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ABSTRACT. Self-organizing feature maps (SOFM) consist of a type of artificial neural network that allows the conversion from high-dimensional data into simple

geometric relationships with low-dimensionality. This method can also be used for classification of remote sensing images because it allows the compression of high-

dimensional data while preserving the most important topological and metric relationships of the primary data. This paper aims to develop an effective methodology for

using self-organizing maps in change detection. In this study, SOFM is used for unsupervised classification of remote sensing data, considering the following attributes:

spatial (x and y), spectral and temporal. The method is tested and simulated in the western region of Bahia that has observed a significant increase in mechanized

agriculture. Tests were performed with the SOFM parameters for the purpose of fine tuning a change detection map. The SOFM provides the best selection of cell and

corresponding adjustment of weight vectors, which show the process of ordering and hierarchical clustering of the data. This information is essential to identify changes

over time. All algorithms were implemented in C++ language.

Keywords: unsupervised classification, land cover, multitemporal analysis, remote sensing.

RESUMO. Os mapas auto-organizáveis (SOFM) consistem em um tipo de rede neural artificial que permite a conversão de dados de alta dimensão, complexos e

não lineares, em simples relações geométricas com baixa dimensionalidade. Este método também pode ser utilizado para a classificação de imagens de sensoriamento

remoto, pois permite a compressão de dados de alta dimensão preservando as relações topológicas dos dados primários. Este trabalho objetiva desenvolver uma

metodologia eficaz para a utilização de mapas auto-organizáveis na detecção de mudanças. No presente estudo o SOFM é utilizado para a classificação não supervisionada

de dados de sensoriamento remoto, considerando os seguintes atributos: espaciais (x, y), espectrais e temporais. O método é empregado na região oeste da Bahia, que

teve recentemente um aumento significativo em monoculturas. Testes foram realizados com os parâmetros do SOFM com o objetivo de refinar o mapa de detecção de

mudanças. O SOFM possibilita uma melhor seleção de células e dos correspondentes vetores de peso, que mostram o processo de ordenação e agrupamento hierárquico

dos dados. Esta informação é essencial para identificar mudanças ao longo do tempo. Um programa em linguagem C ++ do método proposto foi desenvolvido.

Palavras-chave: classificação não supervisionada, cobertura da terra, análise multitemporal, sensoriamento remoto.
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INTRODUCTION

Change detection is a process of identifying differences in the state
of the object or phenomenon on different dates (Singh, 1989). Two
types of temporal image processing stand out (Lambin, 1999):
(a) discrete model – analysis of change detection based in bi-
temporal images, and (b) continuous model – analysis of a dense
temporal series to allow a description of the trajectory of surface
dynamic and evolution, such as, for instance, the phenological
behavior of the plant or the flooding of rivers.

This work is restricted to analysis of change on the basis of
bi-temporal data, discrete over time. One advantage of the dis-
crete model is that it allows a simple and fast description of the
spatial dynamics. Many works propose a classification of the
techniques of change detection using bi-temporal images (Singh,
1989; Lambin, 1999; Hall & Hay, 2003; Lu et al., 2003; Cop-
pin et al., 2004). Normally, these methods are subdivided into
two types: pre-classification and post-classification (Jensen et al.,
1993, Yuan et al., 2005).

The pre-classification methods involve, firstly, the joint pro-
cessing of the temporal images, so as to generate a new, unclassi-
fied image in which the features of the change are enhanced (Yuan
& Elvidge, 1998). Among the types of processing used in change
detection based on temporal images, the following stand out: al-
gebraic operations, principally subtraction and division (Coppin
et al., 2001; Dymond et al., 2002; Franklin et al., 2000, 2002,
2003; Gong et al., 1992; Skakun et al., 2003), linear transforma-
tions (Byrne et al., 1980; Fung & LeDrew, 1987; Cakir et al., 2006)
and spectral measurements (Carvalho Júnior et al., 2011). One
problem in this enhancing technique is classifying the areas of
change after enhancement. Normally this is done by determining
threshold values to delimit the areas of change or no change.

In the post-classification method every image is previously
classified individually and then compared, extracting and quan-
tifying the areas of change (Howarth & Wickware, 1981). Clas-
sification may be done manually or automatically using a super-
vised or unsupervised classifier. As described by Menke et al.
(2009) the advantages of using this procedure are: (a) ease of up-
dating over time, favoring monitoring; (b) allows to compensate
the variations resulting from atmospheric conditions, phenolog-
ical changes and soil humidity, due to independence in the gen-
eration of the thematic map; and (c) allows the integration and
comparison of images from sensors with different spatial, spec-
tral, temporal and radiometric resolutions, (d) allows the detection
of categories of change, not limited to detecting only the classes of
changes and no changes. As disadvantages, Menke et al. (2009)

describe the following factors: (a) it is not fully automatic, making
it a slower process; and (b) the accuracy to detect the changes
depends on the accuracy of classification in each time, which
may facilitate the propagation of errors. One form of automating
the post-classification procedure is to use unsupervised classi-
fiers. However, the use of unsupervised classifier independently
for each image will be unlikely to present parameters describing
the same class at two exactly-equal times. This may led to losses
and errors in cross-checking the information between the two dis-
crete times.

Another approach to detect changes would be to perform the
automatic classification directly on the temporal images, denom-
inated by Singh (1989) as “Direct Multidate Classification”. This
procedure has a different approach in relation to the two methods
already described (post-classification and pre-classification), and
may be denominated as syn-classification, since the classification
and temporal processing are carried out together. This procedure
avoids the errors contained in a classification performed indepen-
dently for the two times, particularly when automatic methods are
used. The unsupervised classifiers mostly used in change detec-
tion are those based on group analysis (Weismiller et al., 1977;
Soares & Hoffer, 1994) or artificial neural networks (Dai & Ko-
rram, 1999; Nemmour & Chibani, 2005). Some authors, rather
than adopting directly the spectral bands as input data for classi-
fication make use of previously treated images such as vegetation
indices or components of the Tasseled Cap (Hayes & Sader, 2001;
Sader et al., 2001; Wilson & Sader, 2002; Jin & Sade, 2005).

The aim of this article is to develop a method of unsuper-
vised change detection based on the SOFM algorithm (SOFM -
acronym for Self-Organizing Feature Maps), which consists of
those most used in an Artificial Neural Network (ANN) to reduce
the dimensionality of the data. The employment of SOFM as an
unsupervised learning algorithm in remote sensing experiences
intense development and has evidenced significant results (Gopal
& Woodcock, 1996; Carpenter et al., 1997; 1999; Gopal et al.,
1999; Jianwen & Bagan, 2005; Papa et al., 2010). The existing
methods of change detection using the ANN consider the image
from time 2 (t2) as a spectral extension of the image from time
1 (t1) (Dai & Korram, 1999; Nemmour & Chibani, 2005). How-
ever, this alternative prevents the obtainment of classified images
for each time, which would help in the assessment and adjust-
ment of the classification parameters. This work proposes a new
configuration of the input data, generated after trainning the net-
work based on two temporal images, and generates an indepen-
dent classification for each time. A program of the method pro-
posed has been developed in C++ language.
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The proposed method is tested in an area of agricultural ex-
pansion in the West of Bahia State which has displayed a high
spatial dynamic since the 1990’s, with the advance of mecha-
nized agriculture over the vegetation of the Cerrado grasslands.
The region displays favorable conditions for the spread of agri-
business, such as: flat land, high insolation rates, high precipita-
tion (1600 mm/year), concentrated between the months of Octo-
ber and March, besides government incentive (Smith et al., 1998;
Kaimowitz & Smith, 2001).

METHODOLOGY

Theoretical review of Self-Organizing Feature Maps
(SOFM)

Self-Organizing Feature Maps are known as an unsupervised
competitive learning system capable of extracting characteristics
from a set of training data. Based on a two-dimensional layer of
neurons, represented by a set of initial weights, the SOFM train-
ing algorithm performs a self-organization of these neurons, so
that they start to represent the characteristics of the training set
used (Kohonen & Mäkisara, 1989; Kohonen 1982; 1988; 1990).
Therefore, the challenge of learning in self-organizing maps is to
cause, in different parts of the network, significant correlations for
certain patterns of input.

The SOFM considers in the learning process, topological in-
formation on the space present in the input data in a competitive
process. In the case of a training set consisting of pixels of im-
ages (spectra), at the end of the training, the set of neurons will
characterize spectral classes (Silva, 2003).

The laws of competitive learning have as a common property a
process of competition involving some or all of the neurons from
the neural network, which always happens before each learning
episode. The neurons that come out as winners in the compe-
tition have their weights updated (or have their weights updated
in a manner differentiated from the other, non-winning, neurons).
Even though the law of learning was introduced by various authors
(Grossberg, 1976; Tsypkin, 1973; Williams, 1985), Kohonen was
the first to focus clearly on the characteristic of equi-probability.
The basic idea of Kohonen’s learning algorithm is to select a layer
of neurons whose weights have a distribution in space Rn , ac-
cording to the input vectors “e” used in the training of this layer
(Hecht-Nielsen, 1990).

The SOFM consists of two layers, a single-dimension input
layer and a two-dimensional grid layer with an arbitrary number of
units (Kohonen, 1990). Each unit of the input layer is connected
to all the units in the layer related to the grid. Figure 1 shows the

basic structure of the Kohonen layer which consists of K neu-
rons, each one receiving n signals e1, e2, . . . , en from the input
layer. Input e j for Kohonen neuron i has a real weight mi j as-
sociated to it. The residual between the input and each neuron is
calculated according to:

D(mi , e), (1)

In which, mi = (mi1, mi2, . . . , min)T , e = (e1, e2, . . . ,

en)
T and D(mi , e) is the function of measurement of dis-

tance (which need not necessarily be a metric distance). Two
more common types for D(mi , e) are the Euclidean distance
(D(mi , e) = |mi − e|) and the distance of the spherical arc
(s(mi , e) = 1 − mi ∙ e = 1 − cos φ; where mi and e are
vectors of unit size and φ the angle between them).

The competition among the neurons assessthe intensity of en-
try of the neurons, in other words, the neuron with m weights,
closest to e. To demonstrate how Kohonen learning takes place,
consider a two-dimensional matrix of units of neurons disposed
in a hexagonal layer (Fig. 1). For each neuron (or node) i of this
layer, one weight vector is linked, varying with time mi (t) ∈ Rn ,
t = 0, 1, 2, . . .. The mi (0) may be random. Assume that an
input pattern vector e(t) ∈ Rn is received and compared to each
weight vector mi (t). Two rules define how the mapping of pat-
terns is formed by self-organization when a sufficient number of
input vectors is received by the network. The first rule is to find
the unit c whose weight vector mi (t) bears the greatest similarity
with e(t):

∥
∥e(t) − mc(t)

∥
∥ = min

i

{∥∥e(t) − mi (t)
∥
∥}

(2)

Unit c is considered as the unit that responds to e(t). In the
simplest case the Euclidean distance is used.

The second rule consists of modifying the weight vectors of
unit c and its topological neighbors (Fig. 2). The topological
neighborhood Nc refers to a subset of the layer of neurons close
to the winning neuron and quite often it is a function dependent
on the training cycle (Nc(t)).

The law of adaptation of this model takes the following crite-
rion:

mi (t + 1) = mi (t) + α(t)[e(t) − mi (t)], i ∈ Nc

mi (t + 1) = mi (t), i /∈ Nc

}

(3)

In which, a(t) is a scale that represents the intensity of gain
of adaptation of the winning neuron. This parameter has a smooth
decrease depending on the training cycle during the network’s
learning process (a < a(t) < 1). The radius of Nc decreases
linearly during the training period (Kohonen & Mäkisara, 1989).
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Figure 1 – The N neurons of the Kohonen layer receive, each one, n inputs e1, e2 . . . , en . Each input has
a weight mi j associated to it. When each vector e is presented to the Kohonen layer, the neurons compete
with one another, evidencing which weight vector mi (mi = (mi1, mi2, . . . , min) is closest to e.

Figure 2 – The winning neuron and its topological neighborhood. Neighborhood function Nc(ti ) defines
the subset of neurons that will have their weights updated according to equation 3.

Pre-processing of temporal images

The choice of images normally considers acquisition dates at the
same season of the year, seeking to minimize seasonal effects re-
sulting from the phenology of the plants and climatic conditions
(rain and humidity) (Lu et al., 2003). This study makes use of

TM-Landsat images referring to the dates of June 20, 1984 and
June 17, 2006 (Fig. 3).

The images must be co-registered to ensure a suitable geo-
referencing, so as not to generate detections of false changes
as a result of a mere displacement between the temporal im-
ages. In this work the images are co-registered using the program
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Figure 3 – Bi-temporal images of the study area referring to time 1 (Jun. 20 1984) and time 2 (Jun. 17 2006).

Environment for Visualizing Images – ENVI (Research Systems,
2001), maintaining the same dimensions of lines and columns.
The mean squared error values prove to be below 0.2 pixels,
which, according to Dai & Khorram (1998) eliminates the pres-
ence of features of anomalous change arising from lack of spatial
correspondence.

The images must also be submitted to a radiometric normal-
ization, to ensure homogeneous spectral responses from the tar-
gets at the different times under analysis. A first correction may
be made based on conversion of the gray levels for apparent re-
flectance, which normalizes the following effects: illumination,
solar irradiance at the top of the atmosphere and the angle of
incidence of radiation on the target (Ponzoni & Shimabukuro,
2007). However, even after conversion to reflectance, some dif-
ferences may still remain, arising mainly from atmospheric ef-
fects. In this condition, two alternatives for correction are pro-
posed: (a) absolute atmospheric correction, which adopts codes
of radioactive transfer, or (b) relative atmospheric correction,
where the data from an image are adjusted to a reference im-
age (known as radiometric calibration, rectification or normal-
ization). The second approach presents different propositions
in the literature and is widely used, given its ease, not requir-
ing any information a priori (Hall et al., 1991; Hill & Sturm,
1991; Du et al., 2001, 2002; Furby & Campbell, 2001; Canty et
al., 2004; Paolini et al., 2006; Scheidt et al., 2008). This work
applies the method developed by Carvalho Júnior et al. (2006),
which detects the invariant points (IP) and performs a linear
regression of such points.

Structuring the input data

So as to ensure an equalitarian classification for the two times,
the methods of change detection by neural networks must si-
multaneously process the information from the two temporal

images. Usually, the multi-temporal and bi-temporal input data
are structured in such a way that there is one neuron for each
band of each time (Dai & Khorram, 1999; Nemmour & Chibani,
2005). Thus, the configuration of the bi-temporal input image
presents as the total number of bands the summation of the two
times. For example, a bi-temporal input image of TM bands,
disregarding the thermal image, totals 12 neurons. Other addi-
tional information may eventually be incorporated to the training
process, such as, texture information from filtering (Paola &
Schowengerdt, 1995). However, in this configuration the result-
ing classification presents the classes of change and no change
mixed, and these must be labeled by the user. Another drawback
of this process is that it does not furnish the individual classifica-
tion for each time, which may be of interest in the research or to
assist in analysis of the results.

To avoid these inconvenient aspects, this work formulates
a new configuration, in which the input data present the image
from the second time as an extension of the line or column of
the image of the first time. Thus, considering the two temporal
images from time t1 (X↑(t↓1)) and time t2 (X↑(t↓2)) with
the same number of lines (l) and columns (c), the input image
Z Px Q (P = 2l and Q = c) is described by the following
expression:

Z Px Q =

[
Xt1

Xt2

]

(4)

This procedure defines as the number of input neurons the same
number of bands present at just one time. This configuration al-
lows standardization of the parameters that describe the common
classes as well as to detect any classes that may exist on just one
of the dates. After the joint classification of the temporal images,
these are compared by cross tabulation, to obtain the classes of
change and no change.

Brazilian Journal of Geophysics, Vol. 30(4), 2012
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System for detecting changes in images using SOFM

The fundamental stages of a process of classification of images
using SOFM necessarily goes through the stages of training the
SOFM and then classification of the image, using the map gener-
ated in the training stage. The training stage, in its turn, consists
of the following steps: (1) selection of the training set made up
of pixels (multi-spectral); (2) definition of the training parameter
values; initial learning rate, (α(0)); initial size of the neighbor-
hood (Nc(0)); decrease rate of α(0); decrease rate of Nc(0);
and (3) application of the training algorithm.

Once trained, the SOFM neuron map can be used in the phase
of image classification. In this process, each pixel (spectrum) of
the image is related to one of the neurons (Eq. 3) having as a fi-
nal result a classified image with the same dimensions of line and
column as the input image.

This work proposes a system of detection of changes of the
syn-classification type using the SOFM. Selection of the geo-
positioned samples considers the two times (images Time 1 and
Time 2 ), forming just one training set (T S), so that the trained
map reflects concomitant characteristics from the two times
(Fig. 4).

The trained map makes feasible the process of classification
that generates two classified images (one map for each time). The
classification algorithm correlates each pixel (spectrum) of the in-
put image with one of the neurons of the Kohonen Map, denom-
inated “best matching unit” (BMU). Equation 2 is used in each
pixel e(t) of the input image to select its respective classifying
neuron mc(t). Lastly, detection of the temporal changes is per-
formed analyzing the transitions between the two maps of classes
generated. The changes are represented by a third map of classes
(resulting from the cross tabulation) which contains one class for
each type of transition occurring between the maps of time 1 and
time 2 (Fig. 5).

Assessment of accuracy

To assess the accuracy of the method proposed, the detection of
change obtained by the SOFM is compared with that obtained by
visual interpretation supported by field work. This analysis con-
siders the classes of change and no change between the two meth-
ods. The Kappa and Overall coefficients are calculated, so as to
establish statistical estimates of coincidence (Jensen, 1986; Con-
galton & Green, 1999).

RESULT

Use of the SOFM classifier for temporal images

Classification of the study area by the SOFM method tested dif-
ferent combinations referring to the initial parameters. Among the

principal factors considered, the height and width of the Kohonen
layer were the best,since they established the maximum number of
classes. For the initial estimate of the Kohonen network, the total
number of classes present on both dates was considered, where
the existence of one same class at both times was computed just
once. As the test area presented few classes a geometrical dimen-
sion (2×2) of the Kohonen map was used.

In the program prepared, definition of the sampling interval
(sampling option), on both axis of lines and columns is done
by the user. This study made use of images with dimensions of
400 lines by 400 columns; a sampling interval of 5 lines and 5
columns proved to be suitable to avoid redundancy and minimize
processing time.

To avoid premature convergences, in which case the trained
map does not reflect the classes representing the input images,
the learning rate and the neighborhood radius were started with
high values, so as to be smoothly reduced during the training, as
suggested by Kohonen (1999). Both parameters (rates of learn-
ing and neighborhood) displayed an exponential decrease during
the training process (Fig. 6a,b). Adjustment of the classification
to the training set was verified by the proximity of its weights to
the respective training samples. The same metric for selection of
the winning neurons (Eq. 2) was used to calculate the average ad-
justment of the SOFM. The chart in Figure 6c demonstrates one
case of these values throughout the cycles of training based on a
SOFM, demonstrating the system’s trend of adjustment.

The detections of changes made use of the following training
parameters for the SOFM: initial learning rate of 0.98; initial ge-
ometry of the neighborhood equal to the smallest dimension of
the map, decrease of the learning rate of 0.05 (5%); decrease of
the neighborhood radius of 0.05 (5%) and maximum quantity of
training cycles of 1000.

The image from 1984 demonstrated a highly-preserved area
containing an expressive area of natural vegetation, represented
by class 3 (Fig. 7). In just one of the restricted areas was there a
predominance of exposed soil (described as class 1). The classi-
fied image from 2006 demonstrated a significant change of land-
scape, where there appear extensive classes linked to crops with
different rates of growth (described by the class 1, 2 and 4).

Besides the images classified for each time the program also
furnished the image of the Kohonen network. This image was
characterized by having the number of lines and columns accord-
ing to the geometry of the network defined by the user (height and
width), plus the same number of bands as the input image. In
this image each pixel has a vector of specific weights referring to
each spectral band that characterizes a determined class. In the

Revista Brasileira de Geof́ısica, Vol. 30(4), 2012
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Figure 4 – Training with bi-temporal samples.

Figure 5 – Syn-classification and detection of temporal changes.

Figure 6 – (a) curve of the learning rate; (b) curve of the neighborhood radius, and (c) curve of the training error.
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Figure 7 – Classification of bi-temporal images using the SOFM method, considering a geometry of 2×2 for the Kohonen map.

Figure 8 – Image of the Kohonen network (2×2) containing four pixels, containing vectors of weights that report the spectra
of a continuous transition from photo-synthetically active vegetation to bare soil.

chart of Figure 8 the spectra of weights obtained for the image in
question represented a continual spectral transition from photo-
synthetically active vegetation (PAV) (spectrum 1) to exposed soil
(spectrum 4). Therefore, the Kohonen network permitted evidenc-
ing the different targets present on the scene as components of
spectral mixtures.

The comparison of the two images classified at the two times
by cross tabulation generated a new image related to the areas of
change consisting of 8 classes and the areas of no change with 3
classes (Fig. 9). In this image it was possible to verify the process
of change that took place, assessing the different modifying ac-
tions present in the environment. As the classes are ordered with
graded losses of PAV, it was noted that change class 1:4 repre-
sented the greatest alteration, going from a situation of vegetation

cover to exposed soil. The classes in which the first index proved
to be lower than the second (2:1; 3:1 and 3:2) were the areas with
higher PAV, meaning a recovery of the ambient.

Result of assessment of accuracy

In the assessment of accuracy the categories related to change and
no change were used, these obtained by simple grouping of the
respective classes. The comparison of detection of change by the
SOFM method and by visual interpretation displayed significant
values of the Kappa coefficient of 0.875 and Overall of 94.0%.

The areas with changes not detected by the SOFM method
proved to be concentrated at two locations (Fig. 10): (a) trails and
roads, and (b) areas of conversion of the Cerrado grasslands into
cultivation, where both are characterized by the spectral behav-

Revista Brasileira de Geof́ısica, Vol. 30(4), 2012
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Figure 9 – Detection of changes based on the cross tabulation of images classified by the SOFM method.

ior of photo-synthetically active vegetation. The transformation of
the interpreted vectors of roads into an image makes it hard to
maintain a perfect adjustment with that obtained directly by visual
classification, in both their continuity and width, causing errors.
Thus, in this work, roads were not considered in the visual inter-
pretation, always being computed as an error of the method pro-
posed. A second error occurring consisted of areas that continued
to have photo-synthetically active vegetation, in spite of different
origins, one related to cultivation and the other to natural vegeta-
tion. This error proved hard to detect, due to the spectral similarity
of the two situations, as was already evidenced in other methods
of automated change detection (Carvalho Júnior et al., 2011).

Figure 10 – Image of the areas with changes present in the visual interpretation,
not detected by the method proposed.

The areas where the proposed method indicated change not
identified in the visual interpretation occurred principally in areas
of vegetation fire scars and once again on roads (Fig. 11). The
scars from vegetation fires, in spite of being changes, were not
classified by visual interpretation as they display non-continuous
behavior and are included in an area of natural vegetation. There-
fore, the greater sensitivity of the method proposed in the detec-
tion of roads and scars from vegetation fires ends up being a
source of errors that must be minimized in the analysis. Thus,
the Kappa and Overall values obtained display underestimated
values due to roads and fire scars that were disregarded in the
visual interpretation.

Figure 11 – Image of the areas where the method proposed indicated changes
not occurring in the visual interpretation.

Brazilian Journal of Geophysics, Vol. 30(4), 2012
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Figure 12 – Principal display of the program of change detection using SOFM.

Program of change detection using SOFM

The method proposed is made available in the form of a program
developed in C++ language. The functions of the program are
organized in an interface consisting of the following components:
inputting the images, configuration of the parameters of the SOFM
classifier and display of the resulting images (Fig. 12).

Two temporal images with the same dimensions and co-
recorded are required as input data. The program reads the
raster files in the formats BSO (Band Sequential Format) and BIP
(Band Interleaved by Pixel Format) in which each image must be
accompanied by a header file containing the following information
on the image: number of lines, columns and bands, format code
of the images (BIP or BSO) and type of data (byte, whole, floating
point, 64-bit whole).

The training stage (option Start Training) requires definition
of the training set (option Sampling) and definition of the train-
ing parameters discussed in section 2.3 (option Training Para-

meters). The option Start Training starts the SOFM training algo-
rithm. At each cycle of presenting the training set, three accom-
panying graphics are updated: graphic of the mean squared er-
ror of classification of the training set, graphic of decrease of the
learning rate, and graphic of decrease of the radius of the neigh-
borhood function. At the end of the training, the final values of
the mean squared error of classification of the training set, the
learning rate and the neighborhood radius are shown as subtitles
of the graphics.

The option Detect Change starts the process of classifying
the Time 1 and Time 2 images with the subsequent detection of
changes. At the end, the following result images are generated in
the File list (Fig. 12): (a) Map of classes of images from Time 1,
(b) Map of classes of images from Time 2, (c) Map of classes of
temporal changes (Change image).

As exemplified in Figure 13, all the resulting images may be
displayed in the form of levels of gray and colored composition,
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Figure 13 – Image display interface.

based on the list of files (option Files List). The display interface
presents basic functions such as zoom and pixel reader. The im-
ages may be read by other programs such as ENVI.

CONCLUSION

This work devises a semi-automatic method of change detec-
tion using an unsupervised classifier (the artificial neural network
SOFM). The methodological procedure demonstrated here makes
feasible research proposing the temporal monitoring of trans-
formations on the earth’s surface. As an advantage, the method
presented the following factors: (a) unsupervised classification,
not requiring a priori samples of the classes; (b) the number of
classes present depends on the interest of the user; (c) genera-
tion of classified images for each time and the criteria adopted in
selection of the classes adopt concomitant bi-temporal informa-
tion. Moreover, the method adopts a procedure of differentiated
data input where samples are collected in the images related to
the two times. This procedure allows detection of the direction of
the changes occurring, defining the areas that have had changes
and no changes. In the case of adopting all the images of discrete
variables in the Kohonen network, the different classes are identi-
fied, but the direction of the change is not obtained automatically.

Comparison of classification by the method proposed with
visual interpretation demonstrates significant values of Overall
and Kappa coefficient. In part, the source of errors arises from
the visual interpretation map, which reveals difficulty in compar-
ing linear features such as roads and dispersed features and non-
continuous features such as vegetation fire scars. The most signif-
icant error are the areas that correspond to change, yet maintain
the same spectral behavior in relation to the areas of the grass-
lands converted to croplands, since thesepossess the same spec-
trum of photo-synthetically active vegetation.
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Observatório Nacional (1991) and doctor in Geology from Universidade Federal do Rio de Janeiro (2000). Currently assistant professor at Universidade de Brası́lia,
holding a scholarship for productivity and research from CNPq IC. Reviwer of Revista Brasileira de Geociências, Revista Brasileira de Cartografia, International Jour-
nal of Remote Sensing (Online), Risk Analysis and Espaço e Geografia (UnB). Active member of the Editorial Boardof Revista Brasileira de Cartografia and Espaco
e Geografia (UnB). Experience Geosciences, with emphasis on Physical Geography. Main research themes: Mathematical Modeling, landslides, SHALSTAB Model,
Digital Terrain Model.

Roberto Arnaldo Trancoso Gomes. Graduate in Geography from Universidade Federal do Rio de Janeiro (1999). Master’s degree in Geography from Universidade
Federal do Rio de Janeiro (2002) and a doctorate in Geography from Universidade Federal do Rio de Janeiro (2006). Currently assistant professor at Universidade
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