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LITHOFACIES RECOGNITION BASED ON FUZZY LOGIC AND NEURAL NETWORKS:
A METHODOLOGICAL COMPARISON

Talita Lammoglia, Julio Kosaka de Oliveira and Carlos Roberto Souza Filho

ABSTRACT. Fuzzy logic and neural networks methods are commonly applied in various areas of the petroleum industry. In this work, both methods are used
comparatively to lithofacies prediction in wells. The input dataset available for the study includes 4 known well logs (gamma ray, neutronic porosity, Density and Sonic)

and lithologic description of cores for 14 wells drilled in the Namorado oil field. This field is located in the Campos Basin (SE Brazil) and its reservoir rocks are
composed of sandstone turbidites. Core descriptions correspond to 3,196 samples of facies distributed in irregularly spaced intervals of 14 wells. Among the samples,

21 different facies were recognized by the geologists. These lithofacies were regrouped into three representative lithofacies: sandstone, shale and limestone. Fuzzy
logic and backpropagation neural network models were produced using data from three key wells. Each model was applied to all other 11 wells. The comparison was

individually performed between the original core intervals and the synthetic lithofacies column. Results revealed that for the original 3,196 facies samples, 2,353 were

correctly recognized by the fuzzy logic method, whereas 2,599 were correctly predicted by neural networks. These correspond to approximately 73% and 83% accuracy,
respectively. The neural networks method also exhibited enhanced results for each well separately. In summary, both methods performed well in recognizing three main

lithofacies intervals for 14 wells at the Namorado Field. The analysis indicates that the methods showed good performance in the recognition of lithofacies for all wells
investigated in the Namorado oil field. In general, neural networks showed a product with accuracy around 10% higher than that obtained by fuzzy logic. The accuracy

yielded by neural networks is also higher when wells are compared individually. The superiority of the results obtained with neural networks suggests better ability of

this algorithm on the recognition of lithofacies, particularly in geologic scenarios similar to those approached here.

Keywords: lithofacies, fuzzy logic, neural networks.

RESUMO. Lógica fuzzy e redes neurais são métodos comumente aplicados em diversas áreas da indústria do petróleo. Nesse trabalho, ambos são utilizados com-

parativamente para reconhecimento de litofácies em poços. Os dados disponı́veis para o estudo incluem 4 perfis derivados de medidas indiretas nos poços (raios gama,

porosidade neutrônica, densidade e sônico) e descrição litológica de testemunhos para 14 poços perfurados no Campo de Namorado. Esse campo situa-se na Bacia
de Campos (SE do Brasil) e compreende arenitos turbidı́ticos como rocha reservatório. A descrição de testemunhos foi feita em 3.196 diferentes pontos distribuı́dos

irregularmente ao longo dos testemunhos. Dentre as descrições, 21 fácies foram reconhecidas pelos geólogos, as quais foram aqui reagrupadas em três grupos princi-
pais: folhelho, arenito e calcário. Os modelos de treinamento por redes neurais e lógica fuzzy para ambos os algoritmos foram gerados com base em 3 poços contendo

seções-tipo. Os modelos foram aplicados para predição de litofácies nos outros 11 poços. Na sequência, as litofácies preditas foram comparadas com as descrições de

testemunhos. Os resultados mostram que dentre as 3.196 descrições, 2.353 e 2.599 foram corretamente reconhecidas por lógica fuzzy e redes neurais, respectivamente,
ou seja, atingiram 73% e 83% de similaridade com as descrições dos geólogos. A análise indica que os métodos apresentaram bom desempenho no reconhecimento

de litofácies para todos os poços abordados no Campo de Namorado. No geral, as redes neurais apresentaram um produto com acurácia em torno de 10% superior
aquele obtido por lógica fuzzy . A porcentagem de acerto das redes neurais é superior também quando os poços são comparados individualmente. A superioridade

dos resultados obtidos com redes neurais sugere melhor habilidade deste algoritmo no reconhecimento de litofácies, particularmente para cenários geologicamente
similares ao aqui estudado.

Palavras-chave: litofácies, lógica fuzzy , redes neurais.
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Brazil. Phone +55(19) 3521-4535; Fax: +55(19) 3521-4552 – E-mails: talita.lammoglia@ige.unicamp.br; joliveira10@slb.com; beto@ige.unicamp.br



�

�

“main” — 2014/8/1 — 12:17 — page 86 — #2
�

�

�

�

�

�

86 LITHOFACIES RECOGNITION BASED ON FUZZY LOGIC AND NEURAL NETWORKS: A METHODOLOGICAL COMPARISON

INTRODUCTION
Mathematical and computational techniques are widely applied
in the oil industry, particularly in petrophysical assessment of
reservoirs. Petrophysics comprises the study of physical and
chemical rock properties and their interface with fluids, including
gaseous and liquid hydrocarbons, and aqueous solutions (Tiab &
Donaldson, 2004). A fundamental aspect of petrophysics is de-
termining and estimating rock properties through well log mea-
surements.

Wireline acquisitions in open holes provide petrophysical
data for oil exploration purposes. In these operations, sev-
eral physicochemical properties of rocks (i.e. rock + fluid) are
recorded, such as resistivity, density, porosity, radioactivity, and
others. Petrophysical evaluation both of electrical and image pro-
files allows, for example, to calculate porosity and permeability
of rocks, as well as water saturation. This information is essential
in the petroleum exploratory chain, since it assists on defining
target areas and guiding production of oil fields. Indirect litho-
logic inference is another important product of well logs interpre-
tation. Lithologies retrieved from petrophysical interpretation are
known as lithofacies.

Here, we reflect on the applicability of fuzzy logic and neural
networks lithofacies prediction based on four different basic logs.
The Namorado oil field in Campos Basin (Rio de Janeiro State,
Brazil), was selected for the study. The predictions yielded from
each method were intercompared and also evaluated against geo-
logical descriptions of boreholes. The notion was to weigh the
applicability of these techniques for semi-automatic determina-
tion of lithofacies.

The Campos Basin is the largest oil province in operation in
Brazil. It is located offshore, along the northern coast of Rio de
Janeiro and Esṕırito Santo States, covering about 100,000 km2

(Milani & Araújo, 2003). Campos is a passive margin style basin
related to the breakup of Gondwana in the Early Cretaceous.
Its tectonic evolution encompasses rift and post rift superse-
quences. Rocks and sedimentary sequences in the basin can be
grouped into three tectono-sedimentary megasequences, generi-
cally known as:

(i) non-marine rift megasequence, which was strongly influ-
enced by rift tectonics;

(ii) the transitional megasequence, during which there was a
relative tectonic quiescence and deposition of evaporites;

(iii) marine megasequence deposited in frank marine environ-
ment, affected by gravitational tectonics and halokinesis
(Angel et al., 1994; Guardado et al., 2000; Winter et al.,
2007).

The interconnection of source and post-evaporite reservoirs
rocks is related to the rifting tectonics and halokinesis. The main
source rocks in the Campos Basin are comprised in the Lagoa
Feia sedimentary Formation. Reservoirs are reported in Albian
to Miocene siliciclastic turbidite, Barremian coquina, fractured
basalts, and in Albian carbonates (Dias et al., 1990; Bruhn et al.,
2003).

The Namorado oil field, discovered in 1975, is located in
the north-central portion of an oil accumulation trend in the
Campos Basin (Fig. 1). The producing reservoir is informally
known as Namorado sandstone. It is comprised in the upper
part of the Macaé Formation and was deposited during the
Albian-Cenomanian (Rangel et al., 1994, Milani & Araújo, 2003).
Namorado sandstones include twelve turbiditic sets, which are
amalgamated and divided in two successions of reservoirs sep-
arated by a sequence of marls, shales, mudstones and bioturbed
calcilutites (Vasquez, 2000).

MATERIALS

A database consisting of 4 well logs and core description of 14
wells drilled in the Namorado oil field was organized to develop
this work. The well logs selected for the project were gamma-
rays (GR), neutron porosity (NPHI), sonic (DT) and bulk density
(RHOB). These data were provided by the ANP & Petrobras under
the Namorado Field-School project.

Gamma rays (GR) are electromagnetic waves emitted spon-
taneously by radioactive elements (e.g. uranium, thorium and
potassium) present in rock Formations. It is the natural radioac-
tivity of rocks due to their composition (i.e. paragenesis) and,
therefore, linked to their depositional environment. Chemically
reactive clay-rich surfaces tend to absorb radioactive ions. Thus,
clay-rich rocks tend to have higher values of GR. GR logs are
commonly used to define lithology, as well as for correlation
between wells and shaliness calculation (Schlumberger, 1987;
Bassiouni, 1994; Tiab & Donaldson, 2004).

Neutron Porosity, also known as NPHI, allows investigat-
ing porosity by counting thermalized neutrons. The wireline tool
performs gamma rays counting as a function of time. The rate of
decay is related to the capture of thermal neutrons by the rock
Formation and, mostly, the amount of hydrogen atoms. Assum-
ing that most of the hydrogen atoms are associated with wa-
ter molecules or hydrocarbons (both contained in the pores), it
is possible to estimate rock porosity. In short, neutron porosity
corresponds to the hydrogen index, which reflects the porosity.
Its usage extends to lithological interpretation and detection of
zones containing light oil or gas (Brock, 1986; Darlin, 2005;
Rose, 2006).
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Figure 1 – Study area (based on Milani & Araújo, 2003).

Sonic logs (DT) mark the time that a sonic pulse takes to
traverse a rock interval (Schlumberger, 1987). Therefore, sonic
log measures the transit time of a compressional wave through
the rocks. This time is related to porosity and lithology (i.e. den-
sity and composition). This log is commonly used to determine
porosity, and allow well-to-seismic correlations. Sonic values
depend on the matrix material, cement, type of fluid that fills the
pores, Formation pressure and temperature (Tiab & Donaldson,
2004). Transit time in water-saturated shales ranges from 58 to
143μs/ft (Ellis & Singer, 2008), whereas average values for sand-
stone and limestone are about 55.5 and 47.5μs/ft, respectively
(Bassiouni, 1994).

Density logs indicate bulk density (RHOB), i.e. the average
density of one unit of the Formation (rock + fluid) and it is defined
as the mass per volume unit of Formation (g/cm3). The profiling
tool contains a radioactive source of Cesium-137, which emits
high speed gamma rays. These electrons collide with rocks, los-
ing energy (i.e. Compton Effect). After several collisions, gamma
rays returning to the profiling tool are registered and counted.
Since the number of collisions is related to the number of elec-
trons contained in the rock, the tool allows inferences about rock
density. This log is widely used for lithology and porosity estima-
tives (Whittaker, 1985; Schlumberger, 1987).

METHODS

In order to assess the applicability of fuzzy logic and neural net-
works to predict lithofacies, the following steps (Fig. 2) were un-
dertaken here: (i) reorganization of core descriptions yielded in
the laboratory; (ii) creation of synthetic facies curves based on

core descriptions; (iii) fuzzy logic and neural networks training
based on 3 wells and 4 logs (GR, NPHI, RHOB, DT), (iv) data
processing by fuzzy logic and by neural networks, (v) assess-
ment of results obtained for 14 wells and validation. The Interac-
tive PetrophysicsTM (Senergy) software was used for fuzzy logic,
whereas GeoFrame/Litho Toolkit (Schlumberger) was used for
neural networks processing.

Figure 2 – Project methodology flow chart.

Facies clustering

Cores were described by Petrobras experts. Descriptions encom-
pass 3196 facies intervals distributed irregularly along 14 wells.
Core descriptions include approximately 21 facies. In the present
investigation, these descriptions were grouped into three major
groups: shale, sandstone and limestone (Table 1). Rhythmites

Brazilian Journal of Geophysics, Vol. 32(1), 2014
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Table 1 – Clustering of 21 lithologies yielded from core descriptions into synthetic, representative units
of shale, sandstone and limestone.

Shale Sandstone Limestone (carbonate)
Interlaminated siltite Compact or gradational

Interlaminated
and bioturbed shale sanstone

Radioactive shale Cemented sandstone
Carbonatic conglomerates

and breccias

Clayly shale
Interlaminated bioturbed

Rhythmite
sandstone

Sandy and clayly diamictite
Cemented sandstone with
intraclasts or bioturbation

—

Shale with layers of Interlaminated sandstone
bioturbed marlstone and shale

—

Interlaminated clayly siltite Thin interlaminated
and deformed sandstone sandstone and shale

—

Interlaminated clayly siltite Amalgamated coarse
and marlstone sandstone

—

Bioturbated marlstone Conglomerate —

—
Laminated medium

sandstone
—

—
Sandstone with

argillaceous intraclasts
—

and muddy interlaminated were grouped as “carbonate” based on
their descriptions. Moreover, their log responses present a com-
bination of low natural radioactivity (gamma ray) with high den-
sity (RHOB), which is characteristic of carbonates. Once facies
were grouped, core descriptions were used to create a facies log
restricted to cored intervals. For comparison and validation, all
Petrobras descriptions were assumed as correct, despite the fact
that samples were not available for further probation.

Fuzzy logic

Saggaf & Nebrija (2003) and Hsieh et al. (2003) used fuzzy logic
for geologic applications and lithofacies estimation in particular
contexts. A broader discussion of fuzzy logic in geology was pro-
vided by DeMicco & Klir (2004). Here, we used four curves for
data training via fuzzy logic: gamma ray (GR), neutron porosity
(NPHI), bulk density (RHOB) and sonic (DT) of three wells: 3NA
0001A RJS, 3NA 000 RJS and 3NA 0004 RJS. Initially, statis-
tics were independently calculated for each log of each facies
(shale (class 1), sandstone (class 2) or limestone (class 3)) for
all training wells. Among all descriptions, 216 points were shale
(class 1); 360 sandstone (class 2) and 29 limestone (class 3).
Statistics of each log of the three classes are presented in Fig-
ures 3, 4 and 5.

The distribution of values for each log and for all three classes
can be better assessed with crossplots (Fig. 6).

Based on the training statistics, (see Figs. 3 to 6), a fuzzy
model was applied to the other 11 wells. For each well, the prob-
ability of each curve fitting each of the three classes (lithofacies)
was calculated as follows:

P (Ci) =

√
ni × e−(C−μi)2/(2xσ2i ) (1)

where, P (Ci) = probability of curve C belonging to the litho-
facies i, ni = number of samples from lithofacies i, C = input
value of the log, μi = average value of log C for the lithofacies
i, σi = standard deviation of curve C to class i.

The probability sum was then calculated for each depth for
each log based on the following equation:

1/Pi = 1/P (C1i) + 1/P (C2i) + 1/P (C3i) + 1/P (C4i) (2)

Therefore, the final probability Pi or most likely solution was
computed. The lithofacies assigned to each interval was, in prac-
tice, the class with the highest probability.

Neural networks
Neural networks are parallel computing systems, distributed and
inspired in the human brain. These systems are adaptive and can

Revista Brasileira de Geof́ısica, Vol. 32(1), 2014
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Figure 3 – Histogram of log records for 216 samples classified as shales (a) Sonic= Minimum Value= 63.75µs/ft, Maximum Value = 114.05µs/ft, Average=
88.89µs/ft, Standard Deviation= 8.38; (b) Gamma ray=Minimum Value= 22.98 API, Maximum Value= 112.94 API, Median= 67.96 API, Standard Deviation=
14.99; (c) Neutron Porosity (NPHI)=Minimum Value= 0.1196 m3/m3, Maximum Value= 0.3512 m3/m3, Average= 0.2354 m3/m3, Standard Deviation= 0.039;
(d) Density (RHOB)= Minimum Value= 2.17 g/cm3, Maximum Value= 2.67 g/cm3, Average= 2.42 g/cm3, Standard deviation= 0.084.

Figure 4 – Histogram of log records for 360 samples classified as sandstone (a) Sonic= Minimum Value= 64.23µs/ft, Maximum Value= 116.33µs/ft, Average=
90.28µs/ft, Standard Deviation = 8.68; (b) Gamma ray= Minimum Value= 34.19 API, Maximum Value= 77.18 API, Median= 77.18 API, Standard Deviation =
7.17; (c) Neutron Porosity (NPHI)= Minimum Value= 0.1004 m3/m3, Maximum Value= 0.3558 m3/m3, Average= 0.2281 m3/m3, Standard Deviation= 0.042;
(d) Density (RHOB)= Minimum Value= 1.94 g/cm3, Maximum Value= 2.57 g/cm3, Average= 2.25 g/cm3, Standard deviation= 0.104.

learn or gain knowledge from data by means of artificial intelli-
gence techniques (e.g., Nóbrega & Souza Filho, 2003). Gener-
ally, the network is composed of simple processing units (nodes
or neurons). These units are arranged in one or more layers and
interconnected by links whose weight is indicative of the connec-
tion strength (Hewitson & Crane, 1994; Brown et al., 2000).

Neural networks are suitable for pattern recognition from
datasets because of their (i) ability to extract hidden patterns that
can be imperceptible to humans and other traditional statistical
techniques; (ii) facility to analyze data without any prior knowl-

edge about its distribution; (iii) possibility to work with noisy,
limited, interdependent and non-linear data; (iv) performance and
speed, particularly when spatial features have complex charac-
teristics and sources comprise different statistical distributions;
(v) option to add new data continuously as input layers; (vi) and
capability to analyze large data sets (e.g., Hemilson & Crane,
1994; Brown et al., 2000; Nóbrega & Souza Filho, 2003).

For this work, the neural network model was obtained by a
supervised system, using a training method coined Back Propa-
gation or Backward Propagation of Errors . As the name denotes,

Brazilian Journal of Geophysics, Vol. 32(1), 2014
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Figure 5 – Histogram of log records for 29 samples classified as limestone (carbonate) (a) Sonic= Minimum Value= 57.46µs/ft, Maximum Value= 78.28µs/ft,
Average= 67.87µs/ft, Standard Deviation = 3.47; (b) Gamma ray= Minimum Value= 14.23 API, Maximum Value = 52.73 API, Median = 33.48 API, Standard
Deviation = 6.42; (c) Neutron Porosity (NPHI) = Minimum Value = 0.0898 m3/m3, Maximum Value = 0.2054, Average= 0.1476 m3/m3, Standard Deviation =
0.0193; (d) Density (RHOB)=Minimum Value= 2.54 g/cm3, Maximum Value= 2.64 g/cm3, Average= 2.59 g/cm3. Standard deviation= 0.017.

Figure 6 – Crossplots. The upper and lower limits of the green bar indicate the standard deviation and
the red dot indicates the average. Class 1= shale. Class 2= sandstone. Class 3= limestone.

in this system the errors propagate backwards from the output to
the input nodes. The connection weights are modified during the
calculation and while data is propagated throughout the network.
The result is always compared to the expected results in order to
update the weights. This algorithm uses the gradient descent rule
(or delta rule) error for supervised learning. The aim of the algo-
rithm is to minimize function error, defined by the squared sum
of errors. Therefore, this method requires the computation of the
error function gradient for each iteration (cf. Bryson & Ho, 1969;
Rumelhart et al., 1986; Widrow et al., 1990).

It is possible to train a model with facies input (core descrip-
tions) and logs using a neural network system. During process-
ing, the system recognizes data patterns guided by the selected
logs. After training, the model can be applied to other wells in
order to recognize lithofacies for each logged depth.

For the neural network approach, wells 3NA 0001A RJS,
3NA 0002 RJS and 3NA 0004 RJS were also used for data train-
ing. Processing was based on 100 interactions, 2 hidden layers,
50% cross-validation (i.e., 50% of the data used in training was
also used for validation) and probability threshold of 0. Graphs

Revista Brasileira de Geof́ısica, Vol. 32(1), 2014
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presented in Figures 7 and 8 show the quality of the training pro-
cess. Figure 7 illustrates the learning rate, which is a representa-
tion of the difference between the desired output and the current
output. It is possible to note that, in the beginning of the training
process, the learning rate is higher, indicating that the algorithm
is continuously recognizing new patterns. However, after a certain
number of iterations, learning tends to stabilize at a certain level
and then to decay, which indicates that the algorithm is generat-
ing redundant knowledge and the system is saturated. Figure 8
shows that errors obtained with training and validation decrease
together, while the network is within learning process. The com-
bined decrease of curves indicate a good quality of training.

Figure 7 – Neural networks processing: learning rate vs. iterations.

Figure 8 – Cross validation: errors vs. iterations. Error is measured based on a
pre-defined value of 50% (i.e. 50% of the data used for training will also be used
for validation).

RESULTS AND DISCUSSION
Both methods used for lithofacies estimates proved effective
(Figs. 9, 10 and 11, and Table 2).

Results displayed in Table 2 indicate that both methods were
able to estimate lithofacies with an average above 70% of sim-
ilarity to core descriptions. It is noteworthy that, except for the
7NA 0007 RJS well, the results of neural networks are superior
to those obtained by fuzzy logic. The difference between the two
algorithms is pronounced when their average similarity to core
description are compared. For all 11 wells to which models were
applied, a similarity 10% higher was obtained through neural

networks. This dominance may be related to the fact that neural
networks also accounts for nonlinear data relationships and
trends in behavior among different variables (and not only the nu-
merical value of each input variable). It should be noted that the
reduction of the original 21 lithofacies to 3 main classes favored
the high percentage of accuracy for facies estimation using both
fuzzy logic and neural networks.

Statistics of the logs indicate that density and gamma ray
values were highly contrasting among facies. Conversely, sonic
log showed a minor variation between shale and sandstone (av-
erage 88.89 and 90.29μs/ft, respectively) and higher contrast
for limestone (average of 67.87μs/ft). A comparable pattern was
observed for neutron porosity (average of 0.24 and 0.23 m3/m3

for shale and sandstone, respectively; and 0.15 m3/m3 for lime-
stone).

This work presents an evaluation of the effectiveness of
lithofacies prediction for turbiditic reservoirs with particular de-
positional and diagenetic characteristics, under certain degree of
compaction and specific fluid characteristics. Such particularities
may impose limitations for extrapolation the models to other ar-
eas. Besides, variations of instruments and wireline performed
by different companies can affect the logs response and, therefore,
lithofacies estimation. These differences may require normaliza-
tion among wells before models are computed.

Facies prediction can be challenging for a database that in-
cludes several wells and large depth intervals. Despite the re-
quired generalizations, results obtained in this investigation were
rather positive and indicate that the methodology can be used
on similar case studies. Analogous applications of the methods
experimented here can be reached in the absence of core data.
In those cases, sidewall cores might be used for training and
modeling.

CONCLUSIONS

Results accomplished in this experiment proved the suitability of
neural networks and fuzzy logic algorithms for lithofacies deter-
mination based on neutron porosity, sonic, density and gamma
ray logs. For both methods, the similarity between lithofacies
described by geologists and estimated by the models was above
70%. Fuzzy logic and neural networks showed similarity means of
72.5% and 82.5%, respectively, proving the later to be more ac-
curate. Therefore, we favor the use of supervised neural networks
for lithofacies estimation, particularly to sequences with simi-
lar geologic characteristics as those observed in the Namorado
oil field.

Brazilian Journal of Geophysics, Vol. 32(1), 2014
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Figure 9 – Well 3NA 0002 RJS used to develop the model/training: 144 intervals described. Fuzzy logic and
neural networks depicted 92% and 97% of these intervals, respectively.

Figure 10 – Well 7NA 0007 RJS used to develop the model/training: 219 intervals described. Fuzzy logic and
neural networks recognized 87% and 85% of these intervals, respectively.

Revista Brasileira de Geof́ısica, Vol. 32(1), 2014
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Figure 11 – Well 7NA 0044D RJS used to develop the model/training: 62 intervals described. Fuzzy logic and
neural networks depicted 85% and 98% of these intervals, respectively.
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VES JH (Eds.). Geologia, Tectônica e Recursos Minerais do Brasil,
CPRM, Brası́lia, BR, p. 541–576.
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