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ESTIMATION OF WATER VELOCITY AND RECEIVER
POSITION CHANGES IN TIME-LAPSE SEISMIC USING

MACHINE LEARNING

ABSTRACT. Non-repeatability is one of the main obstacles in time-lapse seismic, as it signi�cantly degrades

the interpretation of reservoir-related signals. Correcting the data variations caused by non-repeatability (4D

noise) is of paramount importance, which usually requires the estimation of the changing parameter. In this

paper, we propose a Machine Learning (ML) work�ow for the quantitative estimation of two types of 4D

noise: changes in the speed of sound in water and receiver lateral positions. A synthetic database, modeled

from a velocity model estimated from the Brazilian pre-salt, and containing many time-lapse seismic surveys

was generated for the supervised training of ML models. Input samples consist of subsets of common-shot

seismograms. We studied many combinations of ML regression algorithms and feature extraction techniques, for

scenarios where data is contaminated, or not, with Gaussian random noise. The regression algorithms considered

were Fully-Connected Neural Network, Extreme Gradient Boosting, and Bayesian Ridge. Four rectangular crops

of the common-shot seismogram were tested as input features: full seismogram, �rst half of time samples, 11

smallest-o�set traces, and the time samples focusing on the �rst arrivals region. The combination with the best

trade-o� between accuracy and model complexity is the Bayesian Ridge fed with the 11 smallest-o�set traces,

which estimated position and velocity time-lapse changes with median accuracy of 0.115 m and 0.017 m/s for

the case with Gaussian noise. Besides the correction of repeatability-related variations, our results are useful in

the 4D Full-Waveform Inversion which needs accurate parameters to produce good seismic images.
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INTRODUCTION

Time-lapse seismic, the state-of-the-art technology for oil and gas reservoir monitoring, consists of taking suc-

cessive seismic surveys in the same geographic region over time (Johnston, 2013). The �rst survey, called the

baseline, is typically performed before exploration. After production starts, additional surveys (monitors) are

taken every several months to a few years. By analyzing the di�erences in seismic data across surveys, it is

possible to infer the changes in the reservoir over time due to �uid substitution (Nguyen et al., 2015).

In the ideal case, the di�erences in the seismic data from one survey to the other are related only to reservoir

changes (production-related) during the corresponding time period. However, the seismic signature is also

in�uenced by other factors, which in practice are not exactly replicated across surveys. The mismatch of such

factors is called non-repeatability, and the resulting data di�erences (not related to the reservoir) are termed

4D noise.
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2 ESTIMATION OF NON-REPEATABILITY NOISES WITH ML

In marine seismic, the major non-repeatability factors are the changes of sound velocity in seawater, misposi-

tioning of sources and receivers and tidal variations (Nguyen et al., 2015; Borges et al., 2022). Seawater velocity

varies continuously and is in�uenced primarily by temperature and water salinity (Carvill, 2009). Also, GPS

inaccuracies, ocean currents and weather conditions hinder the replication of sources and receivers positioning

across surveys (Bertrand and MacBeth, 2005).

Non-repeatability e�ects signi�cantly degrade 4D seismic signals (Ritter, 2010; Bertrand and MacBeth,

2005). If not properly treated, those e�ects corrupt data and may lead to false indications of the sea bottom

structure and reservoir properties. As a consequence, important tasks such as stacking, depth migration, imaging

and inversion are also a�ected (MacKay et al., 2003; Ritter, 2010). To mitigate these issues, one must correct

the variations introduced by the non-repeatability e�ects in the seismic data during processing, which usually

requires a direct or indirect measure of the causing variable (e.g., water velocity) (MacKay et al., 2003; Amini

et al., 2016). An indirect measure of water velocity, for example, would be calculating the associated time shifts

in the signal.

In the literature, there are a number of papers about estimating non-repeatability noise and/or correcting

its e�ects. These works usually focus on water velocity and, to a lesser degree, tidal variations. Among

the many estimation methods in the literature, we can mention those based on the direct measurement of

velocity and height of the water layer with instruments (Wang et al., 2015; Bagaini et al., 2021), tomographic

inversion (Ritter, 2010), matching of theoretical and observed direct arrival traveltimes (Amini et al., 2016),

and time-di�erences minimization (MacKay et al., 2003) or time-lapse di�raction (Osdal and Landrø, 2011)

analyses of sea bottom re�ections. Many of the aforementioned methods rely on the manual picking of key

seismic events from data, which is a laborious and time-consuming task. Also, they are built on top of physical

assumptions that may not be satis�ed by the seismic data at hand, which limit their applicability.

Besides using physics-based methods, another option is to devise data-driven techniques using machine

learning (ML). Machine learning has been increasingly used in geosciences, showing promising results in many

applications (Dramsch, 2020; Shen et al., 2022; Yoon et al., 2021). Provided that enough representative data is

available, ML-based regression work�ows have the potential to be applicable to a broader set of seismic data

due to fewer assumptions, while also dismissing manual pickings.

In this paper, we propose a ML-based method for the quantitative estimation of two types of 4D noise

that are common in time-lapse marine seismic: the change in the lateral position of receivers and seawater

velocity. By modeling a set of time-lapse ocean bottom node (OBN) surveys in deep water, we generated

a synthetic database of common-shot seismograms. To generate these seismic data, we employed a velocity

model estimated from the Brazilian pre-salt. From each seismogram, relative to a di�erent monitor survey,

a subset of data (features) is extracted for supervised training of ML models. Many combinations of ML

regression algorithms and feature extraction techniques have been tested, considering the scenarios where data

is contaminated or not with Gaussian noise. The motivation of this work is that accurate estimates of 4D noise

can be used for correcting the associated variations in the data (Osdal and Landrø, 2011; Wang et al., 2015).

Those estimates also have the potential to improve 4D seismic inversion work�ows, such as obtaining a more

accurate initial velocity model for the 4D Full-Waveform Inversion (FWI-4D) technique (Yuan et al., 2019).
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3

METHODOLOGY

We employ ML for performing the regression of two speci�c 4D noise parameters: the time-lapse change in

acoustic velocity of seawater, ∆V , and in receiver horizontal positions, ∆X. For simplicity, we assume that the

velocity is homogeneous in the water layer and that the shift in position is the same for all receivers.

Seismic modeling

To test the method proposed in this work, we generated a synthetic database modeling a number of time-lapse

OBN seismic acquisitions in deep water. The seismic data were generated by solving the following acoustic wave

equation in 2D with a time-domain �nite di�erence approximation:

1

v2(x)

∂2

∂t2
p(x, t)−∇2p(x, t) = S(t) δ(x− xs) , (1)

where x = (x, z) is the position vector, p(x, t) is the pressure �eld and v(x) is the speed of sound. The source

term to the right-hand side describes a point source located at xs, with waveform S(t).

The main parameters of numerical simulations are: the time step of 2 ms, the simulated time span of 10 s,

grid cell sizes of 8 m, the 4-th order �nite-di�erence approximation of the Laplacian operator, and, to simulate

propagation to in�nity at the borders, 25 layers of absorbing CPML cells (Convolutional Perfectly Matched

Layer) were added around the analysis domain.

Figure 1(a) illustrates the seismic surveys modeled in the database. The acquisition geometry consists of

1 source and 49 receivers. The source is �xed at the center of the domain in the horizontal direction and at

8-meter depth, and the receivers are spaced 400 meters apart from each other along the sea bottom, reproducing

an OBN acquisition. The source employed was a Ricker wavelet with dominant frequency of 8 Hz. The velocity

model used, shown in Figure 1(b), is a simpli�cation of a real-world 2D model estimated from Gato do Mato

oil �eld (da Silva et al., 2021), located in Santos basin, o�shore Brazil. The simpli�ed model was obtained by

taking the �rst column of the original velocity matrix and replicating it along the horizontal direction.

The data set is composed of 1 baseline and 1000 monitor shot-gather seismograms, each with 49 traces

and 5000 time samples. Those gathers correspond to di�erent seismic surveys taken in the same region over

time. The baseline seismogram was obtained by modeling a survey with reference values of receiver positions

and water velocity (equal to 1500 m/s). Monitor seismograms were generated by adding di�erent pairs of

(∆X, ∆V ) perturbations to the baseline survey model.

The∆X and∆V values used to model the monitor surveys were obtained from an adaptation of the empirical

distribution of typical 4D noise values reported in (Cypriano et al., 2019). Although the distribution originally

refers to receiver position errors, some of its statistical properties, namely the range of variation and median,

are compatible with typical velocity time-lapse noise values in the unit of meters per second. This distribution

was truncated to the [0, 5] range, and mirrored around zero to cover the negative noise values. Then, 1000 error

position values were randomly sampled from this modi�ed distribution, half positive and half negative. The

same was performed for ∆V independently. As a result, the values of each noise type vary within the [−5, 5]

range, with median ±2 for each sign (unit in meters for ∆X, and meters per second for ∆V ). Figures 1(c)-(d)

show the histograms of sampled values of each noise type.
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4 ESTIMATION OF NON-REPEATABILITY NOISES WITH ML

Figure 1: Seismic surveys modeled in the synthetic database. (a) Acquisition geometry (o�-scale); baseline
survey corresponds to ∆X = ∆V = 0. (b) Baseline velocity model. (c) Histogram of position 4D noises. (d)
Histogram of velocity 4D noises.

Machine learning strategy

The proposed algorithm employs seismic data to quantify two types of 4D noise in monitor surveys. As previously

mentioned, the method assumes that the 4D noise a�ecting the velocity is constant in the entire water layer

and that all receivers are shifted by the same distance along the X direction. The ML model receives as input

a subset (input type) extracted from seismic data, and outputs the estimated ∆X and ∆V values. To perform

this task, we tested many combinations of ML regression algorithms and types of input extracted from seismic

data. Those combinations are henceforth called treatments in this paper.

The considered regression techniques are Bayesian Ridge (Tipping, 2001), Fully-Connected Neural Network

(FCNN) (Bishop, 1995) and Extreme Gradient Boosting (XGBoost) (Chen and Guestrin, 2016). Bayesian Ridge

is a kernel method similar to Gaussian Process regression (Rasmussen and Williams, 2005), neural networks are

universal function approximators inspired by neural interconnections in biological brains and XGBoost combines

the outputs of many decision trees (boosting) to achieve better estimation performance.

The standard Bayesian Ridge and XGBoost are univariate regression techniques. To predict the two noise

types, for each Bayesian Ridge and XGBoost treatment we trained two independent models, one for estimating

∆X and the other for ∆V . FCNN treatments, on the other hand, considered a single neural network for

estimating both noise types.

The FCNN considered is a feedforward network formed of three hidden layers of 128-64-16 neurons, all using

the ReLU activation function, and 2 neurons with no activation function in the output layer. The network was

trained for 300 epochs using the RMSProp optimizer, with 10−3 learning rate and MSE loss function. The

XGBoost model is an ensemble of 50 boosted trees with maximum depth equal to 6, learning rate equal to

0.3, and the L2 regularization term on weights equal to 1. The main parameters of the Bayesian Ridge model

are: maximum number of iterations equal to 200, and the Gamma distribution with shape and rate parameters

equal to 10−6 was chosen as the prior over the target noise variance and over the algorithm's regularization
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5

Figure 2: Considered types of input extracted from shot-gather seismograms.
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Figure 3: Illustration of seismic trace (a) free of random noise, and (b) contaminated with 10 dB S/N Gaussian
noise. Noise causes a strong disturbance in the data. The trace peak, for example, which can be used to
calculate the �rst arrival, undergoes amplitude changes and time shifts.

parameters (Tipping, 2001). We used the implementations of neural networks, Bayesian Ridge and XGBoost

algorithms from the libraries TensorFlow/Keras 2.4.1, scikit-learn 1.0.2 and dmlc/xgboost 1.5.1, respectively.

The tested input types are the full shot-gather seismogram, and also three rectangular crops extracted from

it: the �rst half of time samples (called �Half seismogram�), the 11 smallest-o�set traces, and the �Focus arrivals�

input, which is formed by all traces within the [1.3 s, 1.8 s] time range. This last input type focuses on the

region of �rst arrivals of the smallest-o�set traces. Figure 2 illustrates all the input types tested in this work.

We also experimented with contaminating seismic data with random noise, in order to assess the robustness

of the methodology against a kind of disturbance commonly found in real data. All the combinations of ML

algorithm and input type (treatments) are tested for two scenarios: seismic signals free of random noise, and

seismic data contaminated with additive white Gaussian noise (AWGN) of 10 dB signal-to-noise ratio (S/N). An

example of a single trace polluted by 10 dB AWGN is illustrated in Figure 3. Table 1 lists all the 12 treatments

tested in this work. Considering the scenarios in which random noise is present or absent, we performed 24

simulations in total.

The ML 4D noise regression is carried out according to the work�ow shown in Figure 4. From the database

described in the previous section, we calculate the di�erence between each monitor and the baseline seismogram.

These di�erence gathers may or may not be contaminated with Gaussian noise, depending on the scenario being
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6 ESTIMATION OF NON-REPEATABILITY NOISES WITH ML

Table 1: Treatments according to the ML method and the input type.

Treatment Label Regression Algorithm Input Type

S1 FCNN Full seismogram

S2 FCNN Half seismogram

S3 FCNN 11 smallest-o�set traces

S4 FCNN Focus arrivals

S5 XGBoost Full seismogram

S6 XGBoost Half seismogram

S7 XGBoost 11 smallest-o�set traces

S8 XGBoost Focus arrivals

S9 Bayesian Ridge Full seismogram

S10 Bayesian Ridge Half seismogram

S11 Bayesian Ridge 11 smallest-o�set traces

S12 Bayesian Ridge Focus arrivals

Contaminate
with Gaussian
noise (optional)

Extraction of
input type

Data
Split

Training set
(70 %)

Test set
(30 %)

Model
Training

Regression
on test set Results

Shot gather time-
lapse differences
 (monitors – base)

Flatten

Figure 4: Block diagram of the proposed 4D noise regression methodology.

considered. Next, one of the input types shown in Figure 2 is extracted from the di�erence seismograms. The

extracted crop is then rearranged as a 1D vector (�attened) so it can be passed as input to the ML techniques.

The data are randomly split into 70% and 30% disjoint subsets. The �rst 70% set is used for supervised training

of the ML regression model. After training, the 30% set is used for assessing the model accuracy in estimating

∆X and ∆V . In all simulations, the same monitor shot gathers have been used to generate the training and

test data in order to facilitate comparison.

RESULTS AND DISCUSSION

In this section, we present the results of the proposed methodology for all treatments, considering the scenarios

with and without Gaussian noise. The treatments are labeled according to Table 1. All simulations were

performed in a computer with Intel® Xeon® E5-2698 v3 CPU and 512 GB RAM. The predictive performances

obtained by treatments are assessed by computing the estimation error magnitudes (EEM) on test data. EEM

is calculated as the magnitude of the di�erence between the true value of 4D noise (∆X or ∆V ) and the

corresponding value estimated by the ML regression model. For treatments using Bayesian Ridge, the estimated

∆X/∆V is taken as the mean of the model's predictive distribution.

Most results are shown as boxplots describing the distribution of test EEMs obtained by each treatment for

position and velocity noise. The fundamental element of a boxplot is the box with whiskers (Walpole et al.,

2016). The box marks the distribution quartiles: its lower and upper edges coincide respectively with the 25th
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7

Figure 5: Estimation error magnitudes for the AWGN-free case.

Figure 6: Estimation error magnitudes for the 10 dB-AWGN case.

and 75th percentiles, and the horizontal line inside marks the median. The vertical lines extending above and

below the box (whiskers) span the range containing most of the data points below the �rst quartile and above

the third quartile. Circles beyond the whiskers represent individual data points of extreme values (outliers).

Figure 5 shows the boxplot of EEMs obtained for AWGN-free seismic signals. These errors can be compared

to each other by normalizing them by the di�erence between the largest and smallest values of the corresponding

noise type (both vary within the [−5, 5] range, as described in the seismic modeling section). After doing that,

we notice that the normalized ∆X errors are higher than the normalized ∆V errors, suggesting that receiver

position 4D noise is harder to estimate. It can also be observed that the XGBoost algorithm (treatments S5

to S8) tends to estimate velocity noise accurately on average (despite the outliers), but, on the other hand, it

presents the worst results when estimating position noise.

The same general observations can be made for the case where seismic data is contaminated with 10 dB

Gaussian noise, shown in Figure 6. The di�erence is that EEMs are larger in this case, which is expected

because the physical attributes correlated with the 4D noise types, such as times of �rst arrival (Osdal and

Landrø, 2011), are harder to extract accurately from seismic data when random noise is present (see Figure 3).

A simple comparison between the vertical axes of Figures 5 and 6 shows that EEMs are �ve to ten times larger

when AWGN is present.

For each studied 4D noise type, water velocity and receiver position, we employ a three-way ANOVA

statistical test (Walpole et al., 2016) with the following factors: Gaussian noise, ML technique, and seismogram
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8 ESTIMATION OF NON-REPEATABILITY NOISES WITH ML

Table 2: Summary of three-way ANOVA results for each 4D noise type, discriminating among the factors
varying in ML treatments.

4D Noise Type Factor F p-value

Receiver
position

Gaussian Noise 3221 < 10−16

ML technique 783 < 10−16

Seismogram crop 10.01 1.4× 10−6

Water
velocity

Gaussian Noise 1294 2× 10−16

ML technique 884 < 10−16

Seismogram crop 2.09 0.099

crop. The �rst factor has two classes: AWGN-free and 10 dB Gaussian noise. The second factor has three

classes: Bayesian Ridge, FCNN and XGBoost. The third factor has four classes, one for each input type. The

total number of classes in the two statistical experiments is 2× 3× 4 = 24. The ANOVA test is calculated from

the 300 EEM values (test set) associated to each class. Results are shown in Table 2.

The performed ANOVA test allows us to answer the questions: �is our methodology a�ected by random

noise?�, �what is the best ML technique?�, and, �nally, �is there an input crop that performs better than

others?�. The �rst two questions can easily be answered by visual inspection of Figures 5 and 6, and the

statistical test con�rms: noise a�ects estimation accuracy signi�cantly, and Bayesian Ridge is the best regression

algorithm. The answer to the third question is inconclusive, as shown in Table 2; the di�erence among the crops

is statistically signi�cant for estimating ∆X, but no crop performs better than others for the regression of ∆V .

The Bayesian Ridge algorithm greatly outperforms all other techniques, for both the cases with and without

Gaussian noise. The success of the Bayesian strategy is evident for all crops; indeed, the crop choice is not

as important as the employed ML regressor (Figures 5 and 6). Among the reasons for its success, Bayesian

Ridge uses one optimized prior for each basis function weight, resulting in fewer basis functions (sparsity) and

better generalization capabilities (Tipping, 2001). However, the high accuracy comes at a cost: of the studied

algorithms, it has the worst computational complexity (resource usage increases the fastest with input size).

Using the full seismogram input, for example, takes about 500 GB RAM to train one Bayesian model for one

noise type. Please note that the memory consumption is much lower for the other treatments: 122 GB for S10,

26 GB for S11 and less than 4 GB for the others.

Figure 7 shows estimation errors only for the treatments using the Bayesian Ridge. In the AWGN-free case,

estimation errors are so low that the input types can be considered equally good from a practical point of view.

However, when Gaussian noise is present, a more realistic scenario, estimation errors are large enough for the

di�erences to matter, specially outliers. In qualitative terms, we argue that the treatment with the best balance

between accuracy and ML model complexity is the Bayesian Ridge fed with the 11 smallest-o�set traces (S11),

because in the noisy case its median accuracies are among the lowest, with the smallest outliers. This treatment

is also favored by the smaller input size, as per the principle of Occam's razor. In treatment S11, ∆X and ∆V

are estimated with median accuracy of 2.9×10−4 m and 2.5×10−4 m/s for the AWGN-free scenario, and 0.115

m and 0.017 m/s for the noisy case.

Finally, we note that the proposed methodology is supervised, and depends on information not available in

the real world for training (true 4D noise values). To apply the method in practice, it is necessary to synthetically

model a number of monitor surveys from the baseline, as performed in this study. If the modeling is realistic,
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Figure 7: Estimation error magnitudes of treatments using Bayesian Ridge regression algorithm.

covering many plausible 4D noise settings, there is a high con�dence that the ML model can generalize to data

not seen in training, so that its estimations can be used for correcting the 4D noise e�ects on real monitor

data, for example. In many areas of geosciences, such as in hydrocarbon reservoir characterization, it has been

demonstrated that ML algorithms trained on realistically modeled synthetic data present good performance

when applied to �eld data (Côrte et al., 2020). In the case of our method, realistic modeling of monitor

surveys is possible by using some results of full-track baseline processing, especially the inverted velocity model.

Although some simpli�cations were adopted in the modeling of this study, the results herein presented are

still useful because the very good performances demonstrate the potential of using ML-based algorithms for

estimating 4D noise on �eld data.

CONCLUSION

In this study, we proposed a ML methodology for quantifying the time-lapse changes, relative to the baseline

survey, in the acoustic velocity in seawater and receivers lateral positions. A synthetic database, modeling

deep water OBN time-lapse surveys using a velocity model estimated from the Brazilian pre-salt, was built for

supervised training of ML models.

We tested many combinations (treatments) of regression algorithms and types of input extracted from

common-shot seismograms, for the scenarios where seismic data are free of random noise and contaminated

with 10 dB Gaussian noise. Our results highlight the importance of an adequate selection of the regression

algorithm and, to a lesser degree, of the input type. Also, the presence of Gaussian noise signi�cantly a�ects

accuracies, which is expected because it is harder to extract from noisy data the physical attributes (e.g., time
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10 ESTIMATION OF NON-REPEATABILITY NOISES WITH ML

of �rst arrival) correlated with 4D noise. The treatment with the best balance between accuracy and model

complexity estimated position and velocity time-lapse changes with a median accuracy of 0.115 m and 0.017

m/s for the 10 dB Gaussian noise case.

This study demonstrates the feasibility of using supervised ML-based techniques for estimating 4D noise

values. Accurate estimates of such parameters can be used for correcting their e�ect on seismic data during

processing, or to improve time-lapse inversion work�ows, for example by obtaining better initial approximations

of the time-lapse velocity model for the FWI-4D technique.
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