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ABSTRACT. One of the main tools for reservoir characterization is analyzing well-log data. The importance 

of such methods stems from petrophysical properties estimation, such as porosity, which is very important to 

the oil and gas industry. In scenarios where data is hard to collect, data loss and technical failures during the 

acquisition impose an extra challenge. Thus mathematical and petrophysical models are good candidates to 

fill information gaps in the well-log dataset. In such a way, the rock’s petroelastic and petrophysical properties 

can be successfully estimated. Several studies correlate the velocity of compressional waves (VP ) to other 

basic well data. In this study, we used the Gardner equation and Machine Learning methods such as Neural 

Networks, Random Forest and Gradient Boosting regressions to generate VP logs. We used real-world data 

acquired from twenty wells of the pre-salt formation from Santos Basin in Brazil to train and test the Machine 

Learning methods and evaluated the data estimated by those models using statistical metrics. We calculated 

the acoustic impedance from the estimated logs and used it to create a prior model for a petroelastic inversion, 

which allowed us to estimate the natural logarithm of the acoustic impedance for a seismic volume. The 

Machine Learning methods presented lesser errors between estimated and measured velocities when compared 

to Gardner’s equation.

Keywords: well logging; artificial neural networks; machine learning; linear regression

INTRODUCTION

In oil field exploration, the sonic or acoustic log (DT) analysis is fundamental and one of the most powerful 

interpretation tools for petrophysical study. This method investigates the travel time of an elastic wave through 

the rock formation, which, among other applications (e.g., calibration of seismic data, identification of lithologies, 

stratigraphic correlation), is applied in petroelastic inversion and porosity calculation. In this situation, the P-

wave speed can be correlated with some physical characteristics of the rock formation, such as porosity, pressure, 

type of rock matrix and fluid, and pore shape, crucial for determining potential production in hydrocarbon 

reservoirs.

Nevertheless, in deep-water fields where depths reach thousands of meters, technical failure during the well-

data acquisition results in information loss, imposing an extra challenge to well-data interpretation. Yet, due
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to specific relationships among rock physical properties (e.g. Gardner et al., 1974), missing acoustic data can

be inferred through other well-log information, such as gamma-ray, density, neutron, and resistivity.

The speed of compressional waves (VP) can be correlated to other basic well data (e.g. Gardner et al., 1974;

Oloruntobi and Butt, 2019; Carrasquilla et al., 2022; Carvalho et al., 2022). To understand how the P-wave is

affected by these petrophysical properties, we applied three different estimation methods, the Gardner equation

(Gardner et al., 1974), which relates the velocity of the compressional wave to the rock density, Neural networks

(NN), one of the Machine Learning (ML) methods that have already been applied in geophysics (Lim and

Kim, 2004; Rolon et al., 2009; Aleardi, 2015), and also ensemble methods based on trees, such as the Gradient

Boosting and Random Forest regressors which are also applied in geoscience (Sahin, 2020).

In our work, we bring new data from one of the largest oil reservoirs in the world. We take advantage of

the extensive well-log dataset from Santos Basin, focusing on Búzios pre-salt oil field (BOF), an ultra-deep-

water reservoir along the Brazilian coast (Figure 1). Filling the gaps of P-wave velocity in our data allowed

us to estimate the acoustic impedance for a seismic volume afterwards through a petroelastic inversion for a

broad area, the acoustic impedance volume might then be applied for a porosity estimation using the same ML

techniques. Another important application of our work is in the well to seismic tie process, the algorithm might

fill the gaps where the P-wave velocity information is missing and the calculated acoustic impedance can then

be used to calculate the reflectivity and the synthetic seismogram (de Macedo et al., 2020).

The data from the well-log curves was loaded and then split into training and test data to apply the ML

methods and also on Gardner’s equation, we considered the P-wave velocity as the labeled data for our regression,

finally, we applied the statistical metrics to compare the results obtained with the different ML methods and

with Gardner’s equation. This work distinguishes itself from previous researches by the amount of data used

for training the ML models and the set of combinations of input data for the P-wave velocity estimation for the

Búzios oil field. To demonstrate the usefulness of our methodology, we show an acoustic impedance section at

the end which was calculated after the P-wave velocity gaps were filled in the well log.

GEOLOGICAL CONTEXT

The Búzios oil field (BOF) is a highly productive and promising deep-water target found in the Santos Basin,

one of the Brazilian continental margin’s most extensive offshore petroleum reservoirs. Santos Basin is located

within the Cabo Frio high and the Florianópolis platform along the coast of the Brazilian states of São Paulo

and Rio de Janeiro (Figure 1). The BOF is situated seaward from the continental shelf slope where the current

water depth reaches up to 3000 m, and its sedimentary column thickness can overtake more than 4000 m down

from the ocean floor.

The Santos Basin developed during the evolution of the South Atlantic continental margin resulting from

the Gondwana breakup event in the Late Jurassic-Early Cretaceous (Brune, 2016). The tectonic evolution of

this basin can be divided into three main phases: (i) rift, (ii) post-rift (i.e. tectonic sag-phase), and (iii) drift

(de Mio and Chang, 2005; Moreira et al., 2007).

In this study, we focus on the pre-salt section that is associated with the rift and post-rift stages. The rift

stage is represented by lacustrine sediments (i.e. continental siliciclastics, talc-stevensite ooids with interbedded

lacustrine coquinas and organic-rich shales) of the Camboriú, Piçarras, and Itapema formations. The post-rift
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Figure 1: Map of the Santos Basin, focus on the Búzios field. On the lower left section, there is an example of
the litostratigraphy sequence (Moreira et al., 2007). On the lower right, we present just an example of a well
log, that was not included in our dataset, which lacks the sonic log measurements for a specific range of depth.

sequence is represented by the Aptian non-marine and shallow-water sequence (i.e. lacustrine carbonates and

shales) of the Barra Velha Formation (Gomes et al., 2020), followed by evaporitic deposit (i.e. anhydride and

halite) of the Ariri Formation (Moreira et al., 2007), featuring the typical sequence of a continental-to-marine

transitional environment also registered in other adjacent and correlated basins along Brazilian southeast coast

(e.g.,Campos Basin;(Winter et al., 2007)).

METHODS

All data processing in this study was done using Python and Dug Insight (Dug, 2021), which included loading and

graphing logs, selecting wells to utilize, simulating logs, and creating graphs with results. Statistical analysis

were performed on the simulation results. The seismic and well log data were provided by ANP (Agência

Nacional do Petróleo, Gás Natural e Biocombustíveis).

Data

For this work, we selected 20 well-log data from BOF. The well-log curves used in this work were the density

log (ρb), neutron porosity (NPHI), gamma-ray (GR),resistivity log, and P-wave velocity (Vp) (Figure 2). For

an initial test, the ρb, NPHI, resistivity and GR curves were used as input for training the ML algorithms,

Braz. J. Geophys.

Draft 



4 P-WAVE VELOCITY LOG SIMULATION USING GARDNER’S EQUATION AND NEURAL NETWORKS

while the Vp was used as the label. During the procedure, 18 wells were used for training and cross-validation,

while 2 were used for additional tests and generating the results. Figure 3 shows the seismic section with the

location of well 9-BRSA-1197-RJS, one of the wells used for additional tests and results. This well lacked the

sonic log info between depths of 5400-5440 and 5660-5700 meters and it was selected to apply the ML models

and compare them with Gardner’s equation in the discussion section.

Figure 2: Well log curves used in this work. Density, neutron porosity, gamma-ray and resistivity were used as
input, and P-wave velocity was used as the correct output.

The ML algorithms used were the MLP Regressor, the Random Forest Regressor and the Gradient Boosting

Regressor, all implemented with the Scikit-Learn library in Python (Pedregosa et al., 2011). The Gardner

equation was implemented with the parameter values from Gardner et al. (1974), we isolated the Vp variable on

the equation and estimated it by having the density curve as input. Two metrics were selected for the evaluation

of the different algorithms. One was the Root mean squared error (RMSE) which penalizes large errors (Chai

and Draxler, 2014), and the other was Pearson’s correlation coefficient which evaluates a linear relationship

between measured and estimated values (Sedgwick, 2012; Thirumalai et al., 2017).
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Figure 3: 3D seismic section where the well 9-BRSA-1197-RJS is located. The pre-salt layer for the well location
ranges from around 5400 to 5700 meters.

Gardner’s Equation

The empirical equation estimated by Gardner et al. (1974) shows that the relationship between density (ρb)

and velocity (VP ) is:

ρb = k [VP ]
B
, (1)

where k and B are the empirical constants, and their numerical values change accordingly to the units of

measurement for density (ρb) and velocity (VP ), the units that we used in this work were g/cm3 for density

and km/s for velocity, thus, the values for the empirical constants were k = 1.74 and B = 0.25, these are the

values found by Gardner et al. (1974).

Gardner’s equation is a systematic relationship between the velocity and density of many sedimentary rocks

in situ. The empirical relationship allows estimating the reflection coefficients from the velocity information.

Gardner et al. (1974) also concluded that Gassmann’s theory is valid for sedimentary rocks at interrelated elastic

constants, densities, and P-wave velocities for different rock components and for the entire consolidated rock,

with the structure or skeleton being an important component. Microcracks can be present in rock and slow

down the P-wave velocity. Nevertheless, lithostatic and tectonic stresses can close them and induce the velocity

increase. The elastic parameters of rocks without microcracks can be estimated using the theories of Voigt and

Reuss and the elastic constants of crystals (Swan and Kosaka, 1997).

Neural Network

Neural Networks (or Artificial Neural Networks) are an important part of Artificial Intelligence and were devel-

oped by authors such as McCulloch and Pitts (1943) and Rosenblatt (1958) as a mathematical model inspired

by the information processing that occurs in the biological neurons in the brain. The neural network models

we selected for this work are supervised learning methods, which means that they require pairs of input and la-

beled output data values for training, validating, and testing. The mathematical model of a neural network is
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6 P-WAVE VELOCITY LOG SIMULATION USING GARDNER’S EQUATION AND NEURAL NETWORKS

based mainly on a matrix multiplication operation.

According to Amr (2020), the Multilayer Perceptron (MLP) is a subset of feedforward neural networks and

one of its most commonly used types. In this model, each of the input features is multiplied by a weight and

summed to get the output, sometimes an extra bias factor is also added, to get a non-linear output, an activation

function is used after the summation. A more detailed mathematical expression for a single layer NN is given

by:

Yk = f(WkmXm +Bk), (2)

where Wkm is the matrix containing the weights of the neural network that will be multiplied with the input

vector: Xm, and then summed with the bias vector: Bk, the result of this operation is the input for the activation

function f, and gives the calculated output vector Yk.

A different notation for the neural networks model is the equation 3 which calculates each element yi of

vector Yk individually:

yi = f

 m∑
j=1

wi,jxj + bi

 , i = 1, 2, 3...k. (3)

The same operation expressed in a matrix multiplication will be:

Yk = f





w11 w12 · · · w1m

w21 w22 · · · w2m

...
...

. . .
...

wk1 wk2 · · · wkm





x1

x2

...

xm


+



b1

b2

...

bk




. (4)

We used the MLP Regressor function from the Scikit-Learn library. We used the GridSearchCV function

for the tuning of hyperparameters, the test was conducted for the selection between the solvers: ’sgd’, which is

the stochastic gradient descent method (Amari, 1993), and ’adam’, which is a modification from the stochastic

gradient descent method (Kingma and Ba, 2014). Other hyperparameters considered were constant or adaptive

learning rates. The activation functions were also tested among the logistic, identity, hyperbolic tangent and

rectified linear. The selected score metric was the negative mean squared error.

Ensemble methods based on trees

The other algorithms applied in this work were the Random Forest and the Gradient Boosting Regressor, which

are ensemble methods. A very powerful and applied technique, an ensemble of methods is a learning algorithm

that combines the predictions of multiple statistical models to improve the final prediction, an ensemble method

can be applied both for classification and regression problems (Dietterich, 2000; Breiman, 2001; Iaccarino et al.,

2024).

To understand the concept of the Random Forests algorithm, it is important to first understand the definition

of a decision tree classifier. A decision tree is constructed by analysing a set of training samples with known
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class labels and make a series of questions about features related to these samples. Each question is contained

in a node and every internal node points to one child node for each possible answer to the question forming a

hierarchy of questions (Kingsford and Salzberg, 2008).

A Random Forest algorithm combines the predictions of decision trees such that each tree depends on the

values of a random vector sampled independently and with the same distribution for all trees in the forest.

Random Forest can be applied for regression by growing trees depending on a random vector such that the tree

predictor takes on numerical values as opposed to class labels (Breiman, 2001).

The Gradient Boosting Regressor or GBR is an algorithm that combines the intuitions from boosting and

gradient descent to construct ensembles of decision trees. In this algorithm, the gradient of a cost function is

calculated with respect to the predicted values of the ensemble and new decision trees are added iteratively to

the structure to shift the algorithm in the negative direction of the gradient, other important parameters are

the maximum depth of the trees and the learning rate of the gradient descent (Friedman, 2001; Iaccarino et al.,

2024).

The hyperparameters for the Random Forest and the Gradient Boosting Regressors utilized were the default

ones from the Scikit-Learn library, with the exception of the maximum depth for the Random Forest Regressor.

For the Gradient Boosting Regressor, the loss function was the squared error of the regression, the learning

rate of the gradient descent is equal to 0.1 and the maximum depth of the trees is 3. For the Random Forest

Regressor, the number of trees is 100, the criterion function is the squared error and the maximum depth of the

tree is 2.

Petroelastic inversion

As an example of how our methodology may be applied, a 3D model of the natural logarithm of the acoustic

impedance will be created for the ML model that presents the best metrics result. We will utilize this 3D model

as a priori guess for a petroelastic inversion of a 3D poststack seismic data.

We will use the PyLops library (Ravasi and Vasconcelos, 2020) to calculate the petroelastic inversion. The

importance of this algorithm is to provide a variable which contains a petroelastic property of the medium,

which might be applied to calculate petrophysical properties such as porosity, oil and water saturation. This

algorithm requires as input the information of the wavelet, the seismic trace and, as optional parameter, the

priori model for the natural logarithm of the acoustic impedance, this last optional parameter will significantly

improve the inversion result. Figure 4 shows an example of a wavelet signal which is a required parameter for

the inversion algorithm.

Braz. J. Geophys.
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Figure 4: Signal example of a Ricker wavelet. One of the necessary input parameters for the petroelastic
inversion.

The first step to create the 3D priori model is to use the estimated P-wave velocity (green curve shown

in Figure 12) and the bulk density log (black curve from Figure 12) to calculate the natural logarithm of the

acoustic impedance for each well. The acoustic impedance is calculated by the multiplication of the density log

with the velocity log, then the natural logarithm is applied.

The second step is to bring the calculated natural logarithm of the acoustic impedance of each well to the

seismic scale, since the samples on the well occur about every 15 centimeters and on the seismic data they are

sampled about every 5 meters, to adjust the scales, we used the Numpy interp Python function. The last step

is to make a linear regression for each well location between the seismic data and the natural logarithm of the

acoustic impedance which will allow us to create the 3D priori model using the 3D seismic data as input.

RESULTS

The hyperparameter tuning applied for the MLP Regressor selected ’adam’ as the best optimizer and a constant

learning rate. The other hyperparameters consisted of one hidden layer containing 100 neurons and a second

layer with the number of neurons consistent with the labeled data output size, the activation function hyperbolic

tangent (tanh) achieved the best result among the functions which were tested.

The results we obtained for comparing Gardner’s equation and model 2, 6 and 10 from Table 1 are shown

in Figure 5 and the results for the metrics are shown in Table 2. In Figure 5 it is possible to observe the fit for

the P-wave velocity provided by the different models for the pre-salt layer of a well that ranges from 5450 m to

6100 m. Model 10 achieved the lowest RMSE calculated between measured and estimated velocities which was

0.2523 and the highest correlation coefficient which was 0.8573 as shown in Table 2.

The estimation for the Gardner equation is shown in Figure 5. The RMSE calculated among the velocities

for Gardner’s equation was 0.7061, much higher than the other ML models, while the correlation coefficient was

0.8051 as shown in Table 2.
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Table 1: Models used to train the data and the parameters used as input.

Model Algorithm Input parameters

1 MLP Regressor GR, NPHI, Density and Resistivity

2 MLP Regressor GR, NPHI and Density

3 MLP Regressor GR and NPHI

4 MLP Regressor NPHI and Density

5 Random Forest Regressor GR, NPHI, Density and Resistivity

6 Random Forest Regressor GR, NPHI and Density

7 Random Forest Regressor GR and NPHI

8 Random Forest Regressor NPHI and Density

9 Gradient Boosting Regressor GR, NPHI, Density and Resistivity

10 Gradient Boosting Regressor GR, NPHI and Density

11 Gradient Boosting Regressor GR and NPHI

12 Gradient Boosting Regressor NPHI and Density

Figure 5: Result for the P-wave velocity estimation using Gardner, MLP, Random Forest and Gradient Boosting
regressor, each regression used as input the GR, NPHI and RHOB logs, these estimations correspond to models
2, 6 and 10. The black curve represents the real velocity values, while the red curve represents the calculated
values.
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Table 2: Results of the metrics used for comparison of the P-wave velocity estimated by Gardner’s equation, MLP
Regressor, Random Forest Regressor, Gradient Boosting Regressor for each different set of input parameters

Model RMSE PEARSON RMSE (Train) PEARSON (Train) RMSE (Test) PEARSON (Test)

Gardner Equation 0.7061 0.8051 - - - -

1 0.3246 0.7399 0.3922 0.7186 0.3975 0.7155

2 0.2763 0.8445 0.2996 0.8284 0.3091 0.8229

3 0.2984 0.8197 0.3383 0.7706 0.3416 0.7771

4 0.2815 0.8239 0.3244 0.7968 0.3297 0.7938

5 0.3040 0.7783 0.3488 0.7574 0.3626 0.7353

6 0.3050 0.7761 0.3483 0.7591 0.3495 0.7524

7 0.3355 0.7337 0.3754 0.7107 0.3754 0.7161

8 0.3038 0.7784 0.3482 0.7587 0.3597 0.7497

9 0.2682 0.8317 0.2578 0.8756 0.2665 0.8670

10 0.2523 0.8573 0.2736 0.8587 0.2791 0.8570

11 0.2999 0.8089 0.3296 0.7848 0.3366 0.7855

12 0.2728 0.8281 0.2940 0.8347 0.3060 0.8162

We applied the MLP estimation to fill the P-wave velocity for the areas in which this information was

missing. Figures 11 and 12 illustrate how the P-wave velocity might be combined with the other logs (GR,

NPHI and density (ρb)) for interpretation purposes. Figure 6 shows the absolute error for Gardner’s equation

and models 2, 6 and 10 from Table 1.
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Figure 6: Absolute errors for Gardner, MLP, Random Forest and Gradient Boosting regressor, each regression
used as input the GR, NPHI and RHOB logs, these estimations correspond to models 2, 6 and 10.

Figure 7 shows all the results for Gardner and the ML models 1, 5 and 9 which use the GR, NPHI, density

and resistivity logs as input. Figure 8 shows the absolute error for each of these methods. The comparison of

model 4, 8 and 12 with Gardner is shown in Figures 9 and 10.

Figure 7: Result for the P-wave velocity estimation using Gardner, MLP, Random Forest and Gradient Boosting
regressor, each regression used as input the GR, NPHI, RHOB and resistivity logs, these estimations correspond
to models 1, 5 and 9. The black curve represents the real velocity values, while the red curve represents the
calculated values.
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12 P-WAVE VELOCITY LOG SIMULATION USING GARDNER’S EQUATION AND NEURAL NETWORKS

Figure 8: Absolute errors for Gardner, MLP, Random Forest and Gradient Boosting regressor, each regression
used as input the GR, NPHI, RHOB and resistivity logs, these estimations correspond to models 1, 5 and 9.

Figure 9: Result for the P-wave velocity estimation using Gardner, MLP, Random Forest and Gradient Boosting
regressor, each regression used as input the NPHI and RHOB logs, these estimations correspond to models 4, 8
and 12. The black curve represents the real velocity values, while the red curve represents the calculated values.
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Figure 10: Absolute errors for Gardner, MLP, Random Forest and Gradient Boosting regressor, each regression
used as input the NPHI and RHOB logs, these estimations correspond to models 4, 8 and 12.

DISCUSSION

Well logs from a carbonate reservoir in Brazilian pre-salt were used in this investigation. The focus was creating

a model to estimate the P-wave velocity log for regions of the well where the sonic log (DT) information was

missing. Different combinations of logs that present a good relation with the P-wave velocity log such as Gamma-

ray, neutron porosity, density and resistivity were used as input. By testing these different combinations, the

objective was to verify the influence of each log on the velocity prediction and if any one of them could be

suppressed from the input data set.

Analysing Figures 5 and 6 we can see that Gardner’s equation did not provide a good fit and presented the

highest absolute error except for depths between 5800 m and 5900 m, Gardner’s equation also presented the

highest root mean squared error by the metrics results from Table 2. Gardner’s equation presented a better

correlation coefficient when compared to models 1, 5, 6, 7 and 8; however, a qualitative analysis of the plotted

curves from Figure 5 and the errors results demonstrate that these ML models are still a better choice compared

to Gardner’s equation.

The analysis of the metrics results from Table 2 also show that the lowest RMSE and highest correlation

coefficient was from model 10, Figures 5 and 6 illustrate how this model presents a low absolute error except

for a region around the depth of 5800 m, this model is also very effective in removing some outliers that are

present close to the depth of 5900 m. The metrics results from models 1, 5, and 9 in Table 2 and the results

from Figures 7 and 8 show how the addition of the resistivity log does not provide a better estimation for the

P-wave velocity as it increases the RMSE and decreases the correlation coefficient when compared to the models

where the GR, neutron porosity and density logs are used as input.

The metrics results for models 3, 4, 7, 8, 11 and 12 in Table 2 show how the suppression of the Gamma
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14 P-WAVE VELOCITY LOG SIMULATION USING GARDNER’S EQUATION AND NEURAL NETWORKS

ray (GR) information as an input variable does not cause significant increase in the RMSE, furthermore, by

comparing models 6 and 8, the results show that the Random Forest Regressor achieved a better performance

when the GR variable was suppressed. The suppression of the density log as an input variable causes more

error in the P-wave velocity estimation, this can be observed by comparing the metrics results for models 3, 7

and 11 with the metrics for models 4, 8 and 12 in Table 2.

Figures 11 and 12 illustrate how the NN and the Gradient Boosting Regressor methods, specifically, models

2 and 10 were efficient in filling the gaps of sonic log information for well 9-BRSA-1197-RJS shown in Figure 3

which lacked this information for specific depths. The ML methods were also very accurate on estimating the

curve in regions where the P-wave velocity information was present (blue curve in Figures 11 and 12), however,

they did not provide a good fit between the depths of 5550 m and 5600 m, this can be explained by the presence

of a carbonate dark grey shale in this specific depth as shown in the lithological profile in Figures 11 and 12.

Figure 11: Lithology and well log curves of density, neutron porosity, gamma ray and the result for the P-wave
velocity estimation using the MLP Regressor (model 2). The blue curve represents the real velocity values while
the green curve represents the calculated values. It was possible to fill the P-wave velocity information where
it was absent.
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Figure 12: Lithology and well log curves of density, neutron porosity, gamma ray and the result for the P-
wave velocity estimation using the Gradient Boosting Regressor (model 10). The blue curve represents the
real velocity values while the green curve represents the calculated values. It was possible to fill in the P-wave
velocity information where it was absent.

By comparing the results from Figures 11, 12 and 13 we can observe how Gardner’s equation fails to

reproduce the measured values of P-wave velocity. Among the ML methods chosen for the estimation of the

P-wave velocity, the Gradient Boosting Regressor proved to be the most accurate due to its lowest mean squared

error and highest correlation with the real values as shown in Table 2 but also proved to be more accurate for

depths between 5600 and 5700 m in the ’blind test’ well log shown in Figure 12 when compared to the MLP

Regressor shown in Figure 11.

Gardner’s equation was applied to estimate the P-wave velocity on the same well where the MLP and

Gradient Boosting Regressor were applied (Figures 11, 12 and 13). We can observe that the ML methods

estimate the measured velocity values more accurately. By comparing the blue and green curves between 5450

and 5650 meters in Figure 13, it is possible to observe that the estimated values of Gardner’s equation do not

reproduce the measured ones.
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16 P-WAVE VELOCITY LOG SIMULATION USING GARDNER’S EQUATION AND NEURAL NETWORKS

Figure 13: Lithology and well log curves of density, neutron porosity, gamma ray and the result for the P-wave
velocity estimation using Gardner’s equation. The blue curve represents the real velocity values while the green
curve represents the calculated values.

Hyperparameter tuning

The hyperparameter tuning was a crucial step for the selection of the hyperparameters that best suited the data,

due to its high computational cost, the tested hyperparameters were reduced to two options between solvers and

learning rates and four options of activation functions. Nevertheless, the Gradient Boosting Regressor presented

the lowest mean squared error and the highest correlation coefficient with its default hyperparameter values.

Petroelastic inversion

Considering that model 10 presented the best metrics result, we used the calculated P-wave velocity (green curve

shown in Figure 12) and the bulk density log (black curve from Figure 12) to calculate the natural logarithm

of the acoustic impedance for each well.

After filtering the well log data to the seismic scale, we did the linear regression to create the 3D priori

model using the 3D seismic data as input. We used the PyLops library (Ravasi and Vasconcelos, 2020) and
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our priori model to calculate the inversion for a poststack seismic data, Figure 14 shows the result for a seismic

data cube from the BOF in Santos Basin.

Figure 14: Natural logarithm of the acoustic impedance calculated through a petroelastic inversion from a
seismic data. The P-wave velocity data estimated using the ML methods from this work was used to create the
priori model for the inversion.

CONCLUSION

The measurement and the estimation of petrophysical and petroelastic parameters such as porosity, permeability

and P-wave velocity in carbonate deposits is a complex process, which corroborates the application of the

methodology of this work. From the metric relations, we understand that the ML models were more successful

in estimating the P-wave velocity when compared to Gardner’s equation. This leads us to conclude that ML is

a good option for Vp simulation in complex models.

By the analysis of the metrics shown in Table 2 and the curves of Figures 5 and 13 we can conclude that

the Gardner’s equation would not be as precise as the ML methods for regions of the well where the P-wave

velocity is missing, especially for areas where carbonate shales are present.

The case study discussed in this research produced remarkable results with very low errors for the ML

methods, especially considering that it is a carbonate reservoir with complex geology. In order to replicate the

ML models created in this work, it is only necessary to have access to the same well log data from BOF and to

the Python libraries. The number of well logs used in this work were enough to produce accurate results. In

future works, it is intended to add other logs to the data set that may be relevant in influencing the P-wave

velocity (Vp) estimate and also check how the natural logarithm of the acoustic impedance calculated by the

petroelastic inversion can be precise to estimate petrophysical properties such as the porosity of a carbonate

Braz. J. Geophys.

Draft 



18 P-WAVE VELOCITY LOG SIMULATION USING GARDNER’S EQUATION AND NEURAL NETWORKS

reservoir.
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