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3-D SEISMIC MODELING AND DEPTH MIGRATION COMBINING THE EXTRAPOLATION
OF UPGOING AND DOWNGOING WAVEFIELDS

Gary Corey Aldunate1 and Reynam C. Pestana2

ABSTRACT. The 3-D acoustic wave equation is generally solved using finite difference schemes on the mesh which defines the velocity model. However, when
numerical solution of the wave equation is done by finite difference schemes, attention should be taken with respect to dispersion and numerical stability. To overcome
these problems, one alternative is to solve the wave equation in the Fourier domain. This approach is stabler and makes possible to separate the full wave equation in
its unidirectional equations. Thus, the full wave equation is decoupled in two first order differential equations, namely two equations related to the vertical component:
upgoing (-Z) and downgoing (+Z) unidirectional equations. Among the solution methods, we can highlight the Split-Step-Plus-Interpolation (SS-PSPI). This method
has been proven to be quite adequate for migration problems in 3-D media, providing satisfactory results at low computational cost. In this work, 3-D seismic modeling
is implemented using Huygens’ principle and an equivalent simulation of the full wave equation solution is obtained by properly applying the solutions of the two
uncoupled equations. In this procedure, a point source wavefield located at the surface is extrapolated downward recursively until the last depth level in the velocity
field is reached. A second extrapolation is done in order to extrapolate the wavefield upwards, from the last depth level to the surface level, and at each depth level the
previously stored wavefield (saved during the downgoing step) is convolved with a reflectivity model in order to simulate secondary sources. To perform depth pre-stack
migration of 3-D datasets, the decoupled wave equations were used and the same process described for seismic modeling is applied for the propagation of sources and
receivers wavefields. Thus, depth migrated images are obtained using appropriate image conditions: the upgoing and downgoing wavefields of sources and receivers
are correlated and the migrated images are formed. The seismic modeling and migration methods using upgoing and downgoing wavefields were tested on simple 3-D
models. Tests showed that the addition of upgoing wavefield in seismic migration, provide better result and highlight steep deep reflectors which do not appear in the
results using only downgoing wavefields.

Keywords: 3-D seismic modeling and migration, Upoing and downgoing wavefields, Split-Step Phase Shift Plus Interpolation method, Decoupled wave equations,
One-Way equations.

RESUMO. A equação da onda acústica tridimensional é normalmente resolvida usando-se esquemas de diferenças finitas sobre a malha que define o modelo de
velocidade. Entretanto, deve-se ter cuidado com a dispersão e a estabilidade numérica durante o processo de propagação da onda na malha. Uma outra alternativa,
bastante eficiente de se resolver a equação completa da onda, é desacoplando-a em duas equações de onda unidirecionais no domı́nio transformado de Fourier (solução
pseudo-espectral). Assim, a equação completa da onda é separada em duas equações diferenciais de primeira ordem relativa à componente vertical: equação da onda
ascendente (-Z) e da onda descendente (+Z). Normalmente, a equação unidirecional é resolvida com diferentes ordens de aproximação. Entre esses métodos, podemos
destacar o método “Split-Step-Plus-Interpolation” (SS-PSPI), que tem sido bastante adequado para problemas de migração em meios 3-D, fornecendo resultados a
um baixo custo computacional. Neste trabalho, o modelamento sı́smico 3-D foi implementado usando-se o princı́pio de Huygens com as duas equações de onda
unidirecionais desacopladas. Com o objetivo de simular uma solução equivalente à solução da equação completa, uma fonte pontual localizada na superf́ıcie é extra-
polada em profundidade, de forma recursiva, até atingir o último nı́vel de profundidade na malha do modelo de velocidades. Uma segunda extrapolação é realizada para
extrapolar para cima o campo de onda, desde o último nı́vel em profundidade até à superf́ıcie do modelo. Assim, os receptores localizados na superf́ıcie registram o
campo de onda ascendente, que trazem informações dos refletores em subsuperf́ıcie na forma de reflexões e difrações. Para realizar a migração pré-empilhamento em
profundidade de dados 3-D, usando-se as equações de onda desacopladas, o mesmo procedimento descrito para o modelamento sı́smico é utilizado para a propagação
dos campos de onda de fontes e receptores. Imagens migradas são obtidas usando-se condições de imagem apropriadas, onde os campos de onda da fonte e dos
receptores, descendente e ascendente, são correlacionados. Sobre modelos 3-D simples foram testados os métodos de modelamento e migração, levando em conta os
campos de onda ascendente e descendente. Ficando, assim, evidenciado que no método de migração sı́smica, proposto aqui, a adição do campo de onda ascendente
fornece um melhor resultado, ressaltando os refletores ı́ngremes que não aparecem nos resultados utilizando-se apenas a extrapolação do campo de onda descendente.

Palavras-chave: Migração e modelagem sı́smica 3-D, Migração em duas etapas mais interpolação, equações de ondas unidirecionais.
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INTRODUCTION

Seismic modeling plays an important role when processing and
interpreting seismic data. Modeling is the basis for the pre-stack
seismic migration which aims to obtain a subsurface image from
the dataset recorded at the acquisition surface. The seismic mod-
eling methods belong to two main categories: the first is based
on the integral solution of the wave equation and is commonly
called ray tracing. These methods are computationally efficient,
but present low accuracy on structurally complex models. The
second, which are based on the full wave equation and explicit
finite difference schemes, on the other hand, can generate more
accurate data, make possible to model seismic events such as
returning waves, duplex waves and multiple arrivals events. For
these methods the full acoustic wave equation is solved with time
as the preferred domain of evolution of the seismic waves. How-
ever, special attention should be taken into account while the
wavefield is propagated in time due to dispersion and stability
problems, which are typical from explicit finite difference meth-
ods (Thorbecke, 2012).

Recently, Xiaojun et al. (2006) and Wu et al. (2007) proposed
a modeling scheme using the one-way wave equation for common
shot gathers, where extrapolation of the wavefield can be made to
any arbitrary depth in the model. Here, in this work, for the model-
ing and migration of the seismic data, we present the decoupling
of the 3-D full wave equation into two unidirectional wave equa-
tions (Amundsen et al., 2008; Zhang & Wong, 2010). To place
the modeling, we use the solution of the two unidirectional equa-
tions (Zhang et al., 2006) and apply Huygens’ principle, adding a
secondary source to one of the unidirectional equations, as sug-
gested by Wu et al. (2007). The one-way extrapolation operator
used is the Split-Step-Plus-Interpolation – SS-PSPI (Chen & Du,
2010; Aldunate & Pestana, 2010, 2011). This operator was cho-
sen because it is robust, can deal very well with lateral velocity
variations, and has no azimuthal anisotropy in 3-D media. The
algorithm implemented for the modeling is quite simple, compu-
tationally efficient and produces no interference of multiple reflec-
tions or direct wave. Moreover, in simple models, the targets can
be readily recognizable as events in the seismogram recorded at
the surface of the model.

In the 3-D modeling process of common shot sections, a point
source is injected into the surface of the model and the extrapo-
lation of this wavefield associated with this source is performed
recursively for all depth levels in the velocity model. During the
downward extrapolation process in depth, the propagated wave-
field is stored for every depth level. That is, for each (X − Y )
plane. The downward extrapolation is taken as the positive direc-

tion, and called downward propagation or just “Down”. To simu-
late the wavefield in the upward direction, from the last depth level
until the surface of the model, the wavefield previously stored at
each depth level of the model is convolved with a reflectivity func-
tion and upward propagated. The wavefield at each depth level now
acts as a new secondary source, whose intensity is dominated by
the amplitude of the reflectivity at each grid point. The reflectivity
function is calculated from the velocity model. At the end of the
modeling process, the receivers along the surface record the in-
formation from the upward wavefield. Thus, the seismic modeling
is carried out using two undirectional wave equations.

It is also worth noting the following advantages of this model-
ing based on the principle of Huygens and the 3-D unidirectional
SS-PSPI operators, compared with finite difference methods: (1)
the source can be located exactly on the surface; (2) the signa-
ture of the source can be zero phase without dispersion effect in
the modeled section; (3) the modeled section is not contaminated
with the direct wave; (4) multiple scattering events are eliminated
as the type peg-legs, which are very well simulated with the solu-
tion of the full acoustic wave equation by finite difference schemes;
(5) due to the fact that the spatial derivatives in the solution of
the unidirectional wave equation are calculated in the spectral do-
main, stability problems are not observed in the evolution of the
waves in the mixed domain frequency-wavenumber space; (6) the
modeling can generate both duplex and returning waves.

These same uncoupled unidirectional equations can be used
for migrating 3-D seismic data and with a higher accuracy than
the conventional migration, producing the imaging of reflectors
with angles greater than 90◦ and associated to high lateral velocity
variations. The process for migration is similar to the modeling,
Huygens’ principle is again applied, that is, source and receivers
wavefield are stored up at each depth level in the down extrap-
olation procedure. Then these stored wavefield are extrapolated
upward recursively, during the second passage. Finally, for the
image formation in depth, appropriate imaging conditions are ap-
plied to correlate the wavefields of the source (up and down) and
receivers (up and down) (Jin & Xu, 2006; Ye & Jia, 2012).

To illustrate and validate the seismic modeling method pro-
posed in this work some 3-D common shot gathers were modeled
using two different 3-D velocity models and recorded along the
surface the model. Then, these two datasets were used to perform
pre-stack depth migration. Afterwards, the numerical test results
were analyzed to identify the events recorded in the modeling pro-
cess, as well as to verify the correct spatial position of the reflec-
tors imaged by the pre-stack migration method proposed in this
paper. The 3-D migration procedure, that takes into account the
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propagation steps of Up-Down waves using the SS-PPSI method
will be from now and on called SS-PSPI-UP-DOWN method. We
also demonstrate that this method makes possible to image reflec-
tors with slope beyond ninety degrees and the results were supe-
rior to those obtained by the SS-PSPI conventional method that
considers during the entire extrapolation process only the down-
ward wavefields.

UNCOUPLING OF THE 3-D ACOUSTIC WAVE EQUATION

The full acoustic wave equation for 3-D media is written as:

∂2p

∂z2
+
∂2p

∂x2
+
∂2p

∂y2
=

1

v2(y, x, z)

∂2p

∂t2
, (1)

where x, y, z are the spatial variables, t is the time, p(t, y, x, z)
is the acoustic pressure wavefield and v(y, x, z) is the propaga-
tion velocity in the medium.

To start the decoupling process of equation (1) in two first or-
der partial differential equations, we first apply a Fourier transform
in time, thereby obtaining the full wave equation in the frequency-
space domain:

∂2P

∂z2
+
∂2P

∂x2
+
∂2P

∂y2
= − ω2

v2(y, x, z)
P, (2)

where P = P (ω, y, x, z) and ω is the frequency. The pressure
field P (ω, y, x, z = 0) is known, but, ∂P∂z in z = 0 is un-
known, so, it is difficult to solve the equation (2), since that the
two boundary conditions are required. To overcome this difficulty,
we rewrite equation (2) putting in evidence the Z direction as the
preferred direction of propagation, obtaining then:

∂2P

∂z2
= −

(
ω2

v2(y, x, z)
+
∂2

∂x2
+
∂2

∂y2

)
P. (3)

Rewriting equation (3) in matrix notation, we have:

∂

∂z

⎡
⎣ P∂P
∂z

⎤
⎦ =

[
0 1

−S2 0

]⎡
⎣ P∂P
∂z

⎤
⎦ , (4)

where

S2 =

(
ω2

v2(y, x, z)
+
∂2

∂x2
+
∂2

∂y2

)
.

Naming the first array on the right hand side of equation (4),
as:

A =

[
0 1

−S2 0

]
, (5)

where the matrix A can be diagonalized using its eigenvectors
and eigenvalues, as:

A = V ΛV −1, (6)

where V,Λ, V −1 are defined, respectively, as:

V =

[
1 1

−iS iS

]
, (7)

Λ =

[
−iS 0

0 iS

]
, (8)

V −1 =
1

2

[
1 iS−1

1 −iS−1
]
, (9)

where V is composed of the eigenvectors associated to the matrix
A, Λ the eigenvalues of A and V −1 is the inverse of V .

Applying the Fourier transform to the spatial variables y, x in
the wave equation (3), and considering that v = v0(z), which
does not allow lateral variations, we obtain the following equation
in frequency-wavenumber domain:

∂2P

∂z2
= −

(
ω2

v20(z)
− k2x − k2y

)
P, (10)

where P = P (ω, ky, kx, z) and kx, ky are the horizontal
wavenumbers. The dispersion relation, i.e, the vertical wavenum-
ber kz, is defined as:

k2z =
ω2

v20(z)
− k2x − k2y. (11)

Then, equation (10) can be expressed as:(
∂2

∂z2
+ k2z

)
P =

(
∂

∂z
+ ikz

)(
∂

∂z
− ikz

)
P = 0.

(12)
Writing equation (12) in frequency-space domain, we have:(

∂

∂z
+ iKz

)(
∂

∂z
− iKz

)
P = 0, (13)

where the new dispersion relation (Kz) in this domain, is given
by the expression:

Kz =

√
ω2

v2(y, x, z)
+
∂2

∂x2
+
∂2

∂x2
. (14)

Now, decomposing the total wavefield P into a down wave-
field D and a up wavefield U , as:

P = D + U, (15)
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and considering the equations for D and U from equation (13)(
∂

∂z
+ iKz

)
D = 0, (16)

(
∂

∂z
− iKz

)
U = 0, (17)

we can add equations (16) and (17) taking into account equation
(15) to obtain:

∂

∂z
D+

∂

∂z
U = −iKzD + iKzU,

∂

∂z
(D + U) = −iKzD+ iKzU,

(18)

and
∂P

∂z
= −iKz(D − U). (19)

Expressing equations (15) and (19) in matrix notation and taking
advantage of the eigenvalues of A, we obtain:[

P
∂P
∂z

]
= V

[
D

U

]
. (20)

Therefore, the complete acoustic wave equation written in matrix
notation, equation (4), can be rewritten into its components D
and U , as:

∂

∂z
V

[
D

U

]
= (V ΛV −1)V

[
D

U

]
, or, (21)

∂

∂z

[
D

U

]
= (Λ− V −1 ∂V

∂z
)

[
D

U

]
. (22)

Thus we obtain the following decoupled equations for the compo-
nents D and U :

∂D

∂z
= −iKzD − 1

2Kz

∂Kz

∂z
(D − U), (23)

∂U

∂z
= +iKzU +

1

2Kz

∂Kz
∂z
(D − U). (24)

Equations (23) and (24) represent unidirectional wave equations,
which can be used for wavefield extrapolation in inhomogeneous
media. The extrapolation can be implemented using the above
equations, however, the downward and upward wavefield are still
coupled. During the extrapolation process, we note that the down
wavefield depends on the up wavefield while the up wavefield
is also required when the descending wavefield is extrapolated.
Then the extrapolation process is not easy to be implemented due

to this type of coupling between the wavefields. In the case where
the wavefield D has just incident wave at an angle of incidence
lower than the critical angle, the reflected wavefield amplitude
is small compared to the amplitude of U . In the same way, the
amplitude of U is small compared with the amplitude of the
wavefield D. Thus, for angles of incidence below the critical an-
gle, the fields U andD do not consider the multiple scattering of
seismic energy.

Disregarding the coupling of the upward and downward
wavefields, the relations (23) and (24) can be simplified to

∂D

∂z
= −iKzD − 1

2Kz

∂Kz

∂z
(D), (25)

∂U

∂z
= +iKzU +

1

2Kz

∂Kz

∂z
(−U). (26)

The equations (25) and (26) represent the unidirectional uncou-
pled equations obtained from the complete wave equation, and are
equations for the descending and ascending wavefields, respec-
tively. If the medium is homogeneous along Z direction, then
∂Kz
∂z
= 0. So, equations (25) and (26) can be further reduced

to:

∂D

∂z
= −iKzD, (27)

∂U

∂z
= +iKzU. (28)

Thus, using only a boundary condition, one can solve the unidi-
rectional wave equations (27) and (28), which can also be valid
for non-homogeneous media, because Kz contains the velocity
v(x, y, z) without any restrictions.

After applying the Fourier transform to equations (27)
and (28), and already in the frequency-wavenumber domain
(ω, kx, ky), the full wave equation separated in its unidirectional
equations (directions −Z and +Z), considers a medium with-
out lateral velocity changes, i.e, v = v0(z). The medium is for
each depth level assumed homogeneous in the X and Y direc-
tions and therefore just one velocity is needed. These equations
are expressed in terms of the vertical wavenumber kz as:

∂D

∂z
= −ikzD, (29)

∂U

∂z
= +ikzU. (30)

Equations (29) and (30) are partial differential equations of first
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order and have, respectively, the following solutions:

D(z) = e−ikzzD(0)

= e
−i ω
v0(z)

√
1−v

2
0(z)
ω2 (k

2
x+k

2
y) zD(0).

(31)

U(z) = e+ikzzU(0)

= e
+i

ω
v0(z)

√
1−v

2
0(z)
ω2 (k

2
x+k

2
y) z U(0).

(32)

3-D SPLIT-STEP-PLUS-INTERPOLATION (SS-PSPI)
OPERATOR
One way to overcome the restrictions of lateral homogeneity of
the solutions expressed in equations (31) and (32) is to take in
consideration the velocity variations in the lateral directions Y
and X, i.e. v = v(y, x, z). Thus, there will be a domain con-
flict, since in the square root term the velocity is in the spatial do-
main and the spatial derivatives are calculated in the transformed
Fourier domain, that is, as function of the spatial wavenumbers.
To overcome this conflict, we propose to use the SS-PSPI method
(Aldunate & Pestana, 2006, 2010, 2011; Chen & Du, 2010), where
the extrapolation operator for each temporal frequency is written
as independent functions. Applying the SS-PSPI method for the
operatorsD and U , equations (31) and (32), we obtain:

DDD(x, y; kx, ky) ∼
n∑
j=1

fDj (x, y)g
D
j (kx, ky), (33)

UUU(x, y; kx, ky) ∼
n∑
j=1

fUj (x, y)g
U
j (kx, ky), (34)

where DDD and UUU represent the 3-D SS-PSPI operator downward
and upward, respectively. The index j, with j = 1, . . . , n, in-
dicates the n reference velocities used in the solutions (31) and
(32), thus, the operator is applied n times, one for each reference
velocity: v01 , v02 , . . . , v0n . Therefore, it improves the accuracy
of the operator in horizontal directions X and Y , because only
a reference velocity would not be enough to handle strong lateral
velocity variations. The function gj(kx, ky) is responsible for
the phase-shift in the transformed Fourier domain (w, ky, kx),
and has the following form:

gj(kx, ky) = e
±i ω
v0j (z)

√
1−
v20j
(z)

ω2 (k2x+k
2
y) z
, (35)

where the negative sign corresponds to the operator DDD and the
positive to UUU . After an inverse spatial Fourier transform, i.e., in
the frequency-space domain (ω, y, x) a time shift is applied

(split-step correction) to take into account the lateral velocity vari-
ations. The time shift with the interpolation is given by:

fj(x, y) = hj(x, y)e
±iω

(
1

v(y,x,z)
− 1
v0j

)
z
, (36)

where hj(x, y) represents the interpolation function of the n
wavefields. The technique for selecting reference velocities used
in this work was presented by Aldunate & Pestana (2010).

Thus, the 3-D SS-PSPI operator is applied for each fixed
frequency, through the following steps: (1) phase-shift correc-
tion in the wavenumber domain given by gj(kx, ky); (2) spatial
Fourier transform, followed by a temporal phase correction in the
frequency-space domain using fj(x, y).

SEISMIC MODELING USING THE 3-D
SS-PSPI-UP-DOWN OPERATOR

Seismic modeling is a technique for simulating the propagation
of acoustic wave inside the Earth. The goal is to simulate the re-
sponse that would be recorded by seismic receivers located on
the surface, given a defined subsurface structure. This technique
is widely used in seismic interpretation and is an essential part of
the seismic inversion algorithms. Another important application
of seismic modeling is evaluation and planning of seismic acqui-
sitions (Carcione et al., 2002). Through modeling and pre-stack
depth migration the dataset and its seismic acquisition parameters
can be evaluated before the acquisition process.

In seismic modeling process, the kinematic point of view, the
seismic wave propagates in accordance with the Huygens’ princi-
ple, and in any instant of time the wavefront can be seen as a new
set of radiating sources. In turn, the geological structure of the
subsurface is represented by a model of consistent velocities with
a assigned velocity mesh at each point. Velocities whose values
are different between neighbour mesh points define an interface or
a reflector. Thus, the presence of an interface indicates change of
acoustic impedance. The reflectivity at each point of the velocity
model is computed from its spatial derivative as:

r(y, x, z) =

√(
∂v

∂y

)2
+

(
∂v

∂x

)2
+

(
∂v

∂z

)2
.

Thus, a reflective surface of greater amplitude is represented by a
higher impedance (strong velocity contrast) and, therefore, these
model points reflect more energy than the other mesh points where
the velocity is constant or presents a weakly velocity variations,
thus, it is a region in which the reflectivity has a small amplitude.

Brazilian Journal of Geophysics, Vol. 32(3), 2014
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With these considerations, the acoustic modeling in 3-D
medium using unidirectional operators given by equations (33)
and (34), is made through a recursive extrapolation of the wave-
field (that contains a source term: F ) from the surface level until
it reaches the deepest level over the mesh that defines the velocity
model. Then, that same wavefield is propagated upwards (acting
as a secondary source), recursively until it reaches the surface of
the model. The upward propagation part takes into account the
reflectivity which is convolved with the wavefield at each point of
the model, and thus, it has been incorporated into the propagation
of the ascending and descending wavefields using unidirectional
operators. This whole modeling process is described by the fol-
lowing equations:⎧⎪⎨

⎪⎩
∂D

∂z
+ ikzD = −F,

∂U

∂z
− ikzU = D ⊗ r,

(37)

where ⊗ denotes the convolution operation.
The seismic modeling process is achieved by the following

equation

SD(ω, x, y, z0 +Δz) =

=

n∑
j=1

hj(x, y) · fj(x, y)

×
[
F−1x,y
{
gj(kx, ky) ·

[
Fx,y
{
S(ω, y, x, z0)

}]}]
,

(38)

where Fx,y and F−1x,y represent the direct and inverse Fourier
transform, respectively.

The process starts with the source wavefield, S(ω, y, x, z =
0), that contains a Ricker zero phase-type wavelet and is defined
by function (F ), at the position (xs, ys, z = 0). Initially, it is
transformed into the domain (w, ky, kx) through a 2-D forward
Fourier transform – (Fx,y). Then the source wavefield is multi-
plied by gj(kx, ky), which corresponds to the phase-shift cor-
rection. After that, it is back transformed to the domain (w, y, x)
through a 2-D inverse Fourier transform – (F−1x,y). With the
source wavefield in this domain, the lateral velocity is corrected
by fj(x, y), which is called the split-step correction. Finally,
an interpolation procedure is applied using all wavefields through
the interpolation function hj(x, y). Thus, we obtain the source
wavefield in the next level (z0 + Δz). The whole process de-
scribed above can be reduced by the following compact notation,
where it is represented by the application of the operatorDDD to the
source wavefield as:

SD(ω, x, y, z0 +Δz) = DDD
{
S(ω, y, x, z0)

}
. (39)

Figure 1(a) illustrates the source wavefield downgoing extrapola-
tion process starting at the surface.

Figure 1 – Huygens’ principle – (a) A point source is injected at the surface of
the model and each point in the model constitutes a new source for propagation of
waves down. (b) During the upward extrapolation, using the same principle, each
point along the reflector is considered as a secondary source for the propagation
of waves upwards.

The downward propagation of the source wavefield is car-
ried out recursively until it reaches the maximum, N − 1 depth
levels, indicated by: zmax = zN−2 + Δz. During this pro-
cess of downward continuation at all depths, the source wavefield
SD(ω, x, y, zk) is saved, with k = 0, 1, . . . , N − 1.

Once in the level zmax = zN−1, the source wavefield is
propagated again, now upward, using the operator UUU , which is
given by equation (34). According to Huygens’ principle, at any
instant of time the wavefront propagates also in upward direc-
tion and thus generating secondary sources in all points of the
model. To take this in account, during the upward propagation
the reflectivity function is convolved with the extrapolated up-
ward wavefield and added to the field SD(ω, x, y, zk). Thus,
the resulting wavefield at each depth level also includes the wave-
field that was downward propagated. To perform the upward ex-
trapolation starting from the last level in depth, it considers that:
SU (ω, x, y, zN−1) = SD(ω, x, y, zN−1). Therefore, the
upward propagation is done through:

SU (ω, x, y, zN−1 −Δz) =
= UUU

{
SU (ω, y, x, zN−1) r(y, x, zN−1)

+SD(ω, y, x, zN−1)
}
,

(40)
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until the surface z0 = z1 − Δz of the model is reached. The
upward propagation procedure using Huygens’ principle is shown
in Figure 1(b).

On the surface of the model, the ascending wavefield is reg-
istered in the matrix G(w, y, x, z = 0), wherein at each point
of the surface (xr, yr, z = 0) there is a receptor.

The propagation scheme is repeated for each frequency ω.
All frequencies are summed and accumulated in the same matrix
G. Then, an inverse temporal Fourier transform is applied toG,
generating a recorded section in the time domain. That is,

G(t, xr, yr, z = 0) =

= F−1t
(∑
ω

G(ω, xr, yx, z = 0)

)
.

(41)

In the plane z = 0 and on each surface point (xr, yr , z = 0)
we will have a seismic trace recorded.

Seismograms and 3-D snapshots, obtained with this model-
ing procedure, are shown for different models and an analysis and
a detailed discussion of these numerical results are presented in
the numerical results section.

3-D SS-PSPI-UP-DOWN PRE-STACK DEPTH MIGRATION
The 3-D migration with conventional unidirectional operators is
performed by a downgoing extrapolation along the +Z direc-
tions of sources and receivers followed by the cross-correlation
imaging condition of sources and receivers wavefields at each
depth level. To perform seismic migration with the full wavefield
propagation (without taking into account the multi-scattering) the
same seismic modeling procedure described previously is ap-
plied. For migration, in addition to propagate the source wave-
field, the recorded data along the receivers is also propagated. So,
the migration procedure consists in save source wavefield (SD)
and receivers wavefield (GD), at each depth level zk, (during the
downward extrapolation). Then, those stored wavefield in each zk
level act as a new secondary source and both are upward extrap-
olated using the operator UUU . At each zk depth level the imag-
ing conditions is applied. It aims to correlate the sources and
receivers wavefields, which will form migrated images in depth.
The system of equations that describe this procedure is:⎧⎪⎨

⎪⎩
∂D

∂z
+ ikzD = −F,

∂U

∂z
− ikzU = D.

(42)

The migration process begins when the data recorded in the time
domain, G(t, xr, yr, z = 0), is transformed to the frequency

domain. With the implementation of the down extrapolation oper-
ator, equation (33), one obtains the data wavefield at a depth level
below, thus, it is extrapolated for a level z +Δz, expressed as:

GD(ω, x, y, z +Δz) = DDD
{
G(ω, x, y, z)

}
. (43)

Once covered all depth levels and considering that in the last
depth level GU(ω, x, y, zN−1) = GD(ω, x, y, zN−1), the
receiver wavefield is extrapolated upward, applying the ascending
operator UUU , by the following equation:

GU (ω, y, x, zN−1 −Δz) =
= UUU
{
GU (ω, y, x, zN−1) + GD(ω, y, x, zN−1)

}
,

(44)

where in this part of the extrapolation process the receiver wave-
field is not convolved with the reflectivity function. In our method,
the reflectivity is estimated based on the knowledge of the velocity
field. However, in most of the cases, the velocity model used for
migration is an approximated version of it. Thus, there is no ab-
solute certainty of the reflector location in the velocity model used
for migration.

Likewise, the wavefield of the source, S(ω, x, y, z = 0),
associated with a Ricker pulse is injected over the acquisition sur-
face of the model and then propagated on the velocity mesh. The
downward extrapolation of the source wavefield is carried out by:

SD(ω, x, y, z +Δz) = DDD
{
S(ω, x, , z)

}
. (45)

Again, starting form the last depth level (zN−1), the same pro-
cedure is applied and considering that in the last depth level
SU = SD , the upward propagation is given by:

SU (ω, x, y, zN−1 −Δz) =
= UUU

{
SU (ω, x, y, zN−1) + SD(ω, x, y, zN−1)

}
.

(46)

The whole process at the end of the migration procedure, as de-
scribed above, results in four wavefields: GD ,GU , SD andSU .

Now, an imaging condition needs to be applied to obtain the
migrated section. The imaging condition for common shot data is
usually applied taken the cross-correlation of the source (S) and
receivers wavefield (G) for all depth level and it is expressed as
(Claerbout, 1985):

I(y, x, z) =
∑
ω

S∗(ω, y, x, z) ·G(ω, y, x, z), (47)

where (y, x, z) is the spatial location of an image point in the
3-D volume and ∗ represents the complex conjugate.

As the S andG wavefields were decomposed in its descend-
ing and ascending wavefields, the correlation imaging condition,
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equation (47), can be now rewritten as:

I(y, x, z) =

=
∑
ω

[
SD(ω, y, x, z) + SU (ω, y, x, z)

]∗
×
[
GD(ω, y, x, z) +GU (ω, y, x, z)

]
,

(48)

and the possible imaging conditions for all these wavefields are:

IDD(y, x, z) =
∑
ω

S∗D(ω, y, x, z) ·GD(ω, y, x, z), (49)

where this is the conventional imaging condition, using only the
downward propagated wavefields.

The image obtained by:

IDU (y, x, z) =
∑
ω

S∗D(ω, y, x, z) ·GU (ω, y, x, z), (50)

will image reflectors with dips greater than ninety degrees, since
it takes into account the receptor wavefield propagated upwards
correlated with the downward wavefield of the source.

In a similar way, the imaging condition

IUD(y, x, z) =
∑
ω

S∗U (ω, y, x, z) ·GD(ω, y, x, z), (51)

will also image steep reflectors, because correlates the ascend-
ing wavefield of the source with the descending wavefield of the
receptor.

Imaging conditions given by equations (50) and (51) will im-
age reflectors reached by duplex waves, for example.

The next imaging condition, with only the ascending wave-
fields, is given by

IUU (y, x, z) =
∑
ω

S∗U (ω, y, x, z) ·GU (ω, y, x, z), (52)

and it can image reflectors which are affected by returning waves,
for example.

Using all these imaging conditions, the final migration will
be the sum of all images defined above. Thus, the final migrated
imaged is obtained by:

I = a1IDD + a2IDU + a3IUD + a4IUU , (53)

where the values of the weight function aj (from j = 1, 2, 3, 4)
have the purpose of weighting each image, as they have different
amplitudes, resulting in a final image that may have a better bal-
ance in amplitudes and improvement in terms of imaging quality.

NUMERICAL RESULTS

Seismic modeling was tested using four velocity and seismic mi-
gration was demonstrated using two generated seismic datasets.

Initially, we tested the 2-D seismic modeling on a part of BP
model, which has a salt body surrounded by low velocity strata,
which is shown in Figure 2(a). An interesting comparison is pre-
sented between the results obtained with the seismic modeling
method proposed in this work (Fig. 2(b)) and the results obtained
by seismic modeling with an explicit finite difference method,
which is shown in Figure 2(c). With the proposed technique, al-
most all descendents and ascendents events are taken into ac-
count. The only difference lies in the absence of modeled multiple
reflections, since the second term of equations (23) and (24) was
not considered. However, the modeling with full wave equation by
finite difference method takes into account the effect of multiple
scattering and all multiple reflection events. In Figures 2(b) and
2(c) the velocity model is overlaid to facilite the identification of
the events (reflections, multiples, and others).

To demonstrate the proposed modeling procedure, three sim-
ple 3-D models were used to perform seismic modeling experi-
ment. By convention, the depth directionZ is positive down, X is
the direction “Inline” and Y is the“Crossline” direction. Figure 3
shows the following models: (a) a plane, (b) the step (fault line),
(c) a salt diapir and (d) the SEG-EAGE-3D model. The models (a),
(b) and (c) have an associated velocity field with a minimum ve-
locity of 2000 m/s and a maximum velocity of 4000 m/s, with
spatial grid defined by nz = 100 points, nx = ny = 141
points, spaced by dx = dy = dz = 10m. In the step model,
the vertical reflector separate a strong lateral velocity variation.
For the salt diapir the velocity model consists of a high veloc-
ity cylinder (4000 m/s), surrounded by a low velocity equal to
2000 m/s. The cylinder body rests on a platform with a veloc-
ity of 4000 m/s. Both models were created with the purpose
to generate duplex waves during the modeling process. The du-
plex waves generation phenomenon can be observed on these
two models but it can be easily identified on the snapshots taken
from the step model. These duplex waves, if they are correctly
treated during the imaging procedure, will help to image the ver-
tical reflectors better. The last model, the SEG-EAGE-3D model,
has a complex structurally velocity model, as it is shown in
Figure 3(d). It has a velocity grid with nz = 201 points and
nx = ny = 214 points, spaced by dz = 20 m and
dx = dy = 40m.

The modeling results from these described models were ob-
tained with a shot injected approximately in the middle of the
models. The time sections with receivers located over the entire
surface to model, defined by X, Y, z = 0, were obtained and
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Figure 2 – Patch from 2-D BP velocity model (a); Snapshot of a modeled shot with the wave equation in its decoupled
unidirectional components (b); Snapshot of a shot with the full wave equation solved by the finite difference method (c).
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Figure 3 – 3-D velocity models: plane model (a); step model (b); the diapir model (c); and SEG-EAGE-3D velocity model (d).

snapshots during the propagation of the wavefield in these mod-
els, were saved to observe the seismic events.

Figure 4 shows the result of the 3-D seismic modeling on the
plane reflector model. Figure 4(a) shows the wavefield at the in-
stant of time t = 0.3s and t = 0.6s. The figure in the top,
was taken for a fixed depth along theX − Y plane. The two fig-
ures below, were taken for fixed horizontal positions X and Y . In
these two last figures, we can observe wavefronts that propagate
down and wavefront (reflected wave) that propagates upward. The
wavefronts are marked in the figures and identified, for example:
D − 0.3s corresponds to a descending wave (D – Downward)

at time equal to 0.3s. R−U − 0.6s corresponds to a reflected
and upward wavefront (U – Upward) at time 0.6s andD−0.6s
is a downward wavefront at time equal to 0.6s. We can observe
also thatR−U −0.3s is a ascending reflected wavefront in the
time equal to 0.3s, and also that T −D− 0.3s is a transmitted
and descending wavefront at time equal to 0.3s. These figures
clearly shows reflected and transmitted waves at different times
during the propagation modeling procedure. The flat interface is
marked at 0.5 km and it helps to visualize the right position of
the wavefronts hitting the interface. Figure 4(b) presents the seis-
mograms. Two time sections are shown: in the below part, are

Revista Brasileira de Geof́ısica, Vol. 32(3), 2014



�

�

“main” — 2015/3/16 — 16:12 — page 507 — #11
�

�

�

�

�

�

ALDUNATE GC & PESTANA RC 507

Figure 4 – Seismic modeling result of a shot using the 3-D SS-PSPI-UP-DOWN operator on the plane
model. (a) Snapshots: fixed depth (top) and constant X and Y sections (bottom). (b) Snapshot at a fixed
depth (top) and time sections taken along X and Y cross-section in the time section cube dataset.

the record of the ascending waves in the surface model for fixed
horizontal directions X and Y , in the top, a snapshot at 0.6s.
As expected for a plane model, we note that the shape of the re-
flected wave in time is a hyperboloid of revolution with its apex

at the position of the shot. Meanwhile, the snapshot for a fixed
depth cut, shows a wavefront with a shape of a perfect circle be-
cause the wave was propagating in a medium that does not have
velocity variation along the horizontal directions.

Brazilian Journal of Geophysics, Vol. 32(3), 2014
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Figure 5 – Seismic modeling result of a shot using the 3-D SS-PSPI-UP-DOWN operator on the step
model. (a) Snapshots: fixed depth (top) and constant X and Y sections (bottom). (b) Snapshot at a fixed
depth (top) and time sections taken along X and Y cross-sections in the time section cube dataset.

The result of 3-D seismic modeling on the step model
(Fig. 3(b)), clearly shows duplex waves, Figure 5(a). These waves
are generated by the reflection in the bottom horizontal reflector
followed by a reflection in the vertical reflector. In this model, the
vertical reflector is inside a medium with a strong lateral variation
velocity to enhance the generation of these waves. Also, the fol-
lowing events are flagged propagated upwards: R−U−0.7s is

the reflected wave at 0.7s andDu−R−U −0.7s is a duplex
wave 0.7s after the injected the shot. Already in Figure 5(b) we
can sees three slices that are the data recorded on the surface of
the model. The arrival of the duplex wave right after the registra-
tion of the reflected wave is clearly noted.

The result of 3-D seismic modeling on the diapir salt model
is shown in Figure 6. Figure 6(a) shows three cuts and one ex-

Revista Brasileira de Geof́ısica, Vol. 32(3), 2014
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Figure 6 – Seismic modeling result of a shot using the 3-D SS-PSPI-UP-DOWN operator on the di-
apir salt model. (a) Snapshot at 0.3 (top) for a fixed depth and constant X and Y sections (bottom).
(b) Snapshot at a fixed depth (top) and time sections taken along X and Y cross-sections in the time.

tra snapshot at t = 0.3s. In depth and cross cutting sections,
we can observe the propagation of wavefronts more quickly into
the cylinder. in the data registered at the surface model, shown in
Figure 6(b) and in the cross-sections of the seismogram, there is
the presence of the reflected wave and the duplex wave, and also a

reflection on the top of the cylinder. In the upper part of the figure
a snapshot is shown. To get a better view of the wavefronts prop-
agation, a sequence of snapshots in horizontal cut into uniform
time intervals were saved, as shown in Figure 7. These snapshots
show the propagation of the wavefront and the effects due to the

Brazilian Journal of Geophysics, Vol. 32(3), 2014
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Figure 7 – Sequence of snapshots taken for a horizontal cut (fixed depth) in the 3-D diapir salt model.

high velocity contrast as well as the presence of weak edge ef-
fects because a damping factor along the border of the model, as
proposed by Cerjan (Cerjan et al., 1985), was used. In the sec-
ond row of snaps, we can identify the duplex wave and observe its
propagation inside the velocity model.

To observe the propagation of the wavefronts in a complex
medium with the presence of a salt body, we used the SEG-EAGE-
3D model and Figure 8(a) shows slices of three snapshots super-
imposed on reflectivity. The propagation in the salt body is clearly
observed, where the wavefield travels with greater speed and in-
teracts with complex structures outside the salt body. Around
the body salt, complex propagations are observed and become
more evident in the seismogram cuts and snapshot shown in
Figure 8(b).

No effects of azimuthal anisotropy is observed in the 3-D seis-
mic modeling tests using the unidirectional operator SS-PSPI-
UP-DOWN. Also seismograms show clear imaging with a low
noise presence, making this type of modeling using coupled
downgoing and upgoing waves very useful and eficient for mod-
eling 3-D seismic models.

To test the 3-D pre-stack depth seismic migration proposed
here 500 families of common shots were modeled using the step
and diapir salt models. These shots were distributed evenly over
the surface X − Y at level z = 0. Figure 9(a) shows the re-
sult of the pre-stack depth migration using the conventional 3-D
SS-PSPI operator. In this case, only the descending source and
receivers wavefields were taken into account and the imaging con-
dition is given by equation (49). Cuts of the migrated cube toward
“Inline”, “Crossline” directions and in depth, show the horizon-
tal reflectors imaged in their correct spatial location. However, the
absence of vertical reflecting wall is evident in this result, therefore

only the down propagated wavefields were taken into account and
not those up propagated. Using 3-D PSPI-SS-UP-DOWN opera-
tor for pre-stack depth migration and the sum of the images from
the conditions given by the equations (50), (51) and (52), the mi-
grated image result is shown in Figure 9(b), where the vertical
reflector is now rebuilt. The difference between these two results
is very obvious, since the conventional migration method does
not take into account the duplex wave. Some spurious events can
be observed at the top due to the low density of the modeled shots.

The results of the depth migration of the dataset modeled on
the diapir salt model is shown in Figures 10(a) and 10(b), with
the 3-D SS-PSPI operator and the 3-D SS-PSPI-UP-DOWN op-
erators, respectively. Although the propagation in this medium is
more complicated due to the circular geometry of the diapir, the re-
sult of the migration with the 3-D SS-PSPI-UP-DOWN operators,
show a correct reconstruction of the steep reflector, with 90◦, and
outlining the cylindrical boundary of the diapir. Moreover, con-
ventional migration method result on these dataset, was not able
to image the vertical reflector, because the standard operator only
considers the propagation of the downgoing waves.

CONCLUSIONS

In this paper, we present a 3-D technique for seismic modeling
and pre-stack depth migration based on the unidirectional wave
equation solution.

The propagation of the wavefield is performed using the two
unidirectional equations, obtained from the decoupling of the full
acoustic wave equation. These unidirectional equations take into
account the propagation of the ascending and descending wave-
field separately. However, multiple scattering events are not taken
into consideration during the extrapolation procedure. Huygens’s

Revista Brasileira de Geof́ısica, Vol. 32(3), 2014
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Figure 8 – Seismic modeling result of a shot using the 3-D SS-PSPI-UP-DOWN operator on the SEG-EAGE-
3D model. (a) Snapshots: fixed depth (top) and constant X and Y sections (bottom). (b) Snapshot at a fixed
depth (top) and time sections taken along X and Y cross-sections in the time section cube dataset.
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Figure 9 – Pre-stack depth migration of the step model with the 3-D PSPI-SS
operator (a) and with the 3-D PSPI-SS-UP-DOWN operator (b).

Figure 10 – Pre-stack depth migration of of diapir salt model with the 3-D SS-
PSPI operator (a) and with the 3-D data SS-PSPI-UP-DOWN operator (b).

principle is appropriately applied during the propagation of both
upwards and downwards wavefields.

Due to its robustness and computational efficiency, the 3-
D unidirectional SS-PSPI operator is used to make the upward
and downward extrapolation of the source wavefield during the
modeling procedure for source and receivers for migration. This
3-D operator named SS-PSPI-UP-DOWN has been proven to
be suitable for propagation in complex 3-D media and without
azimuthal anisotropy effects.

The sections modeled with the 3-D SS-PSPI-UP-DOWN op-
erator show seismograms with good quality and without the
presence of numerical dispersion, including models of complex
structure as the SEG-EAGE-3D. The snapshots show the correct

propagation of the wavefronts, both up and down, thereby simu-
lating one full wave propagation.

3-D seismic migration was performed to validate the seismic
modeling algorithm and two datasets of pre-stacked were used.
The results of the migration with the 3-D SS-PSPI-UP-DOWN op-
erator show reflectors well imaged, including those associated
with strong lateral velocity contrast and also good imaging of
vertical reflectors due to the correct treatment of “duplex” waves
during the extrapolation procedure. Thus, 3-D SS-PSPI-UP-
DOWN operator was demonstrated to be superior to the conven-
tional 3-D SS-PSPI operator and constitutes an efficient alter-
native to image steep reflectors, having a great potential to be
applied in real 3-D data.
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