3, the well productivity 

and injectivity indexes (PI and II); and Table 4, the remaining model uncertainties. These bounds are 

applied in the ES-MDA by simple truncation if the property value falls outside these ranges during the 

data assimilation procedure. The prior distribution of all the uncertain attributes is defined as uniform. 

The values of well PI and II define the relationship between total fluid (water and oil) rate and 

pressure drawdown for the production wells, and between water rate and drawdown for the injectors at 

the well start-up date, and is kept constant over the field life. For the 200 petrophysical realisations, 

properties that vary cell-by-cell throughout the grid, lower and upper bounds are imposed to avoid 

unphysical values during the data assimilation. The rock type realisations are not updated in DA. 

Table 2: Minimum and maximum values of multiphase flow property uncertainties by rock type applied 
in the data assimilation. 

Uncertain attribute 
RTP-1 RTP-2 RTP-3 RTP-4 

Min. Max. Min. Max. Min. Max. Min. Max. 

Connate water saturation (Swc) 0.70 0.92 0.60 0.75 0.325 0.475 0.05 0.20 

Final water saturation (Sw = 1-Sor) 0.95 0.99 0.80 0.90 0.80 0.90 0.80 0.90 

Irreducible oil saturation (Soirr) 0.02 0.05 0.02 0.07 0.02 0.07 0.02 0.07 

Krw(1) Corey exponent 2 5 2 5 2 5 2 5 

Kro(2) Corey exponent 2 5 2 5 2 5 2 5 

Krg(3) Corey exponent 2 5 2 5 2 5 2 5 

Krl(4) Corey exponent 2 5 2 5 2 5 2 5 

Krw(1) end-point 0.40 0.70 0.40 0.70 0.40 0.70 0.40 0.70 

Kro(2) end-point 0.60 0.80 0.60 0.80 0.60 0.80 0.60 0.80 

(1) water-oil relative permeability; (2) oil-water relative permeability; (3) gas-liquid relative permeability; (4) liquid-
gas relative permeability. 
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Table 3: Minimum and maximum values of well productivities and injectivities (STD. ft3/day/psi) 
employed in the data assimilation. 

 P10 P11 P2 P3 P5 P6 P8 P9 I1 I2 I5 I6 

Min. 275.1 90.5 78.6 62.9 78.6 137.6 231.9 196.5 255.5 235.8 326.2 196.5 

Max. 510.9 168.0 146.0 116.8 146.0 255.5 430.6 364.9 474.4 437.9 605.8 364.9 

Table 4: Minimum and maximum values of petrophysical realisations and other uncertain attributes 
applied in the data assimilation. 

Uncertain attribute Min. Max. 

Net-to-gross spatial distribution (NTG)(1) 0 1 

Porosity spatial distribution(1) 0 0.50 

Horizontal abs. permeability spatial distribution (Kh)(1) 0 9,000 

Vertical to horizontal abs. permeability (Kv/Kh) ratio  0.20 0.80 

Horiz. abs. perm. anisotropy (n), being KhI = n x Kh; KhJ = (2 - n) x Kh 1.00 1.25 

Pore compressibility (psi-1) 3.0 x 10-7 3.0 x 10-5 

Original depth of water-oil contact (ft) 9,609.25 9,642.06 

Analytical aquifer productivity index (ft3/day/psi) 4,000 60,000 

Initial volume of water in analytical aquifer (ft3) 1.0 x 109 1.0 x 1013 
(1) Petrophysical realisation with one value by grid block. 

The data assimilations are performed using the ES-MDA with 4 iterations, constant inflation factor 

and 200 models per ensemble, totalling 1,000 flow simulations per case (prior ensemble plus 4 

assimilations). These definitions are based on the work of Emerick (2016), who obtained good results 

with these configurations. 

The localisation definition for scalar and grid properties (petrophysical realisations) are based on 

the work of Soares et al. (2018), who defined the localisation regions based on streamlines for grid 

properties and applied a correlation matrix for the scalar ones. We applied a similar procedure as the 

work of Soares et al. (2018): from the simulation of the prior model ensemble, we chose a single model 

to analyse the streamlines. We decided to select this single model as the one with median field water 

production, since the water production presented the largest prior model misfits. The localisation was 

determined separately for the prior model ensemble with 4DS data (Prior_4DS) and the one without 

4DS data (Prior_no4DS). 

A total of 20 well data series are assimilated: Qo and BHP for the 8 production wells, and BHP for 

the 4 injection wells. The observed data measurement errors are defined as a percentage of the data: 

10% for oil rate with a minimum cut-off error of 25 m3/day, and 2.5% for BHP. 

For the 4D seismic data, we apply the observed maps of p-impedance changes between monitor 

three and baseline survey (m3/bs ratio). The settings of data preparation follow the same as Rosa et 

al. (2022): two maps, with the reservoir considered as two intervals: top-middle and middle-base of 

main sand (information on simulation grid zones in Table 1), a defined standard deviation value and an 
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exponential correlation with four-cell length of the simulation grid. We set the seismic standard deviation 

values of data error in a way that the prior normalized objective functions (OF) for well history and 4D 

seismic data are balanced. This is done in order to ensure that the contributions of both types of data 

in the DA process are similar (Rosa et al., 2022). Table 5 presents the normalized well history and 4D 

seismic OF for the prior model ensemble without 4DS (Prior_no4DS) and the one with it (Prior_4DS), 

which shows that both well history and 4DS data sets are reasonably well balanced. 

Table 5: Mean normalized well data and 4DS objective functions for the prior model ensemble by 
case. 

Model 
ensemble Description Norm. well history OF 

(mean) Norm. 4DS OF (mean) 

Prior_no4DS Prior built without 4DS data 3.9226 4.3901 

Prior_4DS Prior built with 4DS data 4.4067 4.4158 

Data Assimilation Cases 
In order to evaluate the impact of 4DS data to the field production forecasting results at model 

characterisation and data assimilation steps, we perform three DA cases with different prior ensembles 

and different data sets assimilated (Table 6). 

Table 6: List of simulation model ensembles, before and after data assimilation. 

Case Prior employed at DA Data set assimilated Colour 
code 

Prior_no4DS - -  

Prior_4DS - -  

Post_no4DS Prior built without 4DS Well prod. and inj. data  

Post_4DSinDA Prior built without 4DS Well prod. and inj. data, and 4DS data  

Post_4DS Prior built with 4DS Well prod. and inj. data, and 4DS data  

Well PI and II Adjustment 
For the adjustment of productivity and injectivity index of the wells, we switch the informed data to the 

simulator from well rates to bottom-hole pressure at the last producing or injecting date of the history 

period for each respective well, which is 2998 days for all the wells excepting P2 whose last producing 

date is day 2282. 

Filtering 
We apply the acceptance criterion for the well history data of 30 as cut-off value of the maximum 

|NQDSHIST| among all well functions (Qw, BHPp, etc.), meaning that a given model should have all the 

well functions with |NQDSHIST| lower than or equals 30 to pass the filter of well history data. This 

acceptance criterion is employed to the posterior model ensembles of all the data assimilation cases in 

Table 6. 
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The posterior ensembles from DA cases that utilise 4DS data (Post_4DSinDA and Post_4DS) are 

also filtered with regards to an acceptance criterion of 4DS. If a posterior ensemble model presents an 

MSE value (quantitative measure of 4DS matching quality) lower than its prior model, it passes the filter 

and proceeds to the final steps of validation and production forecasting. The remaining models are 

filtered out and are not applied in these final steps. 

For Post_4DSinDA and Post_4DS cases, the posterior ensemble models must pass the 

acceptance criteria of both well history and 4DS criteria. The Post_no4DS ensemble employs just the 

well history data criterion at the filtering step, since this case does not apply 4DS data in the process. 

The prior ensembles are not subject to the filtering step and their results are shown on top of the three 

DA cases for comparison purposes, only. 

Result Assessment 

4D seismic data misfits 

We analyse the misfit between the model ensemble results and the observed 4D seismic data in 

qualitative and quantitative means. At the former, we compare visually the mean model ensemble map 

of p-impedance ratio to the observed 4DS data at the two main sand reservoir intervals (top-middle and 

middle-base, with information on simulation grid zones in Table 1). At the latter, we employ the mean 

square error (MSE) of the entire reservoir region, similarly to Santos et al. (2022), over the middle-base 

interval.  

We evaluate the misfits between the 4DS observed data and model results in two separate time 

periods: history (with the first monitor to base ratio, m3/bs, which is assimilated) and validation (with the 

second monitor to base ratio, m5/bs, which is not assimilated). 

Well production and injection data misfits 

For the evaluation of well production and injection data misfits between observed data and simulated 

results, we employ the NQDS (Normalized Quadratic Deviation with Sign) indicator for quantitative 

analysis and, additionally, well production and injection curves to complement it. Equations 3 to 6 

present the steps to obtain the NQDS value for each well data time series (well functions) (Qo, BHPp, 

etc.). This indicator was firstly presented by Almeida et al. (2014), Avansi and Schiozer (2015) and Silva 

et al. (2015), and later by Avansi et al. (2016) and Maschio and Schiozer (2016). 

𝐿𝐿𝐿𝐿 = ∑ ⬚𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜
𝑚𝑚=1 (𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚)  (3) 

𝑄𝑄𝐿𝐿𝑆𝑆 = 𝐿𝐿𝐿𝐿
|𝐿𝐿𝐿𝐿|

∑ ⬚𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜
𝑚𝑚=1 (𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚)2 (4) 

𝐴𝐴𝑄𝑄𝐿𝐿 = ∑ ⬚𝑁𝑁𝑚𝑚𝑜𝑜𝑜𝑜
𝑚𝑚=1 (𝑇𝑇𝑇𝑇𝑇𝑇 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚 + 𝐶𝐶)2 (5) 

𝑁𝑁𝑄𝑄𝐿𝐿𝑆𝑆 = 𝑄𝑄𝐿𝐿𝑄𝑄
𝐴𝐴𝑄𝑄𝐿𝐿

    (6) 
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Nobs is the number of observed data in a given well data time series. Tol is a tolerance defined as 

a percentage of the observed data. C is a constant used to avoid excessive weight for very small data 

values. Similar to the analysis of model misfits with regards to the 4D seismic data, we use the NQDS 

indicator to quantify the misfit from well data observations and model results in two separate time 

periods: history (NQDSHIST), in which the data is assimilated, and validation (NQDSVALID), in which the 

data is used for benchmark purposes. Table 7 shows the Tol and C values applied for each well data 

time series (well function). 

Table 7: Parameters utilized in the calculation of NQDSHIST and NQDSVALID indicators for each well 
data time series. 

Indicator Parameter 
Well data time series 

Ql Qo Qw Qg BHPp BHPi Qwi 

NQDSHIST Tol 5% 10% 10% 15% 2.5% 2.5% 5% 

NQDSHIST C 0 0 1 m3/day 0 0 0 0 

NQDSVALID Tol 10% 10% 10% 15% 2.5% 2.5% 10% 

NQDSVALID C 0 5 m3/day 5 m3/day 0 0 0 0 

 

We adopted a C constant value different than zero for Qo and Qw of NQDSVALID because P2 well 

operates at a very small production rate of oil and water for a significant portion of the validation period 

of time. 

Production Forecasting under Uncertainties 
After the data assimilation, adjustment of well productivities and injectivities, filtering of posterior model 

ensembles with dynamic data (well production and injection data, and 4DS data) of history period 

(between day 1 and 2298) and simulation under validation conditions (from day 2299 to 2359), the 

models undergo through the production forecasting period between day 2360 and 7763. 

In this work, we evaluate the production forecasting results in terms of the future cumulative oil 

production (Np,fut) (remaining oil production) by employing the reference day of 2206 days, which 

corresponds to the date when the field decision is taken in the project. We apply the same operating 

constraints (platform capacity and well operation) for all the simulation model ensembles. 

RESULTS AND DISCUSSIONS 

Before presenting the results obtained with the different data assimilation cases depicted in 

“APPLICATION – Data assimilation cases” section, it is important to mention some aspects of the 

computational time spent for practical applications. 

For the Post_4DS case, the median simulation run time for each model of the ensemble was 

approximately 60 minutes using 10 CPU. The median elapsed time for each iteration of the analysis 

step of data assimilation, which includes the processing of the grid model properties and model errors, 
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was about 20 hours. 

Considering the use of a simulation cluster with 100 CPU (10 groups of 10 CPU), for the entire 

Post_4DS case comprising the simulation of prior ensemble, the 4 ensembles for the iterations and the 

ensemble after well PI and II adjustment, totalling 6 ensembles, it took: (1) a simulation run time in the 

magnitude order of 5 days (60 min/model/group of CPU x (1/10 groups of CPU) x 200 models/ensemble 

x 6 ensembles), and (2) processing of the analysis step of data assimilation iterations in the magnitude 

order of 4 days (20 hours/iteration x 4 iterations + 20 hours/ensemble x 1 ensemble after well PI and II 

adjustment). Considering the model simulations performed in a cluster with parallel computing as 

employed in this work, one may say that the computational time to obtain the results is affordable. 

Model Properties 

Scalar attributes 

Figure 4 shows a boxplot of the scalar attributes that present more differences among the posterior 

model cases. The well productivity index of P5 (Figure 4a) shows a progressive increase with the 

utilisation of 4DS data from Post_no4DS to Post_4DSinDA and Post_4DS. This difference in the PI of 

P5 is related to the different effect of grid property updating with introduction of 4DS data, especially 

the horizontal absolute permeability. The mean maps of this property in P5 well region (Figure 3 and 

Figure 5) support this analysis, with the highest horizontal absolute permeability occurring for the 

Post_no4DS case, and the lowest one for Post_4DS. 

 
  (a) (b)(c) 

Figure 4: Distribution of scalar model uncertainties for prior and posterior model ensembles: 
(a) P5 well productivity, (b) Kv/Kh ratio, and (c) original volume of water in the analytical 
aquifer. 

The vertical to horizontal absolute permeability (Kv/Kh ratio) in Figure 4b shows a similar behaviour 

with the introduction of 4DS data for Post_4DSinDA and Post_4DS cases. This scalar property is one 

of the most impacting the fluid saturation changes, and it shows consistency of the 4DS data 

assimilation across the cases whether employing or not 4DS in the prior model ensemble. The 

uncertainty of this property was much diminished with just assimilating 4DS data (from Prior to 

Post_4DSinDA), what demonstrates a strong impact of 4DS data assimilation. 
For the original volume of water (Vw) in the analytical aquifer (Figure 4c), we can see that just 

assimilating 4DS data (Post_4DSinDA case) resulted in posterior values within the interval of values of 
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Post_no4DS but it reduced a lot the uncertainty of this model property. At the other side, Post_4DS led 

to higher values of the original Vw. It is important to mention that this is commonly a difficult property to 

be estimated, and the introduction of 4DS data in the model characterisation step shows a big impact 

for this case study. 

Grid attributes 

Figure 5 shows the mean and standard deviation of effective porosity and horizontal absolute 

permeability at K-43 layer of each model ensemble. This layer is an intermediate layer in the middle-

base interval of main sand body, where most of the changes in the fluid flow caused by production and 

injection occur. 

The property variability (standard deviation) of posterior model ensembles decreases in relation to 

the prior ones, what is an expected result of the ES-MDA application. It calls our attention the strong 

reduction in effective porosity variability for the Post_no4DS case in the central-east area of the map. 

This is associated with the lower effective porosity obtained for this case in comparison to the other 

posterior ensembles. As it occurs around several production and injection wells (P2, P3, P6, I2 and I5 

wells), we can explain this region in Post_no4DS as the property result that could best fit the well history 

data when no 4DS data is employed. 

Both effective porosity and horizontal absolute permeability change significantly with the joint data 

assimilation of 4DS and well history (Post_4DSinDA) in relation to DA of just well history (Post_no4DS): 

the effective porosity increases substantially overall, while the horizontal absolute permeability 

decreases in the central-west area of the reservoir. 

When 4DS is employed in both model characterisation and data assimilation (Post_4DS), the 

variability of effective porosity and horizontal absolute permeability in posterior compared to prior 

diminishes less than just assimilating it (Post_4DSinDA), especially near the borders of the grid. This 

indicates that the incorporation of 4DS data in the model characterisation helps to preserve the property 

variability at locations that are far from the wells, provided that Prior_no4DS and Prior_4DS ensembles 

do not present significant changes in the property variability overall between each other. 

4D Seismic Data Misfits 
Figure 6 shows the observed p-impedance ratio between each of the monitor and base surveys (m3/bs 

and m5/bs) at top-middle and middle-base of main sand interval on the first line, and the respective 

mean maps of each model ensemble on the following lines. 

When we compare the model ensembles to the observed maps, we can see the great impact of 

4DS to the improvement of model results. The posterior case with 4DS in both model characterisation 

and data assimilation (Post_4DS) agrees more with the observed maps overall, mainly because the DA 

of 4DS without its use in characterisation (Post_4DSinDA) led to a softening anomaly above P5 well 

location in both m3/bs and m5/bs ratios (arrows A in Figure 6). This softening anomaly is not present in 

the observed signal. The posterior case without 4DS (Post_no4DS) also does not show the softening 
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anomaly around P5 and P6 region that is observed at the middle-base interval (arrows B), while 

Post_4DS and Post_4DSinDA do. 

We can take some conclusions on a sand channel that was inserted in the Prior_4DS ensemble 

from the interpretation of geological features identified through analysis of the 4DS observed signal. 

This sand channel takes water from the bottom aquifer to P9 well and its margins were modelled 

inserting low abs. permeability in the Prior_4DS (arrows A in Figure 5). The p-impedance ratio of both 

m3/bs and m5/bs at the middle-base interval shows the effect of this identified sand channel at the 

observed signal and the prior ensemble built with 4DS (arrows C in Figure 6). The data assimilation 

helped improving this channel delineation as we can see in the m3/bs map of Post_4DS and it is more 

evident in the m5/bs map (arrows D in Figure 6). We believe that this sand channel inserted in the 

model characterisation also prevented the softening anomaly above P5 in the Post_4DsinDA ensemble 

(use of prior built without application of 4DS data) as discussed in the previous paragraph and indicated 

by the arrows A in Figure 6, from appearing in Post_4DS (use of prior with 4DS data). 

Another clear anomaly that is not present in the observed signal but appears on the model results 

is the softening anomaly on the east region in the top-middle interval of both m3/bs and m5/bs of 

Post_no4DS (arrows E in Figure 6). This is associated with the lower effective porosity of this case in 

relation to the other model ensembles (Figure 5). As this anomaly is not present in the Prior_no4DS 

neither the Post_4DSinDA, one can conclude that it was an artefact caused by the assimilation of well 

history data without 4DS data. 

As a conclusion of the qualitative analyses of p-impedance ratios, the combined application of 4DS 

data in model characterisation and data assimilation was important to obtain model ensembles with 

better fit of the observed 4DS signal. 

Figure 7 shows the mean square error (MSE) of middle-base interval of both m3/bs and m5/bs p-

impedance ratios, for each model ensemble. The quantitative results of MSE corroborates with the 

qualitative analyses of 4DS maps, which indicated that the Post_4DS model ensemble resulted in closer 

results to the obs. signal for both m3/bs and m5/bs in relation to all model ensembles. This is evidenced 

by the lowest values of MSE for Post_4DS. We can also depict from Figure 7 that the MSE variation 

reduced more for this case than the posterior ensembles that do not incorporate 4DS data in the model 

characterisation (Post_no4DS and Post_4DSinDA). This occurs even though Prior_4DS shows bigger 

variation than Prior_no4DS. Thus, the integrated DA of well history and 4DS data using the prior 

ensemble built with 4DS (Prior_4DS) was responsible for substantially diminishing the MSE values. 

Another observation is the MSE change from m3/bs to m5/bs, with Post_4DS maintaining the low 

values, what indicates good validation results in terms of 4DS data (remembering the m5 was not 

assimilated). The MSE of Post_4DSinDA had a relative increase in m5/bs due to the softening anomaly 

above P5 well location in the map as it was previously discussed (arrows A in Figure 6). 

As a sum, the MSE results indicate that, even though the Prior_no4DS and Prior_4DS show similar 

errors for both m3/bs and m5/bs p-impedance ratios, the model characterisation step was very impactful 

on posterior results when we compare Post_4DSinDA and Post_4DS cases.   
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Effective porosity 
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(Prior 4DS)  
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(Post. 4DS in DA) 
    

(Post. 4DS) 
    

Figure 5: Mean and standard deviation map at K-layer 43 for prior and posterior model ensembles.  
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Figure 6: m3/bs and m5/bs p-impedance ratios for top-middle and middle-base intervals. 
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   (a) (b) 

Figure 7: Mean square error (MSE) between the observed signal and each model 
ensemble calculated over the middle-base interval for Prior_no4DS (grey colour), 
Prior_4DS (black), Post_no4DS (blue), Post_4DSinDA (green) and Post_4DS 
(magenta): (a) m3/bs, and (b) m5/bs p-impedance ratios. 

Well Production and Injection Data Misfits 
The informed data to the simulation during the history period (Ql for producers and Qwi for injectors) is 

honoured by all models for all the wells, so NQDSHIST indicator equals zero for Ql and Qwi. This indicator 

is shown in Figure 8 for all the other well functions (BHPp, BHPi, Qo, Qw and Qg). We can see that most 

of them do not differ significantly among the posterior model ensembles, having all cases general good 

results in terms of well matching. 

 
 (a) (b) 

 
 (c) (d) 

 
(e) 

Figure 8: Normalized quadratic deviation with sign on history period (NQDSHIST) for 
Prior_no4DS (grey colour), Prior_4DS (black), Post_no4DS (blue), Post_4DSinDA 
(green) and Post_4DS (magenta). 
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Some exceptions are P2 and P5 wells. The bottom-hole pressure of P2 decreases progressively 

from Post_no4DS to Post_4DSinDA and Post_4DS, becoming more distant of the history data series. 

This occurs because the horizontal absolute permeability in the region of P2 well is progressively lower 

on this case order (Figure 5), and its well productivity was not able to account for this effect. The P5 

water production rate and, as a consequence, its oil rate are closer to the history data (smaller value of 

|NQDSHIST|) for Post_4DS case due to the incorporation of 4DS data in the prior model ensemble. This 

is evidenced by the smaller |NQDSHIST| values of Prior_4DS in relation to Prior_no4DS for Qo and Qw 

of P5 well. Figure 9 shows the Qo and BHP curves of P5 well for visualization purposes of the NQDSHIST 

indicator. 

 
  (a) (b) (c) 

 
  (d) (e) (f) 

Figure 9: Oil production rate (Qo) and bottom-hole pressure (BHPp) curves of P5 well during history 
period for posterior ensembles on top of their prior ensembles: Post_no4DS (blue), Post_4DSinDA 
(green) and Post_4DS (magenta). 

Filtering with Well History and 4DS Data  
Figure 10a presents the distribution of maximum |NQDSHIST| among all the well functions before the 

filtering step with well history data, which is employed to screen out the worst models based on this 

type of data. The more to the left the curve is, the lower the maximum |NQDSHIST| by model, and the 

more ensemble members are to be filtered in for validation and production forecasting applications.  

The cases with 4DS (Post_4DSinDA and Post_4DS) present a distribution more to the left than the 

case without 4DS (Post_no4DS), indicating that 4DS data actually improved the well matching for 

filtering purposes. In addition, 10% of the models from Post_no4DS case shows a maximum |NQDSHIST| 

value much higher than the rest of the ensemble (right most part of the blue curve in Figure 10a). The 

well functions with highest |NQDSHIST| for these 10% of models from this case are Qg and BHPp in 

general, as it can be depicted from Figure 8. This happens because of the lower effective porosity for 

Post_no4DS in comparison to the other cases (first column of Figure 5), which caused lower BHPp 

(lower NQDSHIST for BHPp) and, as a consequence, high Qg (high NQDSHIST for Qg) due to free gas 

being produced. 
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The data assimilation of 4DS information improved the distribution, since the Post_4DSinDA case 

presents a curve with lower values of maximum |NQDSHIST| than Post_no4DS case (Figure 10a), having 

both utilized the same prior model ensemble (Prior_no4DS). The incorporation of 4DS data into the 

model characterisation did not impact substantially the posterior results, as the Post_4DS shows a 

similar distribution to Post_4DSinDA. It is important to mention that the difference between these two 

model ensembles is the incorporation of 4DS data in the model characterisation step, which does not 

intend to improve the well matching results. Therefore, this is not an unexpected result. 

 
 (a) (b) 

Figure 10: Distribution of maximum |NQDSHIST| among all well functions for each model ensemble 
(a) before the filtering step applied with well history data, with the cut-off for validation and production 
forecasting applications represented by the vertical dashed line, and (b) after the filtering step applied 
with well history data. 

The models from the posterior model ensembles with the maximum |NQDSHIST| value lower than 

30 were filtered in (well history data criterion) for validation and production forecasting applications, 

representing 91.5% of models for Post_no4DS, 99.5% for Post_4DSinDA and 100% for Post_4DS. 

Figure 10b shows the distribution of maximum |NQDSHIST| among all the well functions for the posterior 

model ensembles after the filtering with well history data. 

Figure 11 presents the cross plot of mean square error (MSE) of middle-base interval of m3/bs 

between the prior and posterior models for each data assimilation case. We can see that all posterior 

ensemble members of the case that applied 4DS data in model characterisation and DA (Post_4DS) 

show lower MSE than the prior, confirming that the data assimilation reduced the 4DS error for all 

models. As a result, no models were filtered out with regards to 4DS data for this case. The case that 

employed 4DS only at DA (Post_4DSinDA) shows 7 posterior models with MSE higher than their 

respective prior, so these models were filtered out. The case without 4DS (Post_no4DS) shows many 

posterior models with higher MSE than their prior. However, the filtering step with regards to 4DS is not 

applied to this case because it does not consider any 4DS information along the process. 
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Figure 11: Mean square error (MSE) between the observed signal and 
each model ensemble calculated over the middle-base interval for 
m3/bs with the prior result in the horizontal axis and posterior in the 
vertical axis for each data assimilation case. 

Figure 12 shows the cross plot between the 4DS metric employed in the filtering (MSE of middle-

base interval of m3/bs) and the well history metric employed (maximum |NQDSHIST| among all local 

objective functions) for the case Post_4DSinDA. We can see the only model previously filtered out by 

the well history criteria (Figure 10a) in red and the seven models filtered out by the 4DS criteria in black, 

totalling 8 models filtered out for this case. We do not show the Post_4DS case because all the models 

can pass the acceptance criteria of both 4DS and well history and do not present the Post_no4DS 

because the 4DS data is not utilized along the process for this case.  

 
Figure 12: Filtering criteria applied to Post_4DSinDA case, with the 
4DS error in the horizontal axis and the well history data error in the 
vertical axis. 

Predictive capacity of the models 
During the validation period, the bottom-hole pressure of all producers and injectors are used as 

boundary condition informed to the simulator. Since all DA cases present good well matching overall 
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(“RESULTS AND DISCUSSIONS - Well Production and Injection Data Misfits” section), NQDSVALID is 

zero for BHP. 

Figure 13 shows the boxplots of NQDSVALID for Ql, Qwi and Qo. In addition to the posterior models 

that were filtered in from each ensemble, we also include all the models from the prior ensembles for 

comparison purposes. In general, Post_no4DS resulted in lower misfits than the posterior cases with 

4DS, but not a significantly big difference. It is important to note that no 4DS data is being employed to 

evaluate the predictive capacity of the models and, as a consequence, the capacity of the model 

ensembles that employed 4DS in the process (Post_4DSinDA and Post_4DS) cannot be fairly 

compared to Post_no4DS. We should consider that the Post_no4DS ensemble was developed in order 

to specifically produce close results to the well production and injection data and, for this reason, such 

small differences observed in the predictive capacity do not represent a relevant advantage for 

Post_no4DS in relation to Post_4DSinDA and Post_4DS. Figure 14 and Figure 15 show, respectively, 

the P5 and I2 well curves for visualization purposes of the NQDSVALID indicator. 

 
 (a) (b) 

 
(c) 

Figure 13: Normalized quadratic deviation with sign on validation period (NQDSVALID) for 
Prior_no4DS (grey colour), Prior_4DS (black), Post_no4DS after filtering (blue), 
Post_4DSinDA after filtering (green) and Post_4DS after filtering (magenta): a) liquid 
production rate (Ql), b) water injection rate (Qwi) and c) oil production rate (Qo). 

 
  (a) (b) (c) 

Figure 14: Oil production rate (Qo) curves of P5 well during validation period for posterior 
ensembles after filtering on top of their prior ensembles: a) Post_no4DS (blue), b) Post_4DSinDA 
(green) and c) Post_4DS (magenta). 
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  (a) (b) (c) 

Figure 15: Water injection rate (Qwi) curves of I2 well during validation period for posterior 
ensembles after filtering on top of their prior ensembles: a) Post_no4DS (blue), b) Post_4DSinDA 
(green) and c) Post_4DS (magenta). 

Production Forecasting under Uncertainties 
Figure 16 shows the future cumulative oil production (remaining oil production) curves for each model 

ensemble from day 2206 to 7763. We present, once again, all the models from prior ensembles in 

addition to the posterior models that were filtered in, for comparison purposes. We can see that the 

case that applied 4DS data only at data assimilation (Post_4DSinDA) provides distinct curves of the 

posterior without 4DS (Post_no4DS), with more optimistic oil production, even though these cases 

employ the same prior model ensemble. The case that incorporated 4DS data at model characterisation 

and DA (Post_4DS) present more variability than Post_4DSinDA. This appears to be related to the 

higher variability of effective porosity and horizontal absolute permeability near the grid borders of the 

former compared to the latter, as it was discussed previously, at “RESULTS AND DISCUSSIONS – 

Model Properties - Grid attributes” section. 

 
  (a) (b) (c) 

Figure 16: Future cumulative oil production after filtering on top of their prior ensembles: a) 
Post_no4DS (blue), b) Post_4DSinDA (green) and c) Post_4DS (magenta). 

Figure 17 shows the distribution of final Np,fut (at the day 7763) for each posterior model ensemble. 

The difference between the Post_4DSinDA case and Post_4DS is not much significant, with the latter 

presenting more variable risk curve. The case that does not apply 4DS in neither data assimilation nor 

model characterisation (Post_no4DS) has a difference of approximately 23% in the mean remaining 

field oil production compared to the cases with 4DS, what is a huge difference: 9.178 MMm3 STD. for 

Post_no4DS, 11.757 for Post_4DSinDA and 11.995 for Post_4DS.  

Draft 



 Silva et al.         25 

Braz. J. Geophys., 42, 2, 2024 

 
Figure 17: Future cumulative oil production at the day 7763 (final Np,fut) 
(remaining oil production) for the posterior model ensembles after 
filtering: Post_no4DS (blue), Post_4DSinDA (green) and Post_4DS 
(magenta). 

The difference in in the mean remaining field oil production between Post_no4DS and the cases 

with 4DS (Post_4DSinDA and Post_4DS) is associated with the original volume of oil in place (VOIP) 

(Figure 18), which shows the Post_no4DS case with the lowest values of VOIP, and some model 

properties such as the original Vw in the analytical aquifer (Figure 4c), denoting more energy capacity 

of the analytical aquifer for Post_4DS in relation to the other cases. 

 
Figure 18: Distribution of original volume of oil in place 
for prior, and posterior model ensembles after filtering. 

The final production forecasting results indicate a strong impact of 4DS data assimilation in the 

process compared to the non-application of 4DS, and a secondary effect of 4DS data incorporation in 

the model characterisation for this case study. In terms of overall quality of model results, though, the 

Post_4DS case is the best choice to take field decisions because it yields the best model fit in relation 

to the observed dynamic data (well history and 4DS) as it was discussed in the previous items.  

CONCLUSIONS 

In this work, we proposed and applied a methodology to a real field that evaluates the relative changes 

obtained in the field production forecasting among cases with and without the incorporation of 4DS 

data, by demonstrating a data assimilation study integrating 4DS and well history data. 
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The model misfits to the well production and injection data that was assimilated (history data) did 

not change significantly among the cases. In general, all the cases presented good results in terms of 

well matching. The cases that employed 4DS data resulted in a higher number of models passing 

through the filtering step (with history and 4DS data) for the final steps of validation and production 

forecasting. Some modifications introduced in model characterisation with 4DS data improved the 

misfits of multiphase flow rates of P5 well in relation to the case without 4DS data. At the other side, 

the bottom-hole pressure of P2 well resulted in lower misfits for the case without 4DS due to the update 

of horizontal absolute permeability being more able to adjust this well function than the cases with 4DS. 

The qualitative analysis of 4DS assimilated data showed closer maps, in relation to observed data, 

for the cases that assimilated 4DS data than the case without 4DS, as expected. The best results 

occurred for the case with 4DS data in the model characterisation due to the sand channel that was 

modelled, taking water from the bottom aquifer to P9 well. The quantitative analysis by means of the 

mean square error corroborates with the qualitative analysis making it less subjective. 

After the data assimilation, we successfully performed the model validation by employing a period 

of well production and injection data, and one 4D seismic monitor survey for this purpose. We obtained 

satisfactory results for all the cases in both qualitative and quantitative means. The best validation 

results of well data occurred for the case without 4DS, and the best results of 4DS data, for the case 

with 4DS incorporated in model characterisation and DA, as expected. 

The case without 4DS data provided significantly more pessimistic field oil production forecast than 

the cases with 4DS, with an approximate difference of 23% in the remaining field oil production. This is 

explained by the smaller volume of original oil in place due to lower effective porosity and weaker 

analytical aquifer support for the former in relation to the latter. The incorporation of 4DS data in model 

characterisation impacted the final oil production forecast at lower degree than the data assimilation. 

In sum, the application of 4DS in both model characterisation and data assimilation steps brought 

value to the final uncertainty reduction results. The posterior model ensemble with 4DS data in model 

characterisation and DA provided lower model misfits overall to both well and 4D seismic data than the 

other cases by considering history and validation periods. The remaining field oil production was 

significantly lower for the case that did not apply 4DS data in relation to the cases that did. Although 

the distribution of final cumulative field oil production did not differ much between the case with 4DS 

just in DA and the case with 4DS in both characterisation and DA, some model properties such as 

porosity and abs. permeability at some regions of the reservoir did. This may be of significant impact to 

infill drilling positioning. In addition to the lowest model misfits of the case applying 4DS along the entire 

process, this observation confirms that it is the best choice for application at field production forecasting 

studies. 
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