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ABSTRACT. The Pitangui Greenstone Belt (PGB), NW of the Quadrilátero Ferrífero, Brazil, is a metavolcano-
sedimentary sequence that hosts some important gold deposits recently discovered. Research has been made in the 
PGB to understand its gold mineral system, but the information regarding the prospective vectors associated with 
gold mineralization is still unclear. Here, we show the application of airborne magnetic and radiometric data to find 
the spatial relation between hydrothermal alteration zones and the structural framework of the PGB region. The 
results showed that the occurrence of gold deposits is associated with NW-SE structures and hydrothermal alteration 
zones. This association does not exist with E-W structures, which has direct implications on the relevance of these 
structures in the prospective modeling. Additionally, the application of radiometric data to map hydrothermal 
alteration zones showed that the limitations of this technique can generate anomalies not strictly associated with 
hydrothermal processes. In this case, some anomalies could be linked with secondary processes like weathering, 
leaching, transportation and accumulation of mobile elements, such as K and U. 

Keywords: aeromagnetic data, geophysical lineaments, radiometric data, hydrothermal alteration mapping, ore 
prospectivity. 

 
INTRODUCTION 
The discovery of new mineral deposits has 

declined over the last few decades as the new ore 

findings have become increasingly smaller, 

deeper, geologically more complex and sited in 

more remote areas (Dentith and Mudge, 2014; 

McCuaig and Hronsky, 2014; Schodde, 2017). 

This means that undiscovered primary and 

secondary dispersion halos and geological 

structures related to mineralization (i.e., 

footprints) are proportionally restricted, turning the 

identification of mineral deposits a difficult task. 

In this scenario, prospective models 

capable of identifying small-scale 

mineralization have been one of the focuses of 

exploration research. Therefore, several 

advances to create evidential maps (EM) were 

achieved over the years. EMs, are maps of 

geological features strictly related to mineral 

deposits, such as structural framework, 

geochemical signatures, geophysical 

anomalies, hydrothermal alteration halos and 

units favorable to host mineralization (Crósta 

et al., 2003; Leite and Souza-Filho, 2009; 
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McCuaig et al., 2010; Czarnota et al., 2010; 

McCuaig and Hronsky, 2014; Hagemann et 

al., 2016). These maps can indicate the 

occurrence of mineralized zones, within 

different geological settings, and can be used 

to create mineral prospectivity models (MPMs) 

(Bonham-Carter, 1994; Harris et al., 2001).  

Gold deposits hosted in greenstone 

belt sequences are formed at depths ranging 

from 2 to 15 km, involving fluids from different 

sources (Goldfarb and Groves, 2015; Groves 

et al., 2020). These deposits exhibit regional 

prospective guides that include: i) regional-

scale structures that operate as pathways for 

hydrothermal fluids and control the 

mineralization; ii) specific host rocks (e.g., 

banded iron formations); iii) zones of 

hydrothermal alteration associated with 

regional structures and iv) geochemical 

footprints of ore formation (Bierlein et al., 

2006; Herbert et al., 2014; Ford et al., 2019; 

Groves et al., 2020).  

In mineral exploration, airborne 

geophysical data have been used as an efficient 

tool to map structures and hydrothermal 

alteration zones that may be linked to 

mineralization (Souza-Filho et al., 2007; Carrino 

et al., 2007; Barbuena et al., 2013). This 

procedure is applied particularly in greenfield 

exploration areas for regional characterization 

(Holden et al., 2012; Barbuena et al., 2013; 

Ribeiro et al., 2014; Couto et al., 2016). 

Thus, magnetic and radiometric data 

became one of the greatest supports for  

mineral exploration. The former provides 

information about structures and magnetic 

bodies at deeper crustal levels, whereas the 

latter can reveal the main lithological domains 

and identify hydrothermal alteration zones 

(Ribeiro et al., 2014; Ribeiro and Montavani, 

2016; Campos et al., 2017; Cunha et al., 

2017). Together, they can work as a powerful 

tool in identifying mappable expressions for 

prospective models. 

Recent studies indicate that the 

Pitangui Greenstone Belt (PGB) has great 

potential to host gold mineralization due to 

similarities with the Quadrilátero Ferrífero 

(QFe) region, particularly regarding its 

geological and metallogenic setting (e.g. 

Lobato et al., 2001a, 2001b; Romano et al., 

2013; Tassinari et al., 2015; Soares et al., 

2017, 2018; Ribeiro et al. 2023). However, the 

PGB region still lacks more detailed studies 

focused on prospective vectors that can 

indicate favorable targets for gold 

mineralization.  

This research had as its main 

objectives: i) characterize the region’s 

structural framework, in surface and 

subsurface, by processing and interpreting 

aeromagnetic data, ii) identify zones of 

hydrothermal alteration through radiometric 

data, iii) support prospective studies in the 

PGB region, and iv) contribute to the 

knowledge of the PGB gold exploration 

potential by understanding its main 

prospective vectors. 
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GEOLOGICAL SETTING 

The PGB is located northwest of the 

Quadrilátero Ferrífero (QFe), São Francisco 

Craton, and consists of an Archean sequence 

deposited in an oceanic basin, during the Rio 

das Velhas I (2.93 – 2.85 Ga) and II (2.80 – 

2.76 Ga) events (Lana et al., 2013; Farina et 

al., 2015; Soares et al., 2017; 2020). This 

sequence is subdivided into two main units: 

the Pitangui Group and the Antimes Formation 

(Marinho et al., 2018, 2023). The Pitangui 

Group is composed of metaultramafic, 

metamafic and intermediate metavolcanic 

rocks interspersed with metasedimentary 

rocks, such as schists, metacherts and meta-

banded iron formations. The Antimes 

Formation, on the other hand, is composed of 

quartzites and metaconglomerates (Soares et 

al., 2017; Marinho et al., 2018; 2023).  

The rocks were metamorphosed into 

greenschist to amphibolite facies and intruded 

by medium to high-K granitoids, emplaced at 

the end of the Rio das Velhas orogeny (2.76 – 

2.68) (Farina et al., 2016; Soares et al., 2020).  

The PGB has a synclinorium 

architecture oriented in the NW-SE direction, 

bordered by Meso to Neoarchean TTG 

complexes, and it is partially covered by 

Paleoproterozoic, Neoproterozoic and 

Phanerozoic supracrustal sequences. The 

region also presents mafic dyke swarms that 

cross-cut Archean and Paleoproterozoic units 

(Soares et al., 2017, 2018, 2020; Marinho et 

al., 2018, 2023) (Fig. 1). 

 
Figure 1 – (a) Geological map of the study area. (b) Subdivision of the São Francisco Craton 

(Archean-Paleoproterozoic basement in pink). (c) Analytical Signal of the Residual Magnetic Field 

(RMF) with limits of the aerogeophysical survey projects that cover the study area. Adapted from: 

Romano (2007); Romano et al. (2009, 2013); Ribeiro and Baltazar (2013); Braga et al. (2013); 

Marinho et al. (2018); Silva et al. (2020). 
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The main regional structures trend in 

the NW-SE direction and the anastomosed 

NW-SE lineaments mark the suture of the PGB 

with the Divinópolis and Belo Horizonte - 

Bonfim blocks during the Rio das Velhas 

orogeny (Romano et al., 2013; Soares et al., 

2020). 

The E-W strike-slip structures, 

however, were generated during the NW 

thrusting of the Serra do Curral nappe, where 

the Minas and the Estrada Real Supergroup 

outcrops, in the Rhyacian-Orosirian orogeny. 

This tectonic event was also responsible for 

reactivating Archean NW-SE structures (Figure 

1) and probably for overprinting the gold

mineralization (Endo and Chamale Júnior,

1992; Hartmann et al., 2006; Romano et al.,

2013; Koglin et al., 2014; Dopico et al., 2017).

Gold deposits in the Pitangui Greenstone 
Belt and its prospective guides 

Gold in the PGB deposits occur in 

sulfide assemblages in quartz-carbonate veins, 

that are structurally controlled by shear zones 

(e.g. Turmalina and Pitangui deposits), or strata 

confined in banded iron formations (São 

Sebastião deposit) (Soares et al., 2018; 

Fabrício-Silva et al., 2019; Maurer et al., 2021). 

The mineralization occurs mainly hosted in 

mafic, metavolcaniclastic meta-volcanic and 

metasedimentary rocks, along regional NW-SE 

shear zones, particularly in the Pitangui and 

Onça-Penha lineaments (Fabrício-Silva et al., 

2019; Maurer et al., 2021).  

Hydrothermal alteration zones are 

restricted, extending no more than 100 meters 

from the mineralization, and present sericite, 

chlorite, carbonate and tourmaline on the 

alteration halos (Soares et al., 2018; Fabrício-

Silva et al., 2019; Maurer et al., 2021). These 

zones envelop the main gold-bearing lodes 

that present a great variety of sulfides (Soares 

et al., 2018; Fabrício-Silva et al., 2019).  

The timing of mineralization is still 

controversial. Geological features, including 

structural control, mineralization style and 

similarities with gold deposits of the QFe 

suggest that mineralization was likely formed 

during the Archean (Fabrício-Silva et al., 2019, 

2021). However, recent research (e.g., 

Tassinari et al., 2015; Soares et al., 2021) 

point to ages of 2.0 – 1.9 Ga, which suggests 

an overprint of the gold mineralization, 

possibly caused by the reactivation of Archean 

structures during the Rhyacian-Orosirian 

orogeny (Soares et al., 2021).  

In this context, the main prospective 

guides for deposits in the PGB region that can 

be detected from the interpretation of airborne 

geophysical data include (i) regional structures 

that may have worked as pathways for 

mineralized fluids and (ii) halos of 

hydrothermal alteration, as an expression of 

the reactions between fluids and host rocks. 

Both of these features are entangled, 

presenting a spatial relation, and, therefore, 

indicating regions that are more likely to host 

gold mineralization.  
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MATERIALS AND METHODS 

The study was conducted using: (i) the 

airborne geophysical surveys acquired by the 

Minas Gerais Economic Development 

Company (CODEMIG), from Areas 2, 7 and 10 

(Table 1); (ii) the Digital Elevation Model 

(DEM) from the ALOS PALSAR sensor, with a 

spatial resolution of 12.5 meters; and (iii) the 

geological mapping data of the PGB region 

(Romano et al., 2007; Braga et al., 2013; 

Romano et al., 2013; Ribeiro and Baltazar, 

2013; Marinho et al., 2018; Silva et al., 2020). 

Parameters 

Area 2 - Pitangui - 

São João Del Rei – 

Ipatinga 

Area 7 - Patos de 

Minas - Araxá - 

Divinópolis 

Area 10 - Belo 

Horizonte - Curvelo - 

Três Marias 

Flight lines direction 
N30E (West block) 

N30W (East block) 
NS NS 

Flight lines spacing 250 m 400 m 500 m 

Control lines direction 
N60W (West block) 

N60E (East block) 
EW EW 

Control lines spacing 2 500 m 8 000 m 10 000 m 

Interval between 

consecutive geophysical 

measurements 

0.1 s 

(magnetometer) 1.0 

s (spectrometer) 

0.05 s 

(magnetometer) 1.0 s 

(spectrometer) 

0.1 s (magnetometer) 

1.0 s (spectrometer) 

Average of flight height 100 m 100 m 100 m 

Approximate flight speed 200 km/h 280 km/h 270 km/h 

Year of survey 2001 2006 2008/2009 

Company 

LASA 

ENGINEERING AND 

PROSPECTIONS 

S.A

LASA ENGINEERING 

AND 

PROSPECTIONS S.A 

CODEMIG and 

Brazilian Geological 

Survey  

Table 1 - Parameters of the airborne geophysical surveys of areas 2, 7 and 10. 

Airborne magnetic data 
The airborne magnetic data were used 

to identify magnetic lineaments that could be 

associated with geological structures on the 

subsurface. The data processing was carried 

out using the reduced magnetic field to 

International Geomagnetic Reference Field 

(IGRF) as a basis for the application of 

enhancement operations. The data were 

interpolated using the bidirectional method, 

with a cell size of 125 meters, ¼ of the flight 

lines spacing of the project with the lowest 

resolution, Area 10 - Belo Horizonte - Curvelo 

- Três Marias (Tab. 1). The data from each

project were processed individually and the

final grid products were merged.
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The Fourier filters used in this study 

include: (i) Analytical Signal Amplitude (ASA), 

(ii) Tilt Derivative (TDR) and (iii) Vertical 

Gradient (Dz) (Evjen, 1936; Miller and Singh, 

1994; Blakely, 1996). The x, y and z 

derivatives of the residual magnetic field, Dx 
(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ), Dy (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) and Dz 

(𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ), respectively, have the function of 

boost the high frequencies of points aligned in 

their respective directions. Where M 

represents the Magnetic Field reduced to 

IGRF (Cordell and Grauch, 1985). 

The ASA corresponds to the 

magnitude of the gradient vector and 

calculates the maximum amplitude of the 

anomaly and centralizes it over the source, 

regardless of the variation direction. Shallow 

sources exhibit more intense anomalies, while 

deeper sources display more smooth 

anomalies (Eq. (1)) (Nabighian, 1972, 1974; 

Roest et al., 1992). 

𝐴𝐴𝐴𝐴𝐴𝐴 =  ���𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+  �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2
�

2
            

(1) 

The TDR (𝜃𝜃) allows the identification of 

magnetic lineaments that delimitates bodies, 

intrusions, faults and fractures through 

anomaly direction (Eq. (2)) (Miller and Singh, 

1994). This operation has greater stability with 

less variation when compared to ASA. Thus, 

the TDR is more suitable for ascertaining the 

extent and direction of sources, especially 

geological structures not highlighted by the 

ASA method (Miller and Singh, 1994). All 

products mentioned above were interpreted 

together with the mapped structures from the 

geological maps and the DEM, resulting in a 

geophysical-structural map containing all 

surface and subsurface regional lineaments. 
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Airborne radiometric data 

The airborne radiometric data were 

used to create maps capable of identifying 

zones of hydrothermal alteration. The 

procedure aimed to highlight regions enriched 

in potassium and/or uranium – mobile 

elements that can be remobilized by 

hydrothermal fluids – in comparison with 

thorium concentration, which has lower 

mobility. The techniques used here were: (i) 

K/Th ratio (𝐾𝐾 𝑒𝑒𝑒𝑒ℎ⁄ ), (ii) F parameter (Eq. (4)), 

(iii) anomalous K (Kd) (Eq. (5)) and (iv) 

anomalous U (Ud) (Eq. (6)). 

𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐾𝐾 × 𝑒𝑒𝑒𝑒
𝑒𝑒 𝑇𝑇ℎ

;              (4) 

𝐾𝐾𝑑𝑑 =  (𝐾𝐾− 𝐾𝐾𝑖𝑖)
𝐾𝐾𝑖𝑖

; 𝐾𝐾𝑖𝑖 = 𝐾𝐾 × 𝐾𝐾�
𝑇𝑇ℎ����

              (5) 

𝑈𝑈𝑑𝑑 =  (𝑈𝑈− 𝑈𝑈𝑖𝑖)
𝑈𝑈𝑖𝑖

; 𝑈𝑈𝑖𝑖 = 𝑈𝑈 × 𝑈𝑈�
𝑇𝑇ℎ����

              (6) 

Where Ki and Ui correspond to the 

ideal values of K and U, while 𝐾𝐾�,𝑇𝑇ℎ����  and 𝑈𝑈� 

consists of the average concentrations of the 

radionuclides. 

The K/Th ratio shows the concentration 

of K compared to Th, while the F parameter 

shows the enrichment of K and U compared to 

Th (Ferreira, 1991; Barbuena et al., 2013; 
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Campos et al., 2017). Kd and Ud are based on 

the same principle: the calculation of ideal 

values for each sampling point. These ideal 

values are used as parameters, and the 

deviations above or below these parameters 

correspond to K and U anomalies (Pires, 1995). 

After creating the four maps, Principal 

Component Analysis (PCA) was performed to 

search for a principal component (PC) that best 

controls the data variability. The PC that 

positively controls all four radiometric maps was 

chosen to represent hydrothermal alteration 

zones. The map of geological-geophysical 

lineaments was analyzed together with the map 

of hydrothermal alteration zones and the 

location of known deposits and occurrences to 

understand the spatial relation between these 

features and how good they can be in mapping 

prospective zones. 

 

RESULTS  

Geophysical-structural mapping 

The aeromagnetic data were used to 

create maps that highlight magnetic 

structures, such as ASA, TDR and Dz. These 

products were interpreted together with the 

mapped structures from the geological map 

and the DEM (Fig. 2a). Four structural 

domains were identified, in addition to several 

unmapped magnetic and relief lineaments 

(Fig. 3 and 4). 

 
Figure 2 – (a) Digital Elevation Model (DEM). (b) Map of Analytical Signal Amplitude (ASA) of the 

RMF. (c)  Map of the Tilt Derivative (TDR) of the RMF. (d) Map of the vertical gradient (Dz) of the 

RMF.  
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The TDR and Dz images allowed the 

identification of four geophysical-structural 

domains with a predominant pattern in the 

NW-SE direction (Fig. 4). In comparison to 

the geological map (Fig. 1a), these domains 

coincide with lithologies that display different 

rheological behavior. Domain I corresponds 

to sinuous, anastomosed and continuous 

lineaments that coincide with the region 

where the greenstone belt rocks outcrops 

(Fig. 4b). 

Domain II, however, displays linear, 

extensive and conjugated structures in 

granite-gneissic terrains. The conjugate 

lineaments are arranged in the NNW-SSE 

and WNW-ESE directions (Fig. 4c). 

 

 

Figure 3 – Map of geological-geophysical lineaments based on the interpretation of aerogeophysical 

data and the Digital Elevation Model (DEM). 
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Figure 4 – (a) Map of geophysical-structural domains of the study area. (b) Map of the structural 

domain I. (c) Map of the structural domain II. (d) Map of the structural domain III. E) Map of the 

structural domain IV. 

 

Domain III encompasses the meta-

sedimentary package that covers the PGB in 

the northwest portion of the area, including the 

Paleoproterozoic rocks of the Fazenda Tapera 

Formation, the Neoproterozoic rocks of the 

Bambuí Group and the Phanerozoic cover 

(Marinho et al., 2018). This domain is 

composed of linear structures of small 

extension, identified through TDR and Dz 

images, with a WNW-ESE direction (Fig. 4d).  

Finally, Domain IV has a low density of 

structures compared to domains I and II and it 

is dominated by linear structures of different 

length and directions. These structures 

oscillate around E-W direction, often oriented in 

WNW-ESE and ENE-WSW directions (Fig. 4e). 

 
Hydrothermal alteration zones  

The airborne radiometric data were used 

in this research to detect hydrothermal alteration 

zones. Here, the concentrations of K, Th and U 
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were evaluated throughout the study area (Fig. 

5). To obtain an interpretation from these 

products, the following factors were considered: 

i) radiometric data provides surface information 

up to a maximum of 40 centimeters deep; ii) 

techniques such as Kd and Ud are effective in 

regions with a certain compositional 

homogeneity, because these parameters are 

calculated using the average value of the 

concentrations of the radionuclides disregarding 

the lithotype (Eq. (5) and Eq. (6)).  Thus, the 

rocks analyzed from these products must show 

similarity in terms of K, Th and U contents; and 

iii) K, Th and U-rich rocks, can mask anomalies 

in the rocks of the greenstone belt itself, that has 

low contents of these three elements. Therefore, 

it is important to calculate the Kd and Ud 

parameters in groups of lithological units that 

have similar concentrations of the three 

elements. 

The maps and boxplots of Figure 5 

indicate low concentration values of all three 

radionuclides in the PGB, when compared to the 

adjacent radiometric domains (Fig. 5). This 

contrast occurs due to different concentrations 

of K, Th and U in each unit, as each set of rocks 

has its own background for these three 

elements. 

This observation should be considered 

in the analysis of hydrothermal alteration zones 

once the background values of granite-gneiss 

complexes are much higher than those from the 

greenstone belt sequences, for instance (Fig. 

6a). This discrepancy between values can result 

in products that mask the hydrothermal 

alteration zones in regions where the 

background concentrations of radionuclides are 

lower than their surroundings. 

To reduce the effect of contrast between 

the lithologies and to prevent neglecting 

potential hydrothermal zones, the calculation of 

Kd and Ud was performed individually for each 

group indicated in the boxplots (Fig. 5). The K/Th 

ratio and F Parameter were not calculated 

individually like Kd and Ud, because these 

methods show the proportionality between the 

three radionuclides and, therefore, do not 

depend on a regional average concentration 

value. 

All the maps that indicate possible 

hydrothermal alteration zones suggest intense 

radiometric anomalies along the PGB, 

particularly in the northwest sector (Fig. 6). 

The maps also show high values in regions 

where Neoarchean high-K granitic bodies 

outcrop. The Kd and K/Th ratio maps are quite 

similar when compared to each other. This is 

because both products measure K 

concentrations compared to the Th contents. 
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Figure 5 - Boxplot graph of K, Th and U concentrations and its respective maps. (a) Boxplot of K (%) 

concentrations. (b) Radiometric map of the K (%) concentration. (c) Boxplot of Th (ppm) 

concentrations. (d) Radiometric map of the Th (ppm) concentration. (e) Boxplot of U (ppm) 

concentrations. (f) Radiometric map of the U (ppm) concentration. 

 

Principal Component Analysis (PCA) 

was used on the radiometric data to reduce the 

number of variables, expressing, in a single 

map, possible zones of hydrothermal 

alteration (Fig. 7). The results indicate that 

PC1 controls the greatest variability of the data 

(82.9%) and strongly represents the four 

radiometric maps (Fig. 7d). The screeplot (Fig. 
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7c) also indicates that PC1 is the only 

representative PC for the database variability.  

The PC1 versus PC2 diagram (Fig. 7b) 

represents 95.6% of the data variability and 

shows a strong relation between F parameter 

and Ud, due to both products highlight the 

enrichment of U. Similarly, this can also be 

observed for Kd and the K/Th ratio, which 

emphasize the high concentration of K. The 

Figure 7a presents the scores of the 

representative vector (PC1) that controls the 

variability of Kd, Ud, F parameter and K/Th 

ratio. High PC1 score values indicate a high 

similarity between high values of the four 

maps, while low score values indicate a high 

similarity between low values of the four 

radiometric maps. 

 
 

Figure 6 – (a) RGB of K, Th and U ternary composition. (b) K concentration map (%). (c) Th 

concentration map (ppm). (d) U concentration map (ppm). (e) K/Th ratio map. (f) F Parameter map. 

(g) Anomalous K map (Kd). (h) Anomalous U map (Ud). 
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Figure 7 – (a) PC1 score map. (b) PC1 versus PC2 graph. (c) Screeplot graph of the four principal 

components generated. (d) Table with the parameters of each principal component. 

 

DISCUSSIONS 

Geological-geophysical analysis and 
implications for PGB geology 

Through magnetic data and DEM we 

observed four geophysical-structural domains 

spatially correlated with the main geological 

units of the region. These domains were 

recognized based on the extent, geometry and 

orientation of large regional structures (Fig. 4).  

 Domain I groups sinuous and 

anastomosed structures in an NW-SE 

direction that coincide with the portion where 

the greenstone belt sequence outcrops. The 

sinuosity is associated with the rheology of the 

greenstone belt rocks, which have a less 

competent behavior compared to the granite-

gneissic terrains that surround them.  

There is also a slight change in the 

directional pattern of the structures that 

converge in the E-W direction between Pequi 

and Florestal Batholiths. This wide variation 

around the NW-SE direction is a response of 

the structures’ anastomosed pattern.  

Domain II, however, has a set of 

conjugated structures in the NW-SE and E-W 

directions. These structures are rectilinear and 
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occur in more competent rocks with brittle 

behavior, such as granitic bodies and TTG 

complexes that outcrop within the PGB and in 

its surrounding areas. The predominance of 

NW-SE structures in these two domains, 

although with a slightly different geometry, 

may be associated with regional shear zones 

and axial fold traces that follow this same 

pattern.  

These structures were likely formed 

during the Rio das Velhas orogeny, in ca. 2.7 

Ga, reactivated during the Rhyacian-Orosirian 

orogeny at ca. 2.1 Ga (Fabricio-Silva et al., 

2019; Soares et al., 2020, 2021), and were 

responsible for controlling most of the PGB 

gold mineralization (Fabricio-Silva et al., 

2019). 

Domains III and IV record a lower 

density of structures when compared to 

domains I and II. Domain III encompasses the 

Paleoproterozoic, Neoproterozoic and 

Phanerozoic units and has a NW-SE direction 

pattern, suggesting that those structures were 

inherited from the reactivation of Archean 

structures present in the greenstone belt 

sequence that probably underlie such units.  

Domain IV has a low density of 

structures that follow a E-W direction pattern, 

which coincides with the Serra do Curral 

architecture. This pattern can be related to the 

thrusting of the Serra do Curral nappe that 

resulted in the propagation of ENE-WSW and 

WNW-ESE strike-slip faults in the southern 

portion of the PGB (Endo and Chamale Júnior, 

1992; Romano et al., 2013; Endo et al., 2019). 

Zones of hydrothermal alteration revealed 
by radiometric data 

The gold deposits in the region show 

zones of hydrothermal alteration with sericite, 

chlorite, carbonate and tourmaline (Soares et 

al., 2018; Fabrício-Silva et al., 2019; Maurer et 

al., 2021). However, these halos appear to be 

incipient, narrow and restricted to the vicinity 

of the shear zones. Thus, radiometric data can 

reveal not exactly the halos, but only the 

pathways of hydrothermal fluids that showed 

variation in the three radiometric channels. 

The PC1 map showed that most 

anomalies occur in the PGB region and are 

spatially associated with regional structures 

that may worked as pathways of mineralized 

fluids. This suggests that the aligned high 

concentration values of K and/or U might be 

associated with hydrothermal alteration 

processes. However, some regions, such as 

the north of Serra do Curral and east of the 

Mateus Leme district (point 3 in Fig. 7), have 

high values following a dendritic pattern. This 

indicates that the map also highlights high 

concentrations of K in alluvial deposits, 

promoted by surficial dynamics.  

Therefore, despite the high reliability of 

the PCA, many interferences and anomalies 

not associated with hydrothermal alteration 

can remain in the evidential map, due to 

surface conditions, such as differential K 

leaching for alluvial deposits.  

The southern portion of Serra do Curral 

also shows areas with high contents of the 

PC1 score that probably are not correlated 
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with hydrothermal alteration zones. This 

region displays anomalous PC1 values, 

covering its entire length, not spatially 

associated with major regional structures, 

reinforcing the hypothesis that these 

anomalies are not linked to hydrothermal 

alteration and, consequently, to gold 

mineralization. 

 

Airborne geophysical data as an efficient 
tool for gold prospecting in the PGB 

The analysis of airborne geophysical 

data in the PGB region allowed the 

characterization of regional lineaments 

associated with zones with high probability of 

hydrothermal alteration or fluid passage. Most 

of the anomalous values of PC1 follow the 

Archean NW-SE structures (Romano, 2007; 

Fabrício-Silva et al., 2019; Soares et al., 2020). 

The NE-SW and E-W structures 

located in the southeastern portion of the 

PGB, however, were probably formed by the 

thrusting of the Serra do Curral nappe during 

the Rhyacian-Orosirian orogeny and are not 

associated PC1 anomalies (Endo and 

Chemale Júnior, 1992; Romano et al., 2013; 

Endo et al., 2019). The absence of radiometric 

anomalies along these structures may be 

connected with the lack of expressive 

hydrothermal fluid circulation during the 

Paleoproterozoic orogeny.  

This observation has direct 

implications for orogenic gold prospecting.  

Even considering the remobilization of gold 

during the Paleoproterozoic orogeny 

(Tassinari et al., 2015; Soares et al., 2021), 

this assumption reduces the relevance of 

these structures as prospective vectors for 

gold deposits.  

Another possibility is that the absence 

of radiometric anomalies is related to the 

presence of a lateritic plateau that covers the 

E-W structures. As a result, the radiometric 

response shows great concentration of 

thorium compared to the other radionuclides, 

due to K and U leaching caused by the 

drainage system that flows towards northwest 

of the area.  

The map in Figure 7 shows that the 

gold deposits, such as São Sebastião, 

Turmalina and Pitangui, are located within 

regions with high density of structures and 

high values of PC1 scores. The map also 

shows that the relation between structures and 

PC1 scores is significant only in areas where 

there is a large number of structures that 

extent until the surface, due to the limitations 

of the airborne radiometric technique. 

Therefore, this work provided insights to 

conclude that the airborne magnetic data 

aligned to radiometric data are effective in the 

identification hydrothermal alteration zones 

and unmapped structures that can be used as 

proxies in MPMs. 

 
CONCLUSIONS 

Magnetometry and radiometry airborne 

geophysics are efficient tools for prospecting 

new ore deposits not only in the PGB, but also 

in other deposits around the world that have a 
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similar geological context. The data 

processing and interpretation allowed us to 

draw the following conclusions: 

• The identified geophysical lineaments 

in subsurface showed a direction 

pattern compatible with the structural 

framework presented by the geological 

mapping of the region and 

complemented the knowledge 

regarding the structures of the PGB 

(i.e. Fabrício-Silva et al., 2019, 2021). 

• The PCA applied to the K/Th ratio, Kd, 

Ud and F parameter maps indicated 

that the zones with the highest score 

are in the PGB region, suggesting 

intense hydrothermal activity in the 

mineralization host sequence. 

• There is a direct spatial relation 

between the occurrences and gold 

deposits, the high values presented by 

the PCA and the identified 

geophysical-structural lineaments, 

reinforcing the reliability of the 

hydrothermal alteration and the 

geophysical-structural maps. 

• The regions with the highest probability 

to have hydrothermal alteration zones 

are found along the PGB and coincide 

with areas where there is a higher 

density of structures, such as in the 

regions of the São Sebastião, Pitangui 

and Turmalina deposits, reinforcing the 

importance of using these techniques 

to generate evidential maps for 

prospective modeling. 
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