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DECONVOLUTION OF SEISMIC DATA USING PHASE CHANGE OPERATORS

Dorian Caraballo Ledesma and Milton José Porsani

ABSTRACT. This paper presents a new approach for wavelet deconvolution. We investigate the use of all-pass operator to change the phase of the minimum-phase

inverse filters. The all-pass operators are formed by using the roots of the polynomial associated to the Wiener-Levinson filters. By selecting subsets of roots it is

possible to generate an ensemble of mixed-phase inverse filters. The optimization process to obtain an optimum inverse filter is performed by using a genetic algorithm.

We have used the varimax norm as the objective function to measure the simplicity of the seismic trace after deconvolution. The method was tested using synthetic and

real seismic data.
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RESUMO. Apresentamos uma nova abordagem para deconvolução do pulso śısmico. Investigamos o uso de operadores de mudança de fase para obtenção de filtros

de fase mista a partir de filtros de fase mı́nima. Os operadores de mudança de fase são construı́dos a partir das raı́zes associadas aos filtros de Wiener-Levinson.

Escolhendo subconjuntos daquelas raı́zes é posśıvel gerar um conjunto de filtros inversos de fase mista. A escolha do filtro ótimo é realizada através do método de

otimização conhecido com algoritmo genético. Para tanto utilizamos a norma varimax para medida da simplicidade do traço deconvolvido. O método foi testado utilizando

dados śısmicos sintéticos e reais.
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INTRODUCTION

Among geophysical methods, the seismic reflection method is the
most used in the exploration of hydrocarbons. It allows, like no
other, obtaining an image of the subsurface that clearly reflects the
geology of the sedimentary basins. Improving the quality of seis-
mic images and increasing the ability to identify and discriminate
the seismic reflectors is one of the biggest challenges of the seis-
mic reflection method. Aiming to improve the resolution, quality
and fidelity of seismic imaging, new methods of processing and
filtering seismic data are being continuously developed.

The deconvolution filter is a signal treating procedure that
has important applications in various scientific fields such as
radar signal and astronomical image processing, in order to im-
prove the sharpness of celestial images. In seismic oil explo-
ration, particularly in the study of reservoirs, deconvolution is an
important step of seismic processing, applied to improve tempo-
ral resolution of traces, allowing better top and bottom identifi-
cation of thinner layers and thus better definition of subsurface
geology. When used for this purpose, it is called wavelet or spik-
ing deconvolution (Robinson, 1967; Robinson & Treitel, 1982).
Deconvolution is also used to attenuate multiple reflections that
occur when the seismic energy is reflected more than once at each
interface. In this case, it is called predictive deconvolution and
the multiple reflections are considered as noise to be eliminated
(Robinson & Treitel, 1982).

Wavelet deconvolution aims to compress wavelet shape in
order to recover reflectivity function or impulse response of the
medium. In most cases, the wavelet is not known and is avail-
able only as an estimate of its autocorrelation function, which is
obtained directly from the seismic traces. The classical method
known as the Wiener-Levinson deconvolution (WL) does not
provide the best results when the wavelet is not minimum phase.
The WL method limitations are well known and several authors
have investigated methods and strategies that would provide good
results for realistic oil exploration situations, when the wavelet
is not necessarily minimum phase or when the reflectivity is not
necessarily random.

In the last two decades, several papers on deconvolution and
wavelet estimation have been published in Geophysics literature.
Most often the authors focus on and try to solve problems related
to the wavelet phase character (Levi & Oldenburg, 1982; Eisner
& Hampson, 1990; Ulrych & Treitel, 1991; Lazear, 1993; Lein-
bach, 1993; Velis & Ulrych, 1996; Porsani & Ursin, 1998, Por-
sani & Ursin, 2000; Ursin & Porsani, 2000, Sacchi & Ulrych,
2000; Misra & Sacchi, 2006; Lu & Wang, 2007; Van, 2008; Van
& Pham, 2008; Misra & Chopra, 2010).

Porsani & Ursin (1998) used the solution of Yule-Walker ex-
tended equations and proved that it is possible to obtain mixed-
phase filters associated with minimum phase wavelet. These au-
thors estimated the polynomial roots associated with the mini-
mum phase wavelet and, then obtained mixed-phase filters using
all-pass operators. Thus, a large number of mixed-phase filters
can be obtained and used in wavelet deconvolution. The opti-
mal filter is then obtained by solving the optimization problem
via genetic algorithm (GA), Holland (1975) and Goldberg (1989).

In this paper, a new procedure for simplifying the deconvo-
lution method originally proposed by Porsani & Ursin (1998) is
presented. This new approach is tested and validated using syn-
thetic and real seismic data.

BASIC CONCEPTS

Seismic trace convolution model

In the linear system theory, the seismic trace can be represented
as the result of the wavelet convolution with the impulse response
of the medium, also called reflectivity function Yilmaz (1987).
Mathematically expressed as,

xt = pt ∗ rt + ηt , (1)

where:
xt = seismic trace;
pt = wavelet of every reflected event;
rt = impulsive response or reflectivity function;
ηt = additive noise.

Figure 1 shows the seismic trace convolution model.

Figure 1 – Linear system model representing the seismic trace.

The reflectivity function can be retrieved using the seismic
trace convolution model, where ct is the inverse wavelet filter
(ct = p−1

t ), as shown below.

ct ∗ pt = δt , (2)

where: δt is Kronecker delta. Convolving ct with equation (1), we
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obtain:

ẽt = ct ∗ xt = ct ∗ pt ∗ et + ct ∗ νt

= δt ∗ et + ct ∗ νt

= et + ct ∗ νt

Considering negligible the noise ηt , we verify that the convolution
of the trace with the inverse filter restores the reflectivity function.
In this case, we say that the seismic trace was deconvolved.

Deconvolution of the wavelet is, therefore, the convolution of
the wavelet with its inverse. The inverse filter when convolved with
a seismogram extracts the impulse response from the medium,
that is, it retrieves the reflectivity function.

Wiener-Levinson deconvolution

The conventional Wiener-Levinson method used to deconvolve
a wavelet is also known as minimum phase deconvolution. The
polynomials C(Z) whose roots in the complex (Z) plane are
outside the unit radius circle are called minimum phase. When
the shape of the wavelet is not known (most common case), the
inverse filter is calculated using the statistical method of least
squares (Yilmaz, 1987). This method has three basic steps:

(i) estimating the coefficients of the autocorrelation function
(ACF),

(ii) obtaining the Wiener-Levinson (WL) inverse filter, and

(iii) applying the filter(s) to the seismic(s) trace(s) by convolu-
tion (ct ∗ xt ) (deconvolution).

In the WL method, the inverse filter is obtained by solving the
normal equations. Such filters are causal ct , t = 0, . . . , N ,
and minimum phase (Ulrych & Treitel, 1991) so that they can
be the inverse of minimum phase wavelet since only these have
causal inverse (Robinson, 1967). Consequently, the WL method
basic assumption is that the wavelet of the seismic(s) trace(s) is
minimum phase.

Another limitation of WL method is associated with the FAC
used to obtain the inverse filter. Considering that the wavelet is
not available, its autocorrelation is estimated directly from the
seismic(s) trace(s) that needs to be deconvolved. In this case
trace FAC coefficients, Rxx(t), represent a good estimate of the
FAC wavelet, Rpp(t), only when the reflectivity function, e(t) is
represented by a random series that does not contribute (or in-
terferes) with the inverse filter. Only then, at least theoretically,
the FAC estimated directly from the seismic traces is a good esti-
mate of the FAC wavelet (Robinson & Treitel, 1982; Yilmaz, 1987;
Leinbach, 1993; Porsani & Ursin, 1998).

Wiener-Levinson filter

The WL filter is usually obtained by the least square method.
Using the linear predictive model to represent the seismic trace
xt , we can write:

x̃t = ã1xt−1 + ∙ ∙ ∙ + ãN xt−N (3)

where the prediction error (or residue) is et = xt − x̃t and also
given by:

et = xt − ã1xt−1 + ∙ ∙ ∙ + ãN xt−N (4)

This equation can be represented in matrix form:

et =
[
xt xt−1 ∙ ∙ ∙ xt−N

]









1
c̃1
...
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(5)

when c̃ j = −ã j , the matrix for a filter with N = 3 coeffi-
cients is:
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(6)

The quadratic form obtained by the summation of the squared
residuals

∑
i e2

i = Q(c̃) can be minimized with respect to
c̃ j , j = 1, . . . , N parameters, resulting in a normal equation
system (NEs) shown below as an enlarged matrix,
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...
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. . .
. . . r−1
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1
c̃1
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c̃N









=









Ec̃,N

0
...

0









(7)

where Ec̃,n is the total sum of minimized squared residuals and
rk is the coefficient k of the seismic trace FAC.

rk =
∑

xt xt+k . (8)

The WL method yields good results based on the following
assumptions: (i) the wavelet is minimum phase, (ii) the sig-
nal/noise ratio is high and, (iii) the reflectivity function is random.
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The Wiener-Levinson minimum phase wavelet

Once the WL filter is causal (see Eq. (7)) and minimum phase
(Ulrych & Treitel, 1991), the corresponding inverse polynomial
P̃(Z) = 1/C̃(Z) is also minimum phase and causal. Con-
sequently, the minimum phase wavelet can be obtained directly
and in a numerically stable way by the method of polynomial divi-
sion. This is a simple method where the minimum-phase wavelet
coefficients { p̃ j } are calculated by retro-substitution, from the
smallest to largest indices, since the system is lower triangular,
as shown below.













1 0 . . . . . . 0

c̃1 1 0
. . .

...

c̃2 c̃1 1
. . .

...
...

...
...

. . . 0
0 c̃N . . . c̃1 1
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=















1
0
...
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...

0















. (9)

Varimax Norm

The varimax norm was introduced by Wiggins, 1978. He used
the varimax norm along the minimum entropy deconvolution in
order to separate the components of a signal formed by the con-
volution of wavelet with the reflectivity function. The varimax
norm has been used by other researchers to evaluate the quality of
the deconvolution (Ooe & Ulrych, 1979; Levi & Oldenburg, 1982;
Ulrych & Walker, 1982). It measures the simplicity of a signal; the
lower the number of wavelets distributed along the seismic trace,
the greater the varimax norm value.

The mathematical equation used to calculate the varimax
norm is given below.

V (e) =

∑
i=1 e4

i
( ∑

i=1 e2
i

)2
. (10)

For a single wavelet, the varimax norm gets its maximum
value of 1. If the result of the deconvolution is sparse/scattered
and represented by many zeros, the trace is simple and varimax is
has its greatest value. Figures 1a to 1d show scattered signs with
one, two, four and eight wavelets, respectively.

Figure 3 shows varimax norm values for the four signals dis-
played in Figure 2.

PHASE SHIFT OPERATORS

The frequency response of an all-pass filter equals 1 at all fre-
quencies (Claerbout, 1985; Regalia et al., 1988; Reddy & Swamy,

1988; Lang, 1998) where:

|A(eiω)| = 1 . (11)

Equation (11) is valid for all ω, the filter transfer function con-
tains all poles and zeros in reciprocal conjugate pairs (Papoulis,
1977; Denbig, 1998; Oppenheim et al., 1996).

Considering A(Z) as an all-pass filter of real coefficients,

A(z) =
Z−M D(Z−1)

D(Z)
. (12)

The polynomial numerator is obtained from the denominator
by reversing the order of the coefficients, as an example:

A(z) =
a2 + a1 Z−1 + 1Z−2

1 + a1 Z−1 + a2 Z−2
. (13)

All-pass operator using the roots of the WL filter

Consider C̃(Z) the Z transform (Oppenheim et al., 1996) of the
Wiener-Levinson filter. The polynomial C̃(Z) has all its roots
with magnitude greater than one or, in the complex plane all roots
are located outside the unit radius circle (Fig. 4). Considering
order M , it is possible to divide the M roots into two subsets
of a α and β such that α + β = M . We can thus express as the
product of these two polynomials,

C̃(Z) = α F(Z)βG(Z) (14)

where,

α F(Z) = 1 + f1 Z + ∙ ∙ ∙ + fM−β Z M−β

βG(Z) = 1 + g1 Z + ∙ ∙ ∙ + gβ Zβ
(15)

and, since C̃(Z) is minimum phase, the α F(Z) and βG(Z)

are also minimum phase.

Obtaining the Mixed-Phase Filter

Using equations (15), it is possible to write the polynomial for the
mixed-phase filter as follows:

C(Z) = α F(Z)βG(Z−1)Zβ . (16)

Note that the term β represents the maximum phase causal
polynomial.

βG(Z−1)Zβ = gβ + ∙ ∙ ∙ + g1 Zβ−1 + 1Zβ . (17)

Using the equations (14) and (16) we can write the equation
for the polynomials associated with minimum and mixed-phase
filters,

C(Z) = C̃(Z)
βG(Z−1)Zβ

βG(Z)
. (18)
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Figure 2 – Examples of discrete signals used to calculate the varimax norm. A single wavelet
in (a) and two, four and eight wavelets for (b), (c) and (d), respectively.

Figure 3 – Varimax norm values versus the signals represented in Figure 2.
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Figure 4 – Diagram in the complex Z -plane showing the roots of a minimum
phase polynomial C(Z).

We notice that the above equation yields the mixed-phase fil-
ter from the WL filter and a subset of roots estimated from the
WL filter. Thus we have β roots inside the unit radius circle, as
illustrated in Figure 5.

Figure 5 – Diagram in the complex Z -plane showing the roots of a mixed-phase
polynomial C(Z).

Obtaining the Mixed-Phase Wavelet

The inverse of equation (18) yields the expression for calculat-
ing mixed-phase wavelet from the WL filter and some roots of
the WL filter.

P(Z) = P̃(Z)
βG(Z)

βG(Z−1)Zβ
. (19)

With the filter WL C̃(Z) and a β subset of its roots, equa-
tions (18) and (19) can be used to get the inverse filter and the
mixed-phase wavelet related to it.

Equations (18) and (19) are particularly important because
the all-pass operator can be generated with roots calculated from
the WL filter, which can be obtained simply for a finite number of
coefficients (see Eq. (7)). For purposes of practical implementa-
tion of the algorithm we: (i) calculate the WL filter, (ii) calculate
its roots and (iii) modify its phase through all-pass operator as
shown in equation (18).

Solving the optimization problem

Considering, for example, that we have a total of 25 roots (M =
25) available for generating mixed-phase filters, of which 10 pairs
are conjugate complex roots and 5 real roots, the total mixed-
phase filters that can be generated is equal to 215 = 32, 768. To
determine the optimal filter from a universe of tens of thousands
of possibilities implies a considerably high computational cost,
since to evaluate filter performance, it is necessary to convolve
with the panel of seismic traces under study. It is therefore de-
sirable to have an optimized method for efficient selection of the
optimum inverse filter.

Equation (18) yields mixed-phase filters from estimated or ar-
bitrated roots of the minimum phase wavelet or WL inverse filter.

In the optimization problem proposed, the inverse filters
C(Z) are built from all-pass operators. The all-pass operators
are responsible for reversing the subset of available roots into the
unit circle. The binary condition of a particular root to be either
outside or inside the unit circle makes the optimization problem
suitable to be solved using a Genetic Algorithm (GA).

The optimization problem can be formulated as follows:

• A total of α roots is available (real or complex conjugate
pairs of roots) greater than 1, that is, complex roots outside
the unit circle.

• β subsets roots are extracted and used in equation (18)
to create the all-pass operator that is used in the WL filter
phase shift.

• The mixed-phase filters are generated and applied to the
seismic data by convolution.

• Evaluation of filter performance is measured by the vari-
max norm.

• The GA described in the next section is used to optimize
the process of choosing the optimal filter.

• If desired, at the end of the process, once the optimal in-
verse filter is known, its inverse can be used in equation
(19) to estimate the seismic wavelet.
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THE GENETIC ALGORITHM

Genetic Algorithms (GAs) first pioneered by John Holland in 1975
were published in his book “Adaptation in Natural and Artificial
Systems” as a method for optimizing nonlinear systems (Holland,
1975). The GAs basic concept is designed to simulate processes
necessary for evolution, specifically those that follow the princi-
ples first laid down by Charles Darwin evolution theory and in-
tegrate the concepts of genetics and mechanisms that govern the
reproduction of living organisms in a given population.

The GAs work with a population of individuals (models) in
order to generate new individuals with improved characteristics
over the generations. In the proposed optimization problem, indi-
viduals are the filters, which represent the inverse of the wavelet
you want to collapse or reverse/invert.

The number of individuals in the population is chosen de-
pending on the difficulty of the problem to be solved. If the num-
ber of individuals is small, the search universe may be insufficient
and non-representative. On the other hand, with a very large num-
ber of individuals the required computing time can become un-
feasible. Three types of coding are used most frequently: binary,
Gray and real encoding.

The parameters are typically encoded in binary strings, us-
ing sets of numbers 0 and 1 to represent the variables (Goldberg,
1989). The Gray encoding uses binary encoding but it keeps a
small perturbation rate in the parameters. Last, the real encoding
works directly with real numbers; however, it makes genetic infor-
mation exchange methods more complex.

The all-pass operators are responsible for reversing into the
unit circle the subset of roots arbitrated or estimated by the WL
filter. The binary state of a particular root being either inside or
outside the unit circle can be conveniently represented by a bi-
nary string. Thus each all-pass operator, and consequently, each
inverse filter, is associated with a binary string.

With the real roots, {zr, j }, j = 1, . . . , ω and the complex
conjugate pairs of roots, {zc, j }, j = 1, . . . , γ the polynomials
of the first and second degree of real coefficients can be obtained,

ω B j (Z) = 1 −
1

zr, j
Z , j = 1, . . . , ω ,

γ B j (Z) =
(

1 −
1

zc, j
Z
)(

1 −
1

z∗
c, j

Z
)

,

j = 1, . . . , γ .

(20)

Each polynomial, ω B j (Z) or γ B j (Z), can be associated
with one byte of a binary string, Ji , of random bytes as shown in
Table 1.

Table 1 – Binary table showing the population of individuals
(filters) used to create the all-pass operators.

ω B1(Z) . . . ω Bω(Z)

J1 0 . . . 1

J2 1 . . . 0
...

... . . .
...

JN pop 1 . . . 1
γ B1(Z) . . . γ Bγ (Z)

J1 1 . . . 0

J2 1 . . . 0
...

... . . .
...

JN pop 0 . . . 1

The minimum phase polynomials β Bi (Z) used for the in-
verse filter are obtained from the product of the polynomials as-
sociated with non-zero bytes, along each row of Table 1,

β Bi (Z) =
ω∏

j=1

ω B j (Z)J j

γ∏

j=1

γ B j (Z)J j (21)

where J j is equal to zero or 1.

Application of genetic operators

The genetic operators are necessary to diversify the popula-
tion maintaining the adaptation traits acquired by previous gen-
erations. In most cases, GAs use three operators: selection,
crossover and mutation.

Selection

This genetic operator, also called reproduction, selects the indi-
viduals that will undergo crossover and mutation. Similar to the
process of natural selection, the fittest individuals are more likely
to be chosen, according to merit assessment (varimax norm).

Crossover

The goal of crossover is to permute genetic material between pairs
of previously selected individuals. After the pairs are formed, the
individuals undergo the crosslinking process, which may or may
not occur, according to a given crossover probability. This genetic
operator is largely responsible for creating new individuals; simi-
lar to what happens in nature, where most couples have children.

The GAs are characterized by high implementation flexibility,
which also applies to the crossover process that can be done in
different ways. Table 2 shows the crossover with chromosomes
permutation.
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Table 2 – Crossover process with permutations of genetic content.

parents 11001 crossover 110〈01〉 children 11011

parents 01111 crossover 011〈11〉 children 01101

Mutation

Mutation prevents premature convergence. Mutation is under-
stood as the insertion of new genetic material in the population.
This process, just as the crossover, may or may not occur ac-
cording to a given probability of mutation (pmut). This probability
should be very low, from 0 to 5%, so that the pursuit of the opti-
mum individual is not purely random. This is analogous to nature
behavior, where mutations and abnormalities are rarely seen. As
in crossover, mutation may be accomplished in many ways, one
of which is shown in Table 3.

Table 3 – Mutation process showing the random exchange of
one byte of the binary string associated with the model parameter.

mutation 1〈1〉001 son 10011

Figure 6 shows the GA flowchart and the performance of the
three genetic operators.

Figure 6 – Flowchart of the Genetic Algorithm (GA) showing how genetic oper-
ators generate new populations.

RESULTS USING THE ALL-PASS OPERATOR FROM THE
WIENER-LEVINSON FILTER

The WL filter has all roots necessary to deconvolve the minimum
phase wavelet and any other that has the same FAC. This approach
is considerably simpler than that described by Porsani & Ursin,
(2000) and Ursin & Porsani (2000). The approach proposed in
this work is simpler because it uses directly the WL filter of N
coefficients. The examples presented in this paper use N = 25.
Obtaining the WL filter and its roots is fairly simple.

The procedure consisted of the following steps:

• The WL inverse filter of 25 coefficients and its minimum
phase wavelet were calculated.

• Equation (18) was used to obtain the all-pass operators.

• The GA was used to obtain the optimal inverse filter. The
parameters used were: number of generations Ng = 30,
the number of models (strings) Nm = 50 and mutation
probability pm = 0.2.

• The trace(s) of the desired seismic section were/was de-
convolved.

• Equation (19) was used to estimate the seismic wavelet.

To test the new approach, the algorithm was initially applied
on synthetic data to deconvolve the mixed-phase wavelet, fol-
lowed by synthetic seismic trace and finally real seismic data. The
results were compared with those obtained with the conventional
WL deconvolution method.

Deconvolution and estimation of wavelet

Figures 7 and 8 show the result of the mixed-phase wavelet
deconvolution.

Figure 7a shows the synthetic mixed-phase wavelet used.
Figures 7b and 7c show the estimated minimum and mixed-
phase wavelets and Figure 7d shows the optimal mixed-phase fil-
ter. There is good similarity between the estimated mixed-phase
wavelet and the original wavelet of Figure 7a.

Figure 8 shows the varimax norm values calculated for over
30 generations of the GA. The three curves represent the max-
imum, average and minimum values for the 50-model popula-
tion. It is noteworthy that the average convergence curve quickly
approaches the maximum curve, indicating that over generations
the population is becoming more and more homogeneous around
the best model (optimal filter).

Revista Brasileira de Geof́ısica, Vol. 31(1), 2013



“main” — 2013/11/27 — 14:23 — page 67 — #9

LEDESMA DC & PORSANI MJ 67

Figure 7 – Wavelet deconvolution and estimation. The mixed-phase wavelet in
(A), minimum and mixed-phase wavelets in (B) and (C), the optimal mixed-phase
filter in (D), and the result of the original wavelet deconvolution with the inverse
filter estimated in (E).

Figure 8 – GA performance in synthetic wavelet deconvolution shown in Fig-
ure 7A. Maximum, medium and minimum varimax norm values of the population
over 30 generations. Ascending curves illustrate GA convergence behavior.

Figure 9 – Synthetic trace deconvolution. Mixed-phase wavelet (A), pseudo-
random reflectivity function (B) and synthetic seismic trace (C). Deconvolution of
minimum (D) and mixed-phases with optimal filter (E).

Figures 10A and 10B show the estimated minimum and
mixed-phase wavelet, respectively. Good similarity is observed
between the estimated mixed-phase wavelet and the original
wavelet (Fig. 10A) used to generate the synthetic trace. Figure
10C shows the optimal inverse filter obtained with GA.

Figure 10 – Wavelet and optimal filter estimates. Minimum phase wavelet (A).
Mixed-phase wavelet (B) and its corresponding optimal inverse filter (C).

Figure 11 shows the GA performance to obtain the optimal
filter that deconvolves the synthetic trace of Figure 10. The figure
illustrates the evolution of the maximum, average and minimum
varimax norm values, calculated at the end of each of the 30 GA
generations. The same converging behavior towards increasing
varimax values is observed for all three curves.

Figure 11 – GA performance in the estimation of the optimal mixed-phase filter
that deconvolves the synthetic trace of Figure 10C.

Deconvolution of 2D seismic sections

Figure 12 shows a post-stack seismic marine section of Jequi-
tinhonha Basin. A single filter is calculated and applied in the
deconvolution of the entire seismic section, to do so the follow-
ing procedure was followed:
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Figure 12 – Post-stack marine seismic section of the Jequitinhonha Basin showing areas 1 and 2 chosen to illustrate the method.

• The window of interest where the varimax norm will be
evaluated is defined.

• The mean autocorrelations for the traces within the window
are calculated.

• The WL filter of N = 25 coefficients is calculated.

• The optimal inverse filter is calculated using the GA and
the section is deconvolved.

• The wavelet is estimated by the inverse of the optimal filter.

Figure 12 shows the selected areas 1 and 2 chosen to illustrate
the method. Figures 13A and 14A show the original data in greater
detail. Figures 13B and 14B show the minimum phase WL de-
convolution results. Figures 13C and 14C show the mixed-phase
deconvolution results using the optimum filter obtained with
the GA.

The mixed-phase deconvolution results show some improve-
ment in the temporal resolution and the lateral continuity of re-
flections, compared to the results obtained with the classical min-
imum phase deconvolution method or WL method.

Figure 15 shows the average amplitude spectrum of original
and deconvolved seismic sections. It should be noted that the
all-pass operator modified only the WL phase filter, leaving the
spectral amplitude similar to the result of the mixed-phase filter
deconvolution.

Deconvolution results on 3-D seismic volume

The method was applied to the 3-D seismic section available in the
OpendTect software, in the Netherlands Offshore F3 Block. Fig-
ure 16 shows the seismic section used in the test method.

Figure 17 shows the results of the mixed and minimum phase
deconvolution on a real seismic trace, extracted from Figure 16
and shown in Figure 17A. Figures 17B and 17C show the results
of the WL and mixed-phase deconvolution using the optimal filter.
It is noteworthy the improved definition of the reflections obtained
with the mixed-phase deconvolution approach.

Figures 18A, 18B and 18C show, respectively, the estimated
minimum and mixed-phase wavelets and, the inverse mixed-
phase filter used to deconvolve the trace in Figure 18A.

Figure 19 shows the result of deconvolution on a panel of
traces extracted from the 3D volume (Fig. 16). The deconvolved
seismic section is shown using the shaded relief feature (Barnes,
2003) of the SU (Seismic Unix) software. Some improvement in
the resolution of the individualized thin layers, most visible in the
lower left section, can be observed.

CONCLUSIONS

We present a new approach to the deconvolution of a wavelet. The
method uses the Wiener-Levinson filter to estimate the wavelet
related roots that should be inverted. The roots of the polyno-
mial associated with the WL filter allow generating a set of possi-
ble mixed-phase filter that can be implemented and tested. These
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Figure 13 – Area 1 deconvolution results. Original section (A), WL deconvolution result (B) and optimal mixed-phase filter deconvolution (C).

Figure 14 – Area 2 deconvolution results. Original section (A), WL deconvolution result (B) and optimal mixed-phase filter deconvolution (C).

Figure 15 – Average amplitude spectra of the original and deconvolved data for Area 1.
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Figure 16 – 3-D seismic data/section, Netherlands Offshore F3 Block, using OpendTect application.

Figure 17 – Original seismic trace (A), WL deconvolution (B) and optimal mixed-phase filter deconvolution (C).

Figure 18 – Minimum and mixed-phase wavelets (A) and (B), respectively, and optimal mixed-phase filter (C).
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Figure 19 – Seismic section with reservoir zone. Original section (A), WL deconvolution (B) and mixed-phase deconvolution (C).
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filters are generated through all-pass operators that modify only
the filter phase and a genetic algorithm is used to choose the opti-
mal filter. Once the best filter is chosen, the seismic wavelet is ob-
tained. The optimal mixed-phase filters were tested on synthetic
and real data showing the effectiveness of the new approach when
the phase characteristics of the wavelet are not known.

The deconvolution method using all-pass operators is less
computationally efficient than the conventional WL method; how-
ever, this disadvantage is compensated with the use of multipro-
cessors. The results indicate that the new approach for deconvo-
lution of seismic data can be used to improve the identification
of reflected seismic events and show in greater detail the earth-
quake-stratigraphic and structural features of interest to the ex-
ploration and study of hydrocarbon reservoirs.
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