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MODEL OF THE STRUCTURED CONTINUUM, AND THE RELATION BETWEEN
SPECIFIC SURFACE AREA, POROSITY AND PERMEABILITY
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ABSTRACT. Contrary to the Cauchy and Poisson classical seismic theory of the continuum, the new theory for structured (also called porous, fractured, or blocked)
media must contain several degrees of freedom. This fact is evident because elementary blocks (grains) may transfer the motion by contact interaction, by rotation,

and by group of particles. Therefore, the energy content is not only contained within the first spatial derivatives (strains), but the potential energy content is within
the second (curvatures) and other higher order spatial derivatives. Thus, the equation of motion of porous media should contain higher order spatial derivatives, and

may even contain infinite order spatial derivatives.
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RESUMO. Contrariamente aos problemas clássicos da teoria sı́smica do cont́ınuo de Cauchy e Poisson, a nova teoria para meios estruturados (também denomi-
nados de porosos, fraturados e blocados) deve conter vários graus de liberdade. Este fato é evidente porque blocos elementares (grãos) podem transferir movimento

por interação de contato, por rotação, e por grupo de part́ıculas. Desta forma, o conteúdo de energia não está apenas contido nas primeiras derivadas espaciais

(deformações), como também o conteúdo de energia potencial está presente na segunda (curvaturas), e em derivadas espaciais de maior ordem. Sendo assim, a
equação de movimento para meios porosos deveria conter derivadas espaciais de ordem mais altas, e até mesmo uma ordem infinita de derivadas espaciais.
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Universidade Federal University do Pará, Campus Universitário do Guamá, Instituto de Geociências, 66075-110 Belém, PA, Brazil. Phone: +55(91) 3201-7693;

Fax: +55(91) 3201-7609 – E-mails: SibiryakovBP@gmail.com; lwbleite@gmail.com; wildneyvieira@gmail.com



�

�

“main” — 2014/4/9 — 13:54 — page 560 — #2
�

�

�

�

�

�

560 SEISMIC THEORY OF POROUS MEDIA

INTRODUCTION

The present paper is part of a major project aiming to predict
the stresses and strains using P and S wave velocities to local-
ize small pressure areas in oil and gas productive layers as nat-
ural suction pumps. The project is devided into different relative
independent parts.

The first part, for stress prediction, is related to conventional
seismic investigations to obtain information on the P and S wave
velocities, and also the configuration of seismic boundaries.

The second part will predict the stress and strain in the geo-
logical structures using the information obtained in the first part.
Additionally, the nontrivial behavior of pressure will be predicted,
because pressure can increase and decrease in depth, and create
what we call natural pumps that is the mechanism to push fluids
towards the low pressure zones. Predicting these natural pumps
is a major aim of this project.

The third element of stress prediction is related to predict-
ing the discontinuity in pressure between solids and fluids, which
depends on pore space structure; the present study falls within
this third piece.

To begin predicting the stress and strain for real geological
structures, we need to know the P and S velocities and the seis-
mic boundary configuration, which is a separate classical seismic
problem. In the present description, we focus on isotropic models,
but the equations are more complicated for anisotropic situations.

The data acquired must contain three components. From
land-observed data, we can use S waves from horizontal vibro-
seis with VSP technology. From marine observed data, we can
use AVO technology to look for converted P-S-P waves. In certain
cases, we can use petrophysical measurements of borehole data.

The first discussions on the topic of pore space and integral
geometry were presented by Sibiryakov (2002) and Sibiryakov
& Prilous (2007). The theory of porous media is based on in-
tegral geometry because this mathematical discipline addresses
collective geometrical properties of real collectors (reservoirs).
Santalo (1953) showed that these collective properties corre-
spond to porosity, specific surface area (SSA) parameter, aver-
age curvature and Gaussian curvature. For example, porous and
cracked media generally have a small porosity, but very large SSA
parameter, which creates anomalous high γ = vS/vP ratios,
and which results in negative Poisson coefficient, σ = 1−2γ2

2−2γ2 .
The popular tubular pore space model has very high cross-

sectional curvature, K1, and very small longitudinal curvature,
K2. Therefore, the Gaussian curvatureKG =

√
K1K2 is much

less than average curvature KA =
K1+K2
2 . In granular media,

KG andKA are similar (Smirnov, 1964).

METHODOLOGY

Equation of motion for structured media

The new structured continuum model contains an internal geo-
metry of a micro-inhomo geneous medium described mainly by
porosity and the SSA parameter. By structured continuum model,
we mean a media formed by grains and/or by blocks, limited by
cracks and/or porous containing fluids (gas, water, oil), as de-
picted in Figures 1 and 2.

Figure 1 – Element of the structured medium, where l0 is an average distance
between grains or porous. The problem is to create an equilibrium equation for
an arbitrary element of the discrete medium. An equation of equilibrium exists
for the surfaceC, but does not for the surfaceD.

Figure 2 – Another complex element of the structured medium, where l0 is an
average distance between grains or cracks.

The porosity, f , is described as a fraction of the empty vol-
ume space, VE , to the total volume, VT , of the material including
the solid and empty space: f = vE

vT
. The empty space may con-

tain gas and liquid.
The SSA parameter is the ratio between the real surface of

pores (and cracks) and the volume of the specimen, σ0 =
S
VT

[cm-1], and this quantity is used to solve petrophysical and
chemical problems; the SSA is measured from mercury (Hg), and
from gas absorption methods. Examples of geometrical figures,
for instance, from a tetrahedron to a sphere provide decaying val-
ues of the form σ0 ∝ 1

a , where a is the solid parameter, such as
radius or length of a regular side (Mavko et al., 1999).

Figure 1 shows a volume element of a structured body,
where l0 is the average distance between grains (or the distance
between pores). A theorem of Integral Geometry relates the SSA

Revista Brasileira de Geof́ısica, Vol. 31(4), 2013



�

�

“main” — 2014/4/9 — 13:54 — page 561 — #3
�

�

�

�

�

�

SIBIRYAKOV B, LEITE LWB & VIEIRA WWS 561

parameter σ0 to l0 by the formula, Sibiryakov (2002),

σ0l0 = 4(1− f). (1)

This same Eq. (1) applies to Figure 2 that presents a different
situation, where a volume element of a structured body is char-
acterized by cracks, and also by the SSA parameter σ0, and by
the arithmetic average distance, l0, between the grains (or the
distance between the cracks). In grainular media, we have neg-
ative curvature for the grains, but positive curvature for the pore
space. In cracked media, we generally find zero curvature for the
boundary porous/solid. Positive solid curvature for cavernous
pores gives a large pressure jump between solid and liquid
(Landau & Lifschitz, 1961).

In Equation (1), f is the porosity; therefore, given a sample
with the SSA σ0, there is automatically an average size l0 for
the microstructure. The distinction between the classical and
structured continuum should be clear in Figures 1 and 2. In
the volume bounded by the surface C , there is an equation of
equilibrium because all forces cancel, while there is no equation
of equilibrium in the volume bounded by surface D because all
forces are concentrated on one side of the grain, and the other
side contains no forces.

The objective here is to create a new spatial model for
wave propagation in structured media characterized by porosity,
permeability, and specific suraface area.

We consider some finite body volume, where surface forces
are applied on a sphere of radius l0, while the inertial forces are
applied in the structure center. It is not possible to make an ele-
mentary volume approach zero, making the points of the surface
to coincide to the point in the center, and the inertial forces are
similar to the classical continuum; we must consider a finite vol-
ume as a representative body volume, and the inertial forces at
different positions on the surface.

The main feature of this approach is to fill all space, includ-
ing pores and cracks, with a force field. This approach provides
a continuous image of a real, complicated medium. The natural
laws must apply to continuous image of the medium, and not
to the real image. The one-dimensional space operator for field
translation from point x to point x± l0 is given by the symbolic
equation, Maslov (1973),

u(x± l0) = u(x)e±l0Dx . (2)

This form applies to any field, and here u(x, y, z, t) stands
for particle displacement, and

u̇(x, y, z, t) =
d

dt
u(x, y, z, t),

for particle velocity.

From formula (2), the one-dimensional field translation op-
erator, Dx = ∂

∂x , can be rewritten for 3D space as follows,
Sibiryakov & Prilous (2007),

P (Dx, Dy, Dz) =
sinh(l0

√
Δ)

l0
√
Δ

= E +
l20
3!
Δ+

l40
5!
ΔΔ + . . . ,

(3)

where E is the unit operator, Δ is the Laplace operator, and

∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2
= Δ.

The operator P is also represented by the special symbolic aver-
aging operator given by:

P (Dx,Dy,Dz) =
1

4π

∫ 2π
0∫ π

0

el0(Dx sin θ cos φ+Dy sin θ sinφ+Dz cos θ) sin θdθdφ.

(4)

In a classical continuum, we apply the impulse conservation
law, Fi = müi, to any element of the medium, or under the form

Fi =
∂σik
∂xk

= ρ
∂2

∂t2
ui,

wherem stands for mass, and ρ for density.
In the present case, we need to fill all pore space by a force

field, and we write the infinite order equation of motion as:

P

(
∂σik
∂xk

)
=

(
E +

l20
3!
Δ +

l40
5!
ΔΔ + · · ·

)
∂σik
∂xk

= ρ
∂2

∂t2
ui.

(5)

Instead of real stress, which may change from a large value (in
the grain) down to zero (in the pore space), we use the image
of real stress. Namely, we use a continuous field constructed by
applying the P operator to the real complicated force field. For
this continuous image of real stress, P (σik), we can apply the
conservation law of physical impulse. In a classical model of the
continuum, the operation P = E comes from nature itself. The
constructed model (5) of the continuum requires some mathem-
atical operations to create the continuum medium.

Considering the one-dimensional case for simplicity and
extracting results considering plane waves, stationary motion,
u(x, y, z, t) → u(x, ω = kBvB ; l0), we have a simpler in-
finite order equation of motion in the form, Sibiryakov & Prilous
(2007), (

E +
l20
3!

∂2

∂x2
+
l40
5!

∂4

∂x4
+ . . .

)
uxx

+ k2Bu(x, kB; l0) = 0,

(6)
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where kB = ω/vB stands for both P and S waves. Considering
only one term, we write Eq. (6) as:

uxx + k
2
Bu = 0. (7)

Considering only two terms, we write Eq. (6) as:

uxx +
l20
3!
uxxxx + k

2
Bu = 0. (8)

We can examine a solution of the equation of motion (6) in
the stationary form,

u(x, y, z, t) = U(x, y, z)eiωt. (9)

For one-dimensional case, U(x, y, z) has the form U(x), and:

U(x) = A(k)eikx = A
(ω
v

)
ei
ω
v x. (10)

We are not applying the Fourier transform, but are examining
discrete values of the temporal radial frequency (ω), and of the
wavenumbers (kx, ky, kz).

Condition for a negative Poisson coefficient
Substituting representation (10) into Eq. (6), we obtain the disper-
sion equation for the unknown wavelength k = 2π

λ ,

sin(kl0)

kl0
=

(
kB

k

)2
, (11)

where kB = ω
vB

(v is velocity and ω = 2πf ) is the wavenum-
ber of the usual P or S waves. Eq. (11) is a transcendental equa-
tion with respect to the unknown k. For the condition l0 → 0,
k → kB , we have the usual wave velocities infinite small struc-
tures. In the case that l0 is not very small, then k < kB , the
dispersion velocity v = ω

k
is greater than vB , and the vP and

vS velocities are decreasing due to structure.
Numerically examining Eq. (11) shows that the P-wave

velocity decreases more rapidly than the S-wave velocity. There-
fore, the ratio γ = vS

vP
may be greater than 1√

2
. For the classical

continuum model,

γ =

√
μ

λ + 2μ
,

and if λ = 0, the

γ =

√
1

2
≈ 0.705,

where (λ, μ) are the Lamè parameters. Now, if we measure
γ > 0.705, we must have λ < 0. As a result, the Pois-
son coefficient σ = 1

2
λ
λ+μ

is negative because λ < 0, and

for small values the denominator is positive. Experimental ob-
servations of this strange result were first published by Gregory
(1976). The negative Poisson coefficient is due to a dispersion
phenomenon in structured media. The real Poisson coefficient
measured in statics, instead of wave propagation, does not pro-
duce such a strange result.

Figure 3 shows the relation between the P and S wavenum-
bers, kB(ω)kB(0)

, versus the ratio ε = 2π l0λB . It is clear that the
P wavenumber (curve 1) increases faster than the S wavenumber
(curve 3), which means that the P-wave velocity decreases faster
than the S-wave velocity. The ratio γ = vS

vp
increases from 1 to

1.25, from low to high frequencies.

Figure 3 – Plot of Eq. (11), real roots. The horizontal axis gives ε = 2π(l0)/
(λB) ratio. Curve 1 shows the increasing wavenumber ratio kP (ω)/kp(0);
therefore, vP decreases by increasing frequency. Curve 3 shows the same
for S waves, ks(ω)/ks(0), where vS decreases with increasing frequency.
Curve 2 shows the increase of γ = vS/vP ratio up to a negative Poisson
coefficient σ.

Figure 4 – Plot of Eq. (11), complex roots. The horizontal coordinates are
x = Real(kl0) and y = Imag(kl0). The vertical coordinate is ε(x, y) =
kBl0. If kB l0 � 1, only real roots exist.

Figure 4 shows the real and imaginary parts of the roots
of the dispersion Eq. (11) as a function of ε = 2π l0λB . The
roots of Eq. (11) are obtained for kl0 = nπ, (n integer), and

Revista Brasileira de Geof́ısica, Vol. 31(4), 2013
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very large k with a velocity that is very small. The interpreta-
tion of this figure is that if ε � x, then there is a wave with
abnormally small velocities less than vS . Additionally, veloci-
ties are discrete in porous media, while velocities are contin-
uous in classic media. This situation is analogous in quantum
mechanics (the discrete points represent a discrete spectrum of
eigenvalues).

Clearly, Eq. (6) contains derivatives of infinite order, and this
circumstance is due to the several degrees of freedom for struc-
tured bodies. For l0 → 0, we have the usual equations of
motion for a classical continuum space model.

The long wave approach. Equations of motion as
Korteweg-de-Vries and Boussinesq types
For small l0 values compared to wavelength, it is possible to re-
duce the equation of motion (6) of an infinite order to an equation
of the fourth order by neglecting the terms containing values of
order l40 and above. In this case, we can consider some nonlinear
relations between stress and strain.

Figure 5 depicts a general case of linear and nonlinear stress-
strain relation, and Savarensky (1975) and White (1983), among
other authors, present more general cases of the stress-strain
nonlinear behavior in solids. Sibiryakov (1974) describes the two
solutions for one-dimensional nonlinear equation of motion. Fig-
ure 5 does not show the stress and strain complexities of the load-
ing and unloading process; therefore the area of the hysteresis
loop representing dissipative energy is not present.

Figure 5 – Qualitative relation between stress (σ) and strain (e = ux) showing
the domains of linear elastic waves, and nonlinear Shock and Riemann waves.

For the nonlinear case, the reduction of stress can take place
by the increase in deformation for rocks and subsurface. There-
fore, shock waves are absent in such a media, and the nonlinear
waves are the Riemann waves (Zeldovich & Raizer, 1966).

The reduced equation of motion (6) takes the following form:

∂

∂xk

(
E +

l20
3!
Δ

)
σik = ρüi. (12)

Furthermore, we consider the 1D case, and use the nonlinear re-
lation between stress and strain given by:

σxx = (λ + 2μ)(ux − bu2x), (13)

where b is a given constant. We can write the corresponding
Eq. (12) in the form:

uxx(1− 2bux) + l
3
0

3!
uxxxx =

1

c2
üi. (14)

By changing of variables, ξ = ct − x and η = ct + x,
the equation of motion (14) reduces to a type similar to the
Korteweg-de-Vries, (KdV)-equation, Dazin & Johnson (1989):

uη − 2buuξ + l
2
0

3!
uξξξ = 0. (15)

The classical KdV-equation has another sign in the nonlinear
term, and Eq. (15) thus has no solutions of the soliton type,
and the role of the nonlinear term will be presented below. If the
nonlinear term is absent, Eq. (15) is similar to the Boussinesq
type, i.e.:

uxx +
l30
3!
uxxxx =

1

c2
üi, (16)

where the second term in the left is the dispersion term.
Now, we look at the solution of the Eq. (14) in the wave

form given by:

u(t, x) = cTF

(
t− αxc
T

)
, (17)

where T is a characteristic time of the pulse, c is a given con-
stant value, and α is greater than unity. Changing variables
as ξ = t−αxc

T , and assuming that

F
′
(ξ) =

∂F (ξ)

∂ξ
= ϕ(ξ),

we can write the ordinary nonlinear Eq. (14) in the form:

ϕ
′′
+
3!(α− 1)
l20α

4
ϕ = −3!2b

l20α
ϕ2. (18)

To analyze Eq. (18), consider that the following quantities can be
valid:

3!(α2 − 1)(cT )2
l20α

4
= 1, δ =

l0

cT
, α = 1+

1

2
δ2. (19)

Therefore, the value of ϕ(ξ) is represented by the product ϕ =
ϕ0ϕ, where the constant ϕ0 is equal to the characteristic value
of strain; an example value, is the elastic limit of shear deforma-
tion. With the assumptions considered above, a simpler equation

Brazilian Journal of Geophysics, Vol. 31(4), 2013



�

�

“main” — 2014/4/9 — 13:54 — page 564 — #6
�

�

�

�

�

�

564 SEISMIC THEORY OF POROUS MEDIA

is obtained for the variable ϕ. Ignoring the bar over ϕ, we have a
nonlinear equation for (18):

ϕ′′ + ϕ+ βϕ0ϕ2 = 0, (20)

where β = 3!2b
αδ2 . Therefore, in spite of ϕ0 being very small, and

β being large, the product βϕ0 is not very small. Additionally,
α ≈ 1, and δ is a very small value for the small structure size
compared to the wavelength. Hence, the dispersion phenomena in
micro-inhomogeneous media increase the nonlinear effects, and
a form of the solution of Eq. (20) is shown in Figures 6 and 7.

Figure 6 – Qualitative plot of the function ϕ(ξ) as a result of the inverse of
Eq. (21) showing the attenuation with distance of an initial normalized sinusoidal
causal pulse. The horizontal axis is divided in units 1 to 10, and the vertical axis
normalized between−1.0 and+1.0. The nonlinear parameter is βϕ0 = 0.1.
The logarithmic decrement is nearly constant.

Figure 7 – Qualitative plot of the function ϕ(ξ) as a result of the inverse of
Eq. (21) showing the attenuation with distance of an initial normalized sinu-
soidal causal pulse. The horizontal axis is divided in units 1 to 10, and the
vertical axis is normalized between −1.0 and +1.0. The nonlinear parameter
is βϕ0 = 0.5. The variation of the logarithmic decrement is now visible.

The rigorous solution of Eq. (20) is given by the following in
implicit elliptical integral form:

ξ =
t− αxc
T

=

∫ ϕ(ξ)
0

dp√
1− p2 − βϕ0p3

. (21)

This solution for βϕ0 → 0 tends to the usual sinusoidal func-
tion, and is written as:∫ ϕ

0

dp√
1− p2 − βϕ0p3

=
t− αxc
T

≈ arcsin(ϕ(ξ)),

(22)

from where, for βϕ0 = 0,

ϕ(ξ) = sin
(
t − αxc
T

)
, (23)

corresponds to a consistent sinusoidal solution.

A more common exact solution of Eq. (20) takes a form:

t − αxc
T

=

∫ ϕ
0

dp√
C1 + Cp+ 1− p2 − βϕ0p3

, (24)

where C1 and C are arbitrary constants, and the integral (24)
describes a wider class of phenomena than the integral (21).

We can linearize Eq. (20) using, instead of function ϕ2, the
good approximation ϕ2 = ϕϕ0 = ϕ(ξ)cos(ξ), in which the
cos(ξ) term is the solution of the linear equation found when
βϕ0 → 0. In other words, we can write ϕ2 ≈ ϕcos(ξ), and
ξ =

t−αxc
T . As a result, we can linearize Eq. (20) to a form

of Mathieu´s equation that describes the parametric resonance of
mechanical excitation and oscillation given by:

ϕ
′′
+
(
1 +
ϕ0
δ2
cos(ξ)

)
ϕ = 0. (25)

This equation contains both, stable and unstable solutions.
The instabilities contain attenuation and increasing vibrations as
catastrophes. The role of the parameter ϕ0 is not for its small
value, but is more significant under the ratio ϕ0

δ2
.

The attenuation of a sinusoidal pulse with distance due to
nonlinearity is shown in Figures 6 and 7. The nonlinearity pa-
rameter is not very small due to the large factor 1δ2 . These figures
show how the attenuation of a sinusoidal pulse should appear.
When the nonlinear parameter is equal to zero, i.e., βϕ0 = 0,
attenuation is absent; if βϕ0 = 0.1, a small attenuation occurs
with almost constant logarithmic decrement; for larger nonlinear
parameter, say βϕ0 = 0.5, sufficient attenuation occurs without

Revista Brasileira de Geof́ısica, Vol. 31(4), 2013
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of constant decrement. Eq. (25) also contains increasing solu-
tions, but we deal only with damping vibrations in this paper.

The authors Egorov & Mashinskii (2002) realized a labora-
tory experiment with an artificial sample of dry sandstone (general
properties: length, 1 m; diameter, 0.76 m; porosity, 0.3; and den-
sity 2g/cm3) subjected to simultaneous excitation by two vibro-
seis with frequencies 6100 Hz and 7720 Hz. The signal spectrum
was observed at the round surface of the cylindrical sample, and
the source was placed at the flat end of the cylinder. The result of
the experiment is shown in Figure 8.

Figure 8 – Observed spectrum amplitude,A(ft), of quasi-sinusoidal signals
for an artificial laboratory sandstone model. The horizontal axis shows the fre-
quency ft from 0 to 10.000 Hz, and the vertical axis shows the amplitude from
0 to 900 units. The data are according to Egorov & Mashinskii (2002).

The receivers registered also the difference frequency of
1620 Hz at a distance of 75 cm from the source. It is interest-
ing that the amplitude of the difference frequency is extremely
high; i.e., it reached the order of 30% percent of initial signal
(Egorov & Mashinskii, 2002). The classical approach related to
the second-order equations of motion predicts this effect, which
is proportional to the square of strain. The dispersion phenomena
in porous media sharply strengthen nonlinear processes, so even
weak fluctuations are accompanied by appreciable nonlinear ef-
fects (Mashinskii & Egorov, 2011).

Porous media with viscous liquid

Let us suppose that at the gravity center (i.e., at the point x =
(x, y, z)) the particle velocity is u̇i(x) (see Fig. 1). The average
distance from point x to the grain boundary is fl0 , and the ve-
locity on the grain boundary is therefore represented by a Taylor

series in the form:
u̇i(x+ fl0) = u̇i(x)

+fl0

(
∂u̇i

∂x
cos(r, x) +

∂u̇i

∂x
cos(r, y) +

∂u̇i

∂x
cos(r, z)

)

+O((fl0)
2).

(26)

This expansion is bounded by the first order term with respect to
fl0 , and the total sum in the right side is equal to zero. Therefore,
there is no displacement between grain and viscous fluid on the
boundary of the grain.

We can consider that the derivatives act on the contact
skeleton-fluid with accuracy up to small values in the second or-
der, and the center of gravity, x, is in the pore. The relation be-
tween the radial and normal derivatives of the particle velocity,
with components (x, y, z), as in Eq. (26), is given by:

∂u̇i

∂r
=
∂u̇i

∂n
cos(r, n). (27)

The average value of cos(r, n) in three-dimensional space is
0.5. The relation between the particle velocity and the derivative
of the particle velocity is given by the following:

u̇i = −1
2
fl0
∂u̇i

∂n
, (28)

for the sum in Eq. (26) to be null.
The surface force, FSi , of viscous friction is proportional to

the viscosity, η, and to the derivative of the particle velocity, u̇,
with respect to the normal, n, to the surface that separates matrix
and fluid:

FSi = η
∂u̇i

∂n
= −2 η

fl0
u̇i. (29)

The volume force of viscous friction is a product of the surface
force to the SSA parameter of the pore space, i.e.:

Fi = σ0η
∂u̇i
∂n
= −2σ0η

fl0
u̇i = 8

η(1− f)
fl20

u̇i. (30)

In formula (30), the factor 1
2f σ

2
0 plays the role of inverse per-

meability, which means that the permeability φ is a geometric
parameter, and we have the equality:

φ(f, σ0) = 2
f

σ20
. (31)

This formula is shown in Figure 9, from which we learn that σ0
diminishes the permeability very quickly.

This approach shows that it is unnecessary to use Darcy’s law
for wave physics or percolation (Biot, 1962).

In the structured continuum model, the forces created by in-
ternal stresses act via the P -operator. The Eq. (6) of motion is of
infinite order, because many internal waves with different veloci-
ties exists in micro-inhomogeneous bodies. The Cauchy-Poisson

Brazilian Journal of Geophysics, Vol. 31(4), 2013
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Figure 9 – Plot of Eq. (31). The horizontal axis are porosity, f , and the SSA parameter, σ0, and the vertical axis is the permeability, φ = φ(f, σ0).

hypothesis is that P = E, which means that any property is an
average for any arbitrary small volume. In reality, it is not pos-
sible to use arbitrary small volumes, because the representative
volume must contain some elementary structures (grains), and
they have internal motions, rotations, etc. If l0 ⇒ 0, we have the
classical standard equation of motion, and P = E.

Considering one-dimensional case, in the classical contin-
uum (P = E) model we obtain the wave equation:

uxx =
1

c2
ü. (32)

And with viscous friction included we obtain the Telegraph equa-
tion:

uxx =
1

c2
ü+
β

f
u̇, (33)

where we have added the dissipative forces in the second term
on the right of Eq. (32), based on the Eq. (30). Here, β can be
summarized as β = σ20

η
M , whereM = ρc2. Therefore,

β = βP = σ
2
0

η

λ+ 2μ
[TL−2],

is a property of the stress relaxation time for the P waves, and
β = βS = σ

2
0
η
μ

for the S waves, where we can see that βS is
larger than βP . The quantities λ and μ are the Lamè parameters,
and η the viscosity.

For the solution of Eq. (33), we separate the amplitude and

time components in the form:

u(x, t) = U(x)eiωt. (34)

Substituting (34) into (33), we obtain the differential equation
for the amplitudes given by:

U ′′ +
(
ω2

c2
− iβω
f

)
U = 0. (35)

For the solution of (35) we find that:

U = U0e
mx, and m = ±

√
ω2

c2
− iβω
f
. (36)

Therefore, Eq. (34) has now the form:

u(x, t) = U0e
iω

(
t±xc

√
1−i c2βfω

)
. (37)

Let’s analyze two conditions for binomial expansion of the square
root in the exponent of (37). The first is for ωβ

f
<< 1, then:

√
1− ic

2β

fω
≈ 1− i c

2β

2fω
. (38)

The attenuation is the imaginary part of the exponent and, from
(37) and (38), it is given by:

eiω
x
c

(
ic2β
fω

)
= e−x

cβ
f , (39)
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that does not depend on ω frequency. The second is for the op-
posite situation, ωβf >> 1, where we have the attenuation in the
form:

e
−x βω√

fω = e−xβ
√
ω, (40)

which gives the attenuation proportional to the square root of
the ω frequency.

For porous media, the viscous friction creates velocities only
by the fluctuation of particles, and the friction forces therefore act
by the P − E operator Sibiryakov et al. (2011). The equation of
motion in this porous and viscous media can be represented in
the form:

P

(
∂σik
∂xk

)
− iβω
2f
(P −E)U + k2BU = 0,

kB =
ω

vP,S
,

(41)

where U = U(x, y, z, ω). The corresponding dispersion
equation is given by:

sin(kl0)

kl0

(
k2 − iβω

2f

)
+ i
βω

2f
= k2B. (42)

The case l0 → 0, k2 → k2B , means that in classical continuum
media, with infinitely small structure size, the viscous friction is
absent.

Continuing examining the dispersion Eq. (42), then for small
values of l0 we have the expansion:

sin(kl0)

kl0
= 1− (kl0)

2

3!
+ · · · , (43)

and we can now write Eq. (42) as:

k2 − i βω
3!2f

(kl0)
2 = k2B. (44)

Using the relations σ0l0 = 4(1 − f) and β = σ20
η
ρc2 ,

we can write (44) in the form:

k2
(
1− i4η(1− f)

2

3f
ω

)
= k2B. (45)

Then, we can write:

k

√(
1− i4η(1− f)

2

3f
ω

)
= kB. (46)

For small ratios ηωρc2 << 1, we have that:

k

(
1− i2

3

4η(1− f)2
3f

ω

)
≈ kB. (47)

Now, we need an approximation for the wavenumber k in terms
of kB , and:

k ≈ kB(
1− i2

3
4η(1−f)2
3f

ω
) , (48)

after an expansion,

k ≈ kB
(
1 + i

2

3

η(1− f)2
ρc2f

ω

)
, (49)

where the structure parameters (f, η, ρ, c) and ω are present in
the complex part.

CONCLUSIONS

Presently, fluid percolation theory based on Darcy’s law ignores
stress-strain state in solids. Additionally, this percolation theory
contains porosity, but does not contain the SSA parameter that
creates forces to stop percolation.

We need to predict the stress-strain in solids, and pressure
discontinuity between phases; and this discontinuity depends on
the structure of pore space, and not only on porosity.

It is unnecessity to use Darcy’s law for determining per-
meability, because permeability is only a geometric property of
porous medium. The permeability value is directly proportional to
porosity, and is inversely proportional to the square of the SSA
parameter for a specimen. In a submitted paper, Sibiryakov et al.
(2013), we show that the fluid velocity (u̇0) into a borehole is ap-
proximated by u̇0 = Kfησ−20 , where K is a constant, f is
porosity, η is the viscosity, and σ0 the SSA parameter. In this
equation, η is usually included into K, leaving fσ−20 playing
the role of permeability.

Porosity and the SSA parameter enable using alternative
methods to measure the permeability.

The equation of motion for long wavelengths compared to
the specimen structure does not result in the wave equation, but
in the telegraph equation that describes the propagation and dif-
fusion of waves.
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