
�

�

“main” — 2014/3/22 — 12:18 — page 347 — #1
�

�

�

�

�

�

Revista Brasileira de Geof́ısica (2013) 31(3): 347-363
© 2013 Sociedade Brasileira de Geof́ısica
ISSN 0102-261X
www.scielo.br/rbg

GRAV MAG PRISM: A MATLAB�/OCTAVE PROGRAM TO GENERATE GRAVITY AND
MAGNETIC ANOMALIES DUE TO RECTANGULAR PRISMATIC BODIES

Alessandra de Barros e Silva Bongiolo, Jeferson de Souza,
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ABSTRACT. In this paper we present the GRAV MAG PRISM code to generate synthetic gravity and magnetic anomalies from rectangular prismatic bodies with

arbitrary dimensions, densities and magnetizations. The code has been developed in a MATLAB�/OCTAVE environment and provides a graphical and a numerical

output, as well. The data are written in xyz (ASCII) format and can be contaminated with noise. We also summarize the theory and show some examples of the
program’s applications. The code can be used for research and educational purposes and is freely-distributed by the authors on request.
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RESUMO. Neste trabalho é apresentado o programa GRAV MAG PRISM, o qual gera anomalias de gravidade e magnéticas sintéticas a partir de corpos prismáticos

retangulares com dimensões, densidades e magnetizações arbitrárias. O código foi desenvolvido em ambiente MATLAB�/OCTAVE, com saı́das gráficas e numéricas.
Os dados são escritos no formato xyz (ASCII) e podem ser contaminados por ruı́dos. Neste trabalho também é apresentado um resumo da teoria e alguns exemplos

de aplicação do programa. O código acompanha um tutorial e pode ser utilizado para fins educacionais e de pesquisa, sendo de distribuição gratuita através de
solicitação aos autores.

Palavras-chave: anomalias gravimétricas e magnéticas, modelagem de campos potenciais, programa.
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INTRODUCTION
Potential fields anomalies resulting from bodies of known geo-
metry play a fundamental role in the interpretation of geophysical
data (Bhattacharyya, 1964; Plouff, 1976). Of particular impor-
tance are the anomalies generated by prismatic bodies, as many
geological structures of interest may be approximated by 3D
models. Thus, the anomalies produced by such bodies provide
essential information for geophysical modeling, and also for the
appraisal of interpretation methods of potential fields data, such
as those of enhancement (Nabighian, 1972; Cordell & Grauch,
1985; Miller & Singh, 1994; Cooper & Cowan, 2006, 2008; Fer-
reira et al., 2010, 2013). Moreover, important properties of sub-
surface structures can be estimated by fitting (via least square,
for instance) of real data to anomalies generated by prismatic
structures. From the 1960’s onwards, the introduction of digital
computers made it feasible to use programs capable of gener-
ating anomalies from three-dimensional bodies (Talwani, 1965;
Plouff, 1976; Sharma, 1997). Since then, different methods of
calculation have been proposed to address the theme (Singh &
Guptasarma, 2001). The expression of the anomaly produced
by prismatic bodies is obtained from integration of the equa-
tions to the potential fields. In the case of the magnetic field,
the equation that represents the anomaly is derived from the
Maxwell equations, while for the gravitational field the equations
are based on Newton’s law of universal gravitation.

There are commercial and freely-distributed programs that
generate models of gravity and magnetic anomalies, each one
with its potentialities and drawbacks. Among the freely-distributed
programs, Potensoft stands out (Arisoy & Dikmen, 2011), in-
tended to processing, modeling and mapping potential fields
data. This study will present a freely-distributed code for gener-
ating gravity and magnetic anomalies from rectangular prisms.
The program was developed in MATLAB�/OCTAVE language to
generate geophysical anomalies from vertical prismatic bodies
with arbitrary dimensions, density and susceptibility. The anoma-
lies are obtained from a sequence of data provided by the user,
and it is possible to insert various prisms, with different char-
acteristics in the same area. The program also offers the pos-
sibility to contaminate the data with noise and to add remanent
magnetization. The code, which can be used for teaching and
research purposes, allows graphic output and data recording in
ASCII format, enabling the results to be used in other geophysical
modeling programs. Among the principal characteristics of the
code which as a whole distinguish it from other codes with the
same function, we may highlight:

i) it is a freely-distributed and open code;

ii) the source code is divided into blocks and the various
procedures used to run the program are performed by sep-
arate functions, all preceded by comments, making mod-
ifications to the program easier, according to the specific
needs of the user;

iii) it provides automatic numerical and graphic outputs;

iv) it uses a fast algorithm, allowing the generation of dense
meshes and models with many prisms;

v) it has a tutorial which guides the user in running the
program in its various forms; and

vi) several examples of application are supplied.

We shall present first a review of the theory of gravitational and
magnetic potentials, followed by a description of how the program
works and a tutorial with some examples of application. The last
section highlights some of the potential uses of the program.

THEORY
This section will develop the formalism to deduce the ex-
pressions of the gravitational and magnetic fields of prismatic
bodies, starting from the fundamental physical laws. The pro-
cedures adopted, for both the gravitational and magnetic cases,
were based principally on the works of Talwani (1965), Plouff
(1976) and Bhaskara Rao & Ramesh Babu (1991), although other
approaches are also found in the literature (Hjelt, 1972, 1974).

The notation used will be as follows: letters in bold type rep-
resent vector magnitudes or matrixes, the symbol “·” indicates
internal (or scalar) product, and the symbol “×” indicates ex-
ternal (or vector) product, the nabla operator (represented by the
symbol “∇”) and ∇ followed by “·” and “×” indicate gradient,
divergent and rotational, respectively.

The gravitational attraction of a prism
Newton’s law of universal gravitation attraction between two
bodies is directly proportional to the product of their masses
and inversely proportional to the square of the difference be-
tween them.

In Cartesian coordinates, the magnitude of the force of attrac-
tion of a particle of mass m at a point Q = (x′, y′, z′), on a
proof massm0, located at point P = (x, y, z), is given by:

F = γ
mm0
r2
, (1)

where r, given by

r =
[
(x− x′)2 + (y − y′)2 + (z − z′)2] 12 ,
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is the distance between the particles and γ is the constant of
universal gravitation, whose value in the International System
(SI) is γ = 6,67 × 10−11m3kg−1s−2. According to Newton’s
second law, the force that acts on the proof mass is given by
F = m0a. Making this latter equal to the law of universal
gravitation, we obtain the expression for gravitational attraction,
(or gravitational acceleration) produced by massm on the proof
particle

g(P ) = −γm
r2
r̂, (2)

where r̂ is the unit vector oriented in the direction of massm at
observation point P , which, in Cartesian coordinates, is given by:

r̂ =
1

r

[
(x− x′ )̂i+ (y − y′)ĵ + (z − z′)k̂]. (3)

The negative sign in Eq. (2) follows the convention adopted by
Blakely (1996), considering that r̂ is directed from the source to
the observer, in the direction opposite to the field. Given that g rep-
resents force divided by mass, its unit is in m

2

s in the SI. The geo-
physical literature commonly uses the unit mGal, in which 1 mGal
= 10−3 Gal and 1 Gal = 1 cm.s−2. Therefore, the conversion
factor of m

2

s to mGal is 1 mGal= 10−5 m.s−2.

The potential field g is irrotational (∇×g = 0) and therefore,
according to the Helmholtz theorem, (Blakely 1996), the acceler-
ation of gravity is a conservative field that may be represented as
the gradient of a scalar potential:

g(P ) = −∇U(P ) (4)

where
U(P ) = γ

m

r
, (5)

with U(P ) the Newtonian (or gravitational) potential, at point P .
The gravitational potential obeys the principle of superposition,
or rather that, the gravitational potential of a collection of masses
is the sum of the gravitational attraction of each individual mass.
Therefore, the net force on a proof mass is simply the vector sum
of the forces due to all the masses present in the space close
to the proof mass. The principle of superposition may be applied
to approximate the gravitational attraction of a body of arbitrary
geometry, dividing it into elements of mass Δm. If the density
of an element of body volume is ρ = Δm

Δv , then an element
of mass may be expressed as Δm = ρΔv. The approximate
value of U due to the body is the sum of contributions of each
one of theN elements of massΔmi of the body, or:

U(P ) ≈ γ
N∑
i=1

Δmi
ri
. (6)

Figure 1 – Variables used in calculation of the gravitational attraction at point
P of coordinates x, y and z, due to an element of volume (dv), situated at a
distance r from P , in the direction of r̂. The solid line represents the outline of
the body of density ρ.

The exact value will be found at the limit of continuous distribu-
tion of the mass, that is to say, Δm → dm, where dm =
ρ(x, y, z)dv, and ρ(x, y, z) is the distribution of density in the
body (Fig. 1). Replacing Δm with dm in Eq. (6), and the sum
by the integral, we shall have:

U(P ) = γ

∫
V

dm

r
= γ

∫
V

ρ(Q)

r
dv. (7)

For a distribution of constant density, we shall have

U(P ) = γρ

∫
V

1

r
dv. (8)

Integration must be performed on V , the volume effectively
occupied by the body. Here, P represents the point of observa-
tion, Q the location of the element of mass and r the distance
between P andQ. The density ρ in the SI is measured in kg/m3.

We shall consider points of observation located outside the
sources, which are of interest for geophysics. If the function of
the value integrated and its derivatives are continuous and finite
within the region of integration, the gradient in Eq. (4) can be
moved inside the integral. For example, the partial derivative of
U in relation to z is:

∂U(P )

∂z
= −γp

∫
V

∂

∂z

(
1

r

)
dv

= γρ

∫
V

(z − z′)
r3

dv.

(9)

Analogous expressions are obtained for the variables x and y.
Thus, to obtain g we must then perform the above integration on
the volume of the body under consideration. For bodies with dif-
ferent geometries, it may be convenient to use separate systems
of coordinates, and depending on the type of problem, it may be

Brazilian Journal of Geophysics, Vol. 31(3), 2013
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appropriate to transform the integral of volume into an integral of
surface or line, through the theorems of vector calculus.

In the case of a prismatic body, it is more suitable to resolve
the problem in Cartesian coordinates, where dv = dxdydz.
Thus, the vertical component of potential field g, gz = ∂U/∂z ,
is obtained by:

gz = γρ

∫ a2
a1

∫ b2
b1

∫ z2
z1

z dz dy dx

r3
(10)

where ai, bi, zi are the x, y, z coordinates of the vertices of
the prism.

A solution of this integral for the case of prisms with poly-
gonal horizontal sections was presented by Plouff (1976). For
the case of a rectangular prism whose edges are aligned with
the system of coordinates, the solution of the integral in Eq. 10
is written as:

gz = γρ
2∑
i=1

2∑
j=1

2∑
k=1

s

[
zk tan

−1 aibi
zkRijk

− ai ln(Rijk + bi)− bi ln(Rijk + ai)
] (11)

where
Rijk =

√
a2i + b

2
j + z

2
k (12)

and

s = sisjsk with s1 = −1 and s2 = +1 . (13)

The GRAV MAG PRISM program uses this formula to calculate
the vertical component of gravitational attraction generated by a
prism with arbitrary dimensions and density. The code also al-
lows the generation of prisms inclined by an angle θ in relation to
Geographical North (axis y), positive in a clockwise direction.

The magnetic field of a prism
The magnetization of a body may be induced by an external field.
The induced magnetization disappears when the material is no
longer subject to the magnetic field, although certain ferrous-
magnetic materials possess the capacity to maintain the magneti-
zation, even in the absence of an external field. This magnetization
is called permanent, remanent or remaining. Thus, in geophysics,
the total magnetization of a rock is considered to be the vector
sum of the induced magnetization and remanent magnetization:

J = Ji + Jr

= χH + Jr
(14)

where J is the total magnetization vector, Ji is the induced mag-
netization vector, Jr is the remanent magnetization vector, χ is
the magnetic susceptibility andH is the magnetic intensity.

The expression for the magnetic field generated by a magne-
tized prism is obtained on the basis of Maxwell’s equations for
the magnetic field. The magnetic field is described by Ampère’s
law (Reitz, et al., 1982):

∇×H = I + ∂D
∂t
, (15)

which relates the rotational of magnetic intensity H to the sum
of the density of current I with Maxwell’s displacement current
∂D/∂t, besides the relation

∇ · B = 0 (16)

which expresses the non-existence of magnetic monopoles or,
equivalently, the fact that the lines of magnetic field B are always
closed.

The magnetic intensity is related with the magnetic field in
the International System (SI) by

H =
1

μ0
BJ (17)

where J = χH is the magnetization and μ0 = 4π 10
−7N
A2

is the magnetic permeability of the vacuum. If the magnetization
varies linearly with magnetic intensity (as in the majority of rel-
evant situations in geophysics), the magnetic field is related to
the magnetic intensity by B = μH , where μ is the magnetic
permeability of the medium. Replacing the equation for B in
Eq. (17), we obtain the relation between the permeability and the
magnetic susceptibility:

μ = μ0(1 + χ). (18)

Field H may be understood as the quantity that describes how
field B is modified by the magnetization J of a material (Lowrie,
2007). At present, field B is considered the most important mag-
nitude and it is the quantity effectively measured in geomagnetic
surveys. The unit of the magnetic field B in the SI is the Tesla
(T), while the units of magnetic intensity H and magnetization
J are given in A/m (Ampère/meter). Magnetic susceptibility is
non-dimensional.

In the absence of currents and if the dielectric properties of
the medium can be ignored (which is a good approximation to
the majority of geophysical applications), Eq. (15) becomes:

∇×H = μ∇×B = 0. (19)

Revista Brasileira de Geof́ısica, Vol. 31(3), 2013
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This expression is of the utmost importance in geophysics, be-
cause as the rotational of a gradient is equal to zero, the magnetic
field may be described as the gradient of a scalar potential ϕ:

∇× B = ∇×∇ϕ = 0⇒ B = ∇ϕ. (20)

Considering that the magnetic field can be described as the gra-
dient of a scalar potential (outside the causative sources), this
brings in huge simplifications for magnetic modeling and many
of the mathematical operations performed on real data have their
validity conditional upon this fact.

To obtain an expression for the magnetic field due to a mag-
netized body, we must add up the contributions of each moment
of atomic magnetic dipole of the material for the total field. The
net total magnetic moment depends on the degree of alignment of
these magnetic moments, which is different for different types of
magnetization.

The magnetic scalar potential of a loop of current (magnetic
dipole) is given by:

ϕi =
m ·R
R3

(21)

where m is the moment of magnetic dipole, R = xî + yĵ
+ zk̂ is the distance to the point of observation and R = |R|
(Talwani, 1965; Reitz et al., 1982). The magnetization is the sum
(vector) of the moments of magnetic dipole of the atoms present
in the body (Fig. 2):

J = lim
ΔV→0

1

ΔV

∑
i

mi. (22)

The magnetic moment of an element of body volume is given
by m = JΔv = JΔxΔyΔz, which, substituted in the
expression for ϕi in Eq. (21), will be:

ϕi =
J ·R
R3
Δv

=
Jx · x− Jy · y + Jz · z

R3
ΔxΔyΔz .

(23)

The magnetic scalar potential generated by the body is the sum of
the magnetic moments of each loop of current of the material:

ϕ =
∑
i

ϕi. (24)

For an infinitesimal volume, we shall have JΔxΔyΔz →
Jdxdydz, and on the limit, when Δv tends to zero, the sum
is transformed into an integral:

ϕ =

∫∫∫
V

J ·R
R3
dxdydz. (25)

Figure 2 – Variables used in calculating the magnetic scalar potential at point
P of coordinates x, y and z, due to an element of volume (dv), situated at a
distance r from P . Ji indicates the magnetization due to an elementary current
(circumferences). The solid line represents the outline of the body.

The expression for the field is then obtained, taking the negative
of the gradient of the potential, B = −Δϕ, or:

B = −∇
∫∫∫

V

J ·R
R3
r dv

= −
(
∂

∂x

∫∫∫
V

ϕdxdydzî+
∂

∂y

∫∫∫
V

ϕdxdydzĴ

+
∂

∂z

∫∫∫
V

ϕdxdydzk̂

)
.

(26)

Supposing that the field is a continuous and derivable function,
the derivative may be displaced to within the integral and the three
components of the magnetic field (Δx,Δy,Δz) are written,
for the case of a rectangular prism, as:

Δx = −
∫ z2
z1

∫ b2
b1

∫ a2
a1

∂

∂x
dxdydz

Δy = −
∫ z2
z1

∫ b2
b1

∫ a2
a1

∂

∂y
dxdydz (27)

Δz = −
∫ z2
z1

∫ b2
b1

∫ a2
a1

∂

∂z
dxdydz

in which the variables a1, bj and zk represent the relative dis-
tances between a vertex of the prism and a point of measurement
of the field, and in this case two vertices are sufficient to define
the body (Fig. 3).

Since the derivative of a sum is the sum of the derivatives,
each component of the field will be given by the sum of three
integrals. Moreover, for the case in which each component of
J is constant, or rather, the magnetization of the field is homo-
geneous, the terms Jx, Jy and Jz may remain outside the
derivation and integration. Thus, for the derivative in x, for

Brazilian Journal of Geophysics, Vol. 31(3), 2013
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example, we shall have

∂

∂x

Jx · x+ Jy · y + Jz · z
R3

= Jx
∂

∂x

x

R3
+ Jy

∂

∂y

y

R3
+ Jz

∂

∂z

z

R3
.

(28)

Analogous relations are obtained for the partial derivatives in y
and z. In this way, the components x, y and z of the field may be
written as:

Δx = JxV1 + JyV2 + JzV3

Δy = JxV2 + JyV4 + JzV5 (29)

Δz = JxV3 + JyV5 + JzV6

where the variables Vn, with n = 1, 2, . . ., 6, represent
integrals of volumes (Talwani, 1965).

Figure 3 – Representation of the model used for calculating the magnetic
anomaly of a prism. The field observed at pointP , with coordinates x, y and z,
is given by the sum of contributions of the elements of volume (dv) in the inte-
rior of the prism. (a1, b1, z1) and (a2, b2, z2) are the vertices of the prism
used in the integral of the volume.

The solutions of the integrals Vn, for the case of a prism
with a polygonal horizontal section were described succinctly by
Plouff (1976). For the case of a rectangular prism with one of the
edges parallel to axis x of the coordinate system, we shall have:

V1 = −
2∑
i=1

2∑
j=1

2∑
k=1

s tan−1
bjzk

aiRijk
,

V2 =

2∑
i=1

2∑
j=1

2∑
k=1

s ln(Rijk + zk),

V3 =

2∑
i=1

2∑
j=1

2∑
k=1

s ln(Rijk + bj),

(30)

V4 = −
2∑
i=1

2∑
j=1

2∑
k=1

s tan−1
aizk
bjRijk

,

V5 =

2∑
i=1

2∑
j=1

2∑
k=1

s ln(Rijk + ai),

V6 = −
2∑
i=1

2∑
j=1

2∑
k=1

s tan−1
aibj

zkRijk

(30)

where

Rijk =
√
a2i + b

2
j + z

2
k, s = sisjsk

with s1 = −1 and s2 = 1. Once the magnetization of the
body is known. Its components are given by:

Jx = J cosD cos I,

Jy = J sinD cos I, (31)

Jz = J sin I,

where J is the module of magnetization J , I is the magnetic in-
clination andD is the magnetic declination. Considering that the
magnetization is only induced (there is no remanent magnetiza-
tion) the magnetic anomaly can be given by (Blakely, 1996):

ΔT ≈ Δx cosD cos I+Δy sinD cos I+Δz sin I (32)

With a view to reducing the time of processing, Kunaratnam
(1981) and Bhaskara Rao & Ramesh Babu (1991) made simplifi-
cations to the formula for calculating magnetic anomalies of rect-
angular prisms. This formula has as a restriction the position of
the point of observation of the field, which must be located at
z = 0. Even though this restriction does not apply to the gravi-
metric case (Eq. 11), it was maintained in the code to keep the
input of data uniform. The expression for the magnetic anomaly
of this model is given by:

ΔT (x, y, 0) = G1 lnF1 +G2 lnF2

+G3 lnF3 +G4F4 +G5F5 .
(33)

The constants Gi are given by:

G1 = J(Mr +Nq); G2 = J(Lr +Np);

G3 = J(Lq +Mp); G4 = J(Nr +Mq); and (34)

G5 = J(Nr − Lp),
where J is the module of the magnetization vector; L,M andN
are the directive cosines of magnetization and p, q, and r are the
directive cosines of the geomagnetic field. If I and D represent
the inclination and declination of the geomagnetic field, respec-
tively, and θ the angle of inclination of the prism in relation to

Revista Brasileira de Geof́ısica, Vol. 31(3), 2013
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Geographical North and positive in the clockwise direction, the
directive cosines of the magnetic field will be given by:

p = cos I cos(D − θ);
q = cos I sin(D − θ); and (35)

r = sin I.

The directive cosines of the magnetization vector are given by:

L = cos I0 cos(D0 − θ);
M = cos I0 sin(D0 − θ); (36)

N = sin I0,

where I0 and D0 are the magnetic inclination and declination.
The expressions for functions Fi of Eq. (33) are listed as

follows:

F1 =
(R2 + α1)(R3 + α2)(R5 + α1)(R8 + α2)

(R1 + α1)(R4 + α2)(R6 + α1)(R7 + α2)
;

F2 =
(R2 + β1)(R3 + β1)(R5 + β2)(R8 + β2)

(R1 + β1)(R4 + β1)(R6 + β2)(R7 + β2)
;

F3 =
(R2 + h2)(R3 + h1)(R5 + h1)(R8 + h2)

(R1 + h1)(R4 + h2)(R6 + h2)(R7 + h1)
;

F4 = tan
−1 α2h2
R8β2

− tan−1 α1h2
R6β2

− tan−1 α2h2
R4β1

+ tan−1
α1h2

R2β1
− tan−1 α2h1

R7β2
+ tan−1

α1h1

R5β2

+ tan−1
α2h1

R3β1
− tan−1 α1h1

R1β1
;

F5 = tan
−1 β2h2
R8α2

− tan−1 β1h2
R6α1

− tan−1 β2h2
R4α2

+ tan−1
β1h2

R2α1
− tan−1 β2h1

R7α2
+ tan−1

β2h1

R5α1

+ tan−1
β1h1

R3α2
− tan−1 β1h1

R1α1
.

(37)

The variables R, α and β, are given by:

R1 =
√
α21 + β

2
1 + h

2
1, R2 =

√
α21 + β

2
1 + h

2
2,

R3 =
√
α22 + β

2
1 + h

2
1, R4 =

√
α21 + β

2
1 + h

2
2,

R5 =
√
α21 + β

2
1 + h

2
1, R6 =

√
α21 + β

2
2 + h

2
2,

R7 =
√
α22 + β

2
2 + h

2
1, R8 =

√
α22 + β

2
2 + h

2
2,

(38)

and
α1 = a1 − x′, α2 = a2 − x′,
β1 = b1 − y′, β2 = b2 − y′.

Variables a and b represent the coordinates of the vertices of the
prisms, as in the gravimetric case. Variables x′ and y′ of the ro-
tated coordinate system are obtained from the non-rotated system
by the following relations:

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ,
(39)

where θ is the rotation angle.
The above equation was implemented in the GRAV MAG -

PRISM code, where the input parameters are the magnetic in-
clination and declination, magnetization and the coordinates
of the vertices of the body. The program generates an output
file in xyz, where the first two columns represent the spatial
coordinates, in meters, and the third column indicates the mag-
netic anomaly in nanotesla (nT).

As advantages of the Bhaskara Rao & Ramesh Babu (1991)
algorithm in comparison with that of Plouf (1976), we may men-
tion speed in the generation of anomalies (as pointed out by the
authors) and ease for inputting the data. The speed of the algo-
rithm may be important when the intention is to generate models
that call for a very dense mesh, or also when we wish to approx-
imate more complex geometrical models through the combina-
tion of prisms. The proposed code displays significantly better
performance when compared, for example, with Potensoft (Arisoy
& Dikmen, 2011), an open code application that also generates
gravity and magnetic anomalies of rectangular prisms.

THE GRAV MAG PRISM PROGRAM

The GRAV MAG PRISM code consists of a principal program
(grav mag prisma.m) and various functions. The program is rich
in comments, allowing the user to make changes to meet his/her
specific needs. This section will make a description of how the
program works.

The initial program runs the following steps, in sequence:

1. Identifies the form chosen for running the program and
reads the input parameters. The program can be run in two
ways: directly on the MATLAB�/OCTAVE terminal or in its
functional form. On the first case, after typing the name
of the program into the terminal, the input parameters are
requested in sequence. On the second, such parameters
are written in a separate file (script). Global input para-
meters are to be furnished (extension of the area, spacing
of the mesh, declination, inclination and magnitude of the
field), the number of prisms and the specific parameters
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for each prism (width, length and thickness, center coor-
dinates, depth of the top, inclination in relation to Geo-
graphical North (axis y) in clockwise direction), magnetic
susceptibility and/or density of the body, and, as the case
may be, the declination, inclination and magnetic inten-
sity of the remanent magnetization. Also to be defined is
the name of the file where the data will be saved in xyz
format. There is also the possibility of contaminating the
data, both gravimetric and magnetic, with artificial noise.

2. Creates the mesh where the fields will be calculated. The
mesh will have the dimensions and spacing chosen by the
user. Its unit of measurement is the meter and its start is
always at the point of the coordinates x = 0 and y = 0,
extending as far as the dimensions supplied by the user.
The user must be aware of the memory capacity of his/her
computer to generate meshes with large volumes of data.
The program works with variables in double precision (the
MATLAB� standard), although the user may define them
with a lower precision if necessary, through an alteration
of the code, this way increasing the storage capacity and
speed of the program.

3. Converts the angles to radians and defines the constants
with units in the SI. To run the program in OCTAVE it is
necessary to uncomment the last lines of the principal
program, related to the function deg2rad, as indicated in
the code itself.

4. Loop on the number of prisms. In each cycle the specific
parameters of each prism are read and the respective fields
calculated. If the user opted to generate more than one
prism, at each cycle the values of the field are added to the
one preceding. The fields are calculated in separate files:
grav.m and mag.m.

5. Upon terminating the loop, the code allows contaminating
the data with zero-mean Gaussian noise. The amplitude
of the noise is inserted by the user in the first step and
the value zero should be introduced if this option is not
desired.

6. The figures are generated, two for each field: one as a plan
and the other as a mesh, plus a fifth figure indicating the
location and dimensions of the prism(s).

7. The data is converted to xyz format. Up to this point, all
the variables are in the matrix format. If the user wishes to
record the data in this format, he/she must do so before the
sequence of commands that converts the data to the xyz
format, as indicated in the code.

8. The data are grouped and subsequently recorded. We use
three decimal places, an option that can easily be changed.

9. The grav and mag functions that calculate the gravita-
tional and magnetic fields respectively, are in separate
files. This calculation makes use of various auxiliary func-
tions, besides the rotat function, employed to rotate the
coordinate system (consequently the prism), when the
user furnishes an angle of rotation other than zero in re-
lation to Geographical North (axis y). Since the magnetic
anomaly may display singularity when a point of measure-
ment coincides with the vertices of one of the prisms, val-
ues that correspond to 0.1% of the minimum dimension
of the prism are added to the coordinates of the vertices
(Talwani, 1965). The line of command corresponding to
this operation can be “commented on” if necessary.

One of the limitations of the program is not allowing the gen-
eration of prisms with a dip angle. In spite of this, such prisms
can be approximated by stacking thin sheets. The supplemen-
tary material includes some scripts where more complex models
are generated by stacking up sheets. Another restriction of the
code is the incapacity to generate prisms with any polygonal sec-
tion other than rectangular. These limitations can be overcome
separately in enhanced versions of the code.

This work opted for a code that generates rectangular prisms
rather than prisms with more general polygonal sections, due
to ease of operation and data inputting. This model may be
advantageous when the program is used by a non-specialist
user. Furthermore, as already mentioned, rectangular prisms may
represent a great variety of geological structures of interest.

Validation of the program

The program was tested in MATLAB� 7.11, on the platforms
Windows 7 and Linux (distribution Ubuntu 10.04) and OCTAVE
2.3, on Linux, likewise in Ubuntu 10.4. Before running the pro-
gram in OCTAVE, the user must install the GNUPLOT application.
Without this application, the program records the output files, but
does not generate the graphics. The graphic tool of GNUPLOT
presents fewer resources than MATLAB� and is comparatively
slower.

Validation of the program, in the magnetic case, was based
on the generation of anomalies from the prism presented by
Gerovska & Araúzo-Bravo (2006), the top of which is positioned
at a depth of 1 m, with a thickness of 2 m, with a square base of
20 m × 20 m and inserted into an area of 64 m × 64 m. The
magnetic parameters are the following: geomagnetic inclination
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(5◦), geomagnetic declination (10◦) and induced magnetization
(J = 0.35 A/m). This prism is indicated in Figure 4, its pa-
rameters are shown in Table 1 and its anomalies are presented in
Figures 5A-D. The values of the magnetic anomaly can be com-
pared with those presented by Gerovska & Araúzo-Bravo (2006),
available at http://software.seg.org/2006/0002/index.html. Run-
ning the program with the parameters of Table 1, results are ob-
tained very close to the Gerovska & Araúzo-Bravo data (2006).
The values were generated with the script exemple1.m , supplied
with the program. The slight differences are due to the displace-
ment of the coordinates of the vertices, implemented in the code
to avoid singularities, as already described. To reproduce exactly
the values presented by Gerovska & Araúzo-Bravo (2006), it is
necessary to “comment on” the lines of code related to the dis-
placement, as indicated in the program itself.

Figure 4 – 3D representation of synthetic body P1, with parameters listed in
Table 1 (data from Gerovska & Araúzo-Bravo, 2006).

Table 1 – Parameters of the body in Figure 4, with anomalies
presented in Figure 5.

Parameters P1
Declination of the Geomagnetic Field (D◦) +10◦

Inclination of the Geomagnetic Field (I◦) +05◦

Intensity of the Geomagnetic Field (nT) 439,82
Magnetic susceptibility 1
Remanent Mag. (A/m) 0

Density (kg/m3) 2700
Width (direction x) (m) 20
Length (direction y) (m) 20

Thickness (m) 2
Center Coord. X (m) 30
Center Coord. Y (m) 30

Depth of top (m) 1
Inclination of prism in relation to axis y (◦) 0

For the gravimetric case, the program was calibrated using
the anomalies generated by the same body presented in Gerovska
& Araúzo-Bravo (2006), assigning a density of 2,700 kg/m3. Re-
sults very close were reproduced with the routine “one prism.m ”
from Arisoy & Dikmen (2011), expressed in Gal, which was based

on the code of Mendonça & Meguid (2008). Similarly, the slight
differences are due to the displacement of the coordinates of the
vertices, implemented in the code to avoid singularities, as al-
ready explained. Even “commenting on” the lines of code re-
lated to displacement, it was not possible to generate an exact
reproduction of the data obtained by the routine “one-prism.m ”.
as in our program we used five decimal places for the con-
stant of universal gravitation, whereas Arisoy & Dikmen (2011)
used only two.

Application of the program

To illustrate how the program works we present here two ad-
ditional examples with prisms of different characteristics, vary-
ing mainly the thickness, inclination and depth of the top of the
sources, and also the parameters of density and magnetization,
seeking to assess the attenuation and enhancement of the signals.
The inclination, declination and intensity of the geomagnetic field
used for generation of the prisms, in both examples, are from a
region located in the Northern portion of Brazil, in the context of
the Amazonas Basin, State of Pará, denominated Tapajós (Table
2). These examples can be reproduced by running the scripts ex-
emple2.m and exemplo3.m , supplied along with the program.

Table 2 – Parameters of the bodies in Figures 6 and 8, with anomalies
presented in Figures 7 and 9.

Parameters Tapajós
Latitude –04◦00’00”S

Longitude –56◦00’00”W
Declination of the Geomagnetic Field (D◦) –13◦18’
Inclination of the Geomagnetic Field (I◦) +12◦34’
Intensity of the Geomagnetic Field (nT) 27865

The first example shows six prisms with different geometries,
inserted into an area of 6000 m × 6000 m. Figure 6 shows the
bodies built with the parameters of Table 3. The mosaic in Fig-
ure 7 shows the gravity (A and B) and magnetic anomalies (C and
D), generated from the prisms of Figure 6 with the parameters
of Tables 2 and 3.

The second example shows two prisms with the same di-
mensions, inserted into an area of 6000 m × 6000 m, one
of which displays remanent magnetization. In this example, the
data was contaminated with noise. Figure 8 shows the bodies
built with the parameters of Table 4. The mosaic in Figure 9
shows gravity (A and B) and magnetic anomalies (C and D),
generated from the prisms of Figure 8, with the parameters of
Tables 2 and 4.
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Figure 5 – Gravity and magnetic anomalies generated from the body in Figure 4, represented as a plan view (panels A and C, respectively) and mesh (panels B
and D, respectively).

Table 3 – Parameters of the bodies in Figure 6, with anomalies presented in Figure 7.

Parameters P1 P2 P3 P4 P5 P6

Magnetic susceptibility 0.027 0.027 0.027 0.027 0.05 0.07

Induced mag. (A/m) 0.61 0.61 0.61 0.61 0.61 0.61

Remanent mag. (A/m) 0 0 0 0 0 0

Density (kg/m3) 2700 2700 2700 2700 3000 3000

Width (direction x) (m) 2000 2000 500 1000 1500 1000
Length (direction y) (m) 200 200 500 500 100 200

Thickness (m) 500 500 500 500 250 500

Center Coord. X (m) 3500 1500 4500 1500 4500 4500

Center Coord. Y (m) 3500 1500 4500 4500 1000 1000

Depth of top (m) 80 50 200 100 50 150
Inclination of prism in

relation to axis y (◦) 25 –25 0 45 –215 75
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Figure 6 – 3D representation of the synthetic bodies P1, P2, P3, P4, P5 and P6, with parameters listed in Tables 2 and 3.

Figure 7 – Gravity and magnetic anomalies generated from the body in Figure 6, represented as a plan view (panels A and C, respectively) and mesh (panels B
and D, respectively).
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Figure 8 – 3D representation of the synthetic bodies P1 and P2, with parameters
listed in Tables 2 and 4.

Table 4 – Parameters of the bodies in Figure 8, with
anomalies presented in Figure 9.

Parameters P1 P2
Magnetic susceptibility 0.0270 0.0270
Remanent mag. (A/m) 0.25 A/m 0

Density (kg/m3) 2700 2700
Width (direction x) (m) 3000 3000
Length (direction y) (m) 200 200

Thickness (m) 500 500
Center Coord. X (m) 3000 3000
Center Coord. Y (m) 1500 4500

Depth of top (m) 100 100
Inclination of prism

in relation to axis y (◦) 0 0
Remanent mag. dec. (◦) 20 —
Remanent mag. inc. (◦) 50 —

Gravimetric noise (mGal) 0.1 0.1
Magnetic noise (nT) 2 2

Besides the two examples above, the supplementary mate-
rial includes the scripts exemple4.m , which generates an approx-
imate model of a prism with a dip angle from stacking up sheets of
the same size, but with their geometrical centers displaced; exem-
ple5.m , which generates a pyramid trunk by stacking up sheets
with different areas; exemple6.m , the same as exemple5.m , but
with the top and base inverted and exemple7.m , which generates a
prism with densities that vary with depth, through stacking sheets
with different densities.

TUTORIAL
The first stage, before running the program, consists of defin-
ing the dimensions of the area where the bodies will be inserted
and the spacing between the points of the mesh. Inside this area
the global parameters must be provided, along with the num-
ber of prisms and specific parameters of each prism. The name

of the file where the data will be recorded in xyz format must
also be defined.

The declination, inclination and magnitude of the geomag-
netic field must also be known in advance. To this, the user can
access the site http://www.ngdc.noaa.gov/geomagmodels/IGR-
FWMM.jsp, input the geographical coordinates of the center of
the area, along with the day, month and year.

The specific parameters of each prism are: width (x-direc-
tion), length (y-direction) and thickness, coordinates of the cen-
ter, depth, inclination in relation to Geographical North (y-axis)
and positive in the clockwise direction, magnetic susceptibility
and density and, as the case may be, declination, inclination and
intensity of the remanent magnetization. There is also the possi-
bility of contaminating the data, both gravimetric and magnetic,
with artificial noise to simulate real data. All angles must be sup-
plied in degrees and the remainder of the parameters in units of
the SI.

Running the program directly on the terminal

When starting up execution in this way, the program requests
the size of the area, the sequence of global parameters and am-
plitude of the noise, to then request, for each prism, its specific
parameters.

When this data is provided, the program calculates the grav-
ity and magnetic anomalies, generating a figure with the location
of the prisms inside the area defined by the user, and also, for
each of the fields (magnetic and gravitational), two figures that
represent the anomalies of the prisms, in the form of colored
maps and meshes, and the xyz file.

The sequence of steps begins with opening the file grav -
mag prisma.m. in the OCTAVE or MATLAB� development en-
vironments, where F5 must be hit to start the program. Option-
ally, the user may type the name of the program directly into
the terminal, provided this is in the area where the program was
recorded. Then all the data already described is requested, as
follows (items 1 to 10 are global parameters), (items 11 to 22
are specific parameters for each prism):

1. Horizontal dimension of the area (meters);
2. Vertical dimension of the area (meters);
3. Spacing of the mesh (meters). It important to understand

that a very fine mesh for a very large area may overload the
volatile memory of the computer;

4. Magnetic declination (degrees);
5. Magnetic inclination (degrees);
6. Value of intensity of the magnetic field (nT);
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Figure 9 – Gravity and magnetic anomalies generated from the bodies in Figure 8, represented as a plan view (panels A and C, respectively) and mesh (panels B
and D, respectively).

7. Amplitude of noise for the gravimetric anomaly (mGal)
(0, for no noise);

8. Amplitude of noise for the magnetic anomaly (nT) (0, for
no noise);

9. Name of the xyz file where the values will be saved (the
xyz file will be saved in the same directory as the pro-
gram);

10. Number of prisms;
11. Magnetic susceptibility (SI);
12. Intensity of the remanent magnetization (A/m); (0, no re-

manent magnetization);
13. Density (kg/m3);
14. Width in x-direction (meters);
15. Length in y-direction (meters);
16. Thickness (meters);

17. x-coordinate of the center (meters);
18. y-coordinate of the center (meters);
19. Depth of the top (meters);
20. Inclination of the body (degrees in relation to Geographical

North (axis y) and positive in the clockwise direction);
21. Magnetic declination (degrees) for the remanent magneti-

zation (if the user inserted zero in item 12, this item will
not be requested);

22. Magnetic inclination (degrees) for the remanent magneti-
zation (if the user inserted zero in item 12, this item will
not be requested).

In the case of several prisms, repeat the insertion of data from item
11 onwards.

As an example, Figures 8 and 9 are generated with the follow-
ing sequence of commands/parameters input into the terminal:
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>> grav_mag_prism

THANK YOU FOR USING THE PROGRAM "GRAV_MAG_PRISM", DEVELOPED BY THE LABORATORY

FOR RESEARCH IN APPLIED GEOPHYSICS (LABORATORIO DE PESQUISAS EM GEOFISICA

APLICADA) (LPGA) - GEOLOGY DEPARTMENT - UFPR.

THIS PROGRAM CALCULATES THE MAGNETIC AND GRAVIMETRIC ANOMALIES OF PRISMATIC

BODIES WITH ARBITRARY DENSITIES, MAGNETIZATIONS AND DIMENSIONS.

GOOD LUCK WITH YOUR WORK AND STUDIES!

Type the horizontal dimension of the area (meters): 6000

Type the vertical dimension of the area (meters): 6000

Type the spacing of the mesh (meters): 20

Caution: a very fine mesh may overload the machine’s volatile memory;

Type the Magnetic Declination (Degrees): 13.18

Type the Magnetic Inclination (Degrees): 12.34

Type the value of the Magnetic Field (nT): 27865

Input the amplitude of noise for the gravimetric anomaly (mGal) (0, if no

noise is desired): 0.1

Input the amplitude of noise for the magnetic anomaly (nT) (0, if no noise

is desired): 2

Input the name of the file ’’.xyz’’ where the values will be saved: example 3

How many prisms do you want to generate? 2

For prism 1 provide the following data:

Type the susceptibility of the body (SI): 0.027

magnetization (A/m): 0.59871

Type the intensity of the remanent magnetization (A/m): 0.25

Type the density of the body (kg/m^3): 2700

Type the width of the body: 3000

Type the length of the body: 200

Type the thickness of the body: 1000

Type coordinate X of the center of the body: 3000

Type coordinate Y of the center of the body: 1500

Type the depth of the top of the body: 100

Type the inclination of the body: 0

Type the Magnetic Declination (Degrees) for the remanent magnetization: 20

Type the Magnetic Inclination (Degrees) for the remanent magnetization: 50

For prism 2 provide the following data:

Type the susceptibility of the body (SI): 0.027

magnetization (A/m): 0.59871

Type the intensity of the remanent magnetization (A/m): 0

Type the density of the body (kg/m^3): 2700

Type the width of the body: 3000

Type the length of the body: 200

Type the thickness of the body: 1000

Type coordinate X of the center of the body: 3000

Type coordinate Y of the center of the body: 4500

Type the depth of the top of the body: 100

Type the inclination of the body: 0

> >
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Running the program in functional form
In the functional form, all parameters are written in one same function (script). Firstly, vectors are created with the specific parameters
of the prism(s) and then the command to run the main program, which has as input data the global parameters and the vectors with the
parameters of the prisms. This data may be supplied directly into the terminal or in a separate file. For example, to generate the field
of two prisms the user must type into the terminal, in the following order, the vectors containing the specific parameters of each prism,
which are denominated p1 and p2:

p1=[0.027,0.25,2700,3000,200,500,3000,1500,100,0,20,50];

p2=[0.027,0,2700,3000,200,500,3000,4500,100,0];

The sequence of parameters of the vectors obeys the same order as the specific parameters of items 11 to 22 from the previous
section, and must be typed in square brackets. When the remanent magnetization is zero, as in the case of vector p2, it is not necessary
to insert the last two parameters that appear in vector p1.

Subsequently, the name of the program must be typed, and in brackets, the sequence of global parameters (items 1 to 9 of the
previous section), while the name of the file (item 9) must be inserted between apostrophes, followed by the vectors (in this case p1
and p2) of the specific parameters of each prism, as follows:

grav_mag_prism(6000,6000,20,-18.5,-34.5,22789,0.1,0.02,’exemple_3’,p1,p2)

Below is an example of a script (the example of Figures 8 and 9) that produces the same results as the sequence from the previous
commands:

function exemple3

%grav_mag_prism(horiz_dimen,vert_dimen,mesh_spac,decl,incl,field,

noise_grav,noise_mag,’file_name’,p1,p2,...,pn];

%pi=[suscept,reman_mag,density,width,length,thickness,

%coord_center_x,coord_center_y,depth,angle,dec_reman,inc_reman];

p1=[0.027,0.25,2700,3000,200,1000,3000,1500,100,0,20,50];

p2=[0.027,0,2700,3000,200,1000,3000,4500,100,0];

grav_mag_prism(6000,6000,20,-13.18,+12.34,27865,0.1,2,’exemple_3’,p1,p2)

The commented lines (preceded by “%”) indicate the order in which the parameters must be typed. In the functional form, the data
and the number of prisms can be changed more easily than when the program is run on the terminal. When the intention is to generate
more than one prism, the vectors of the specific parameters may be concatenated into anM ×N matrix, where each line represents
one of theM prisms and each column one of theN parameters. This mode can be useful in the construction of approximate models
of more complex structures through the combination of prisms. In this case, vectors p1 and p2 from the example above may also be
inserted in the form of a matrix, as shown below:

function exemple3a

%grav_mag_prism(horiz_dimen,vert_dimen,mesh_spac,decl,incl,field,

noise_grav,noise_mag,’file_name’,p1,p2,...,pn];

%pi=[suscept,reman_mag,density,width,length,thickness,

coord_center_x,coord_center_y,depth,angle,dec_reman,inc_reman];

M=[0.027,0.25,2700,3000,200,1000,3000,1500,100,0,20,50;0.027,0,2700,3000,

200,1000,3000,4500,100,0,0,0];

grav_mag_prism(6000,6000,20,-13.18,+12.34,27865,0.1,2,’exemple_3a’,M)
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FINAL REMARKS
In this work, we have presented a freely-distributed code for the
generation of gravity and magnetic anomalies of prismatic bodies.
The program may be used as both a teaching tool, for the study of
potential fields anomalies, and also for research.

Among the applications of the program in education, we may
highlight its use in the teaching of potential methods for illustrat-
ing the gravitational and magnetic effects of geological structures
that can be represented by prismatic bodies, such as geological
contacts, dikes and faults. It may also be used in demonstrating
the influence of inclination and declination on magnetic anoma-
lies and the effects of the presence of remanent magnetization on
the observed magnetic field. In the research field, the code may
be used to assess, validate and compare techniques of interpre-
tation of data from potential fields, such as filters, methods of
enhancement and methods of inversion. For example, we can
compare different methods of enhancing potential fields anoma-
lies, applying them to anomalies of synthetic bodies generated
by the code and verifying the effectiveness of each one through
comparison of results. As another example, to appraise the per-
formance of a method of reduction to the pole applied to real data
collected at low magnetic inclinations, we may compare the re-
duced to the pole anomaly from a synthetic body at the mag-
netic latitude considered, with the anomaly generated by the same
body at the pole. One of the improvements that may be made on
the program is the possibility of introducing dip angles into the
prisms. The way the program is organized allows new functions
to be easily incorporated. The code, as well as the illustrative ex-
amples, are distributed free of charge.
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