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APPLICATION OF A SPATIAL VERIFICATION METHOD TO GFS PRECIPITATION FORECASTS

Fabiani Denise Bender and Rita Yuri Ynoue

ABSTRACT. This study aims to describe a spatial analysis of precipitation field with the MODE tool, which consists in comparing features converted from gridded
forecast and observed precipitation values. This evaluation was performed daily from April 2010 to March 2011, for the 36-h GFS precipitation forecast started at

00 UTC over the state of São Paulo and neighborhood. Besides traditional verification measures, such as accuracy (A), critical success index (CSI), bias (BIAS),
probability of detection (POD), and false alarm ratio (FAR); new verification measures are proposed, such as area ratio (AR), centroid distance (CD) and 50th and 90th

percentiles ratio of intensity (PR50 and PR90). Better performance was attained during the rainy season. Part of the errors in the simulations was due to overestimation
of the forecasted intensity and precipitation areas.
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RESUMO. Este estudo tem como objetivo descrever uma análise espacial do campo de precipitação com a ferramenta MODE, que consiste em converter valores de

precipitação de grade do campo previsto e observado em objetos, que posteriormente serão comparados entre si. A avaliação é realizada diariamente sobre o estado

de São Paulo e vizinhança, para o peŕıodo de abril de 2010 a março de 2011, para as simulações do modelo GFS iniciadas às 00 UTC, na integração de 36 horas.
Além da verificação através de ı́ndices tradicionais, como probabilidade de acerto (PA), ı́ndice cŕıtico de sucesso (ICS), viés (VIÉS), probabilidade de detecção (PD)

e razão de falso alarme (RFA), novos ı́ndices de avaliação são propostos, como razão de área (RA), distância do centroide (DC) e razão dos percentis 50 e 90 de
intensidade (RP50 e RP90). O melhor desempenho ocorreu para a estação chuvosa. Parte dos erros nas simulações foi devido à superestimativa da intensidade e da

área de abrangência dos eventos de precipitação em relação ao observado.
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INTRODUCTION

Verification techniques for the spatial field of precipitation have
been typically based on grid overlays in which the forecast grid is
matched to an observation grid or a set of observation points and
from these overlays, the pair of forecast/observation is compared
and evaluated using categories defined by a 2×2 contingency
table (Wilks, 2006). The performance of the numerical weather
prediction model is then determined by a variety of traditional ver-
ification measures such as probability of detection, false alarm
ratio, and critical success index, in which the hits and misses of
precipitation are based on the presence or absence of rain event.

It is known that precipitation is highly discontinuous in space
and time (Casati et al., 2004) and due to significant spatial vari-
ability; their structure and specific location can be difficult to
forecast (Brown et al., 2007; Biazeto & Silva Dias, 2012). Some of
the difficulties associated with prediction diagnostic errors using
traditional approaches for the verification of spatial forecasts have
been described by Davis et al. (2006a-b). Therefore, traditional
verification measures usually reduce the performance of forecast.

In this context, the Method for Object-based Diagnostic Eval-
uation (MODE) has been suggested as a technique to be applied
to the analysis of the precipitation field. This verification tool
for the evaluation of precipitation fields is an “Object-based” ap-
proach, in which forecast and observed areas of precipitation are
represented and compared as objects, and characterized by at-
tributes such as location, size, and intensity of the systems (Davis
et al., 2006a; Brown et al., 2007; Davis et al., 2009). Besides,
MODE is publicly available at the Model Evaluation Tools website
(MET – www.dtcenter.org/met/users).

Most studies in the literature apply precipitation verification
indices for a few days only. It is known in operational meteorology
centers that models tend to have better performances during some
seasons of the year, especially during the summer rainy months.
Greater errors are usually found on spring and autumn. This study
aims to add quantitative verification of the Global Forecast Sys-
tem (GFS) to the São Paulo state for a one year period. This paper
describes an application of Method for Object-based Diagnostic
Evaluation (MODE) and its application for the verification of spa-
tial precipitation forecast. Section 2 presents a brief description
of the GFS model and the verification tool applied in this study;
the predicted and observed data used in the application of MODE;
an example of object-identification approach to one forecast and
observed precipitation field; and some verification measures ana-
lyzed. Section 3 presents results, with a daily analysis for January
and July, and then, a monthly analysis for the traditional and new
measures. Finally, in Section 4 there is a synthesis of the results
and we present our conclusions.

METHODOLOGY

GFS Model

GFS is a weather forecast global spectral model and is run op-
erationally since 1991 at the National Centers for Environmental
Prediction (NCEP, Kanamitsu, 1989; Kalnay et al., 1990; Kana-
mitsu et al., 1991). It is run four times a day at 00, 06, 12 and
18 UTC but for this work only the forecast initiated at 00 UTC
and 3-hour forecast outputs for the first 36 hours with a hori-
zontal resolution of 1◦ of latitude × 1◦ of longitude was con-
sidered. The main parameterizations may be listed as: i) Pan
& Wu (1995) deep convection parameterization, which is acti-
vated when the cloud work function exceeds a certain threshold;
ii) Han & Pan (2011) shallow convection scheme, which uses
a bulk mass-flux parameterization; iii) Grid-scale condensation
and precipitation, which are based on Zhao & Carr (1997); iv)
Planetary Boundary Layer processes follow Troen & Mahrt (1986);
and v) Rapid Radiative Transfer Model for long (Mlawer et al.,
1997) and shortwave (Hou et al., 2002) radiation. Changes are
continuously made and annual reviews are available for 2009 to
2013. These evaluations however, are made either within a global
perspective, showing, for example, hemispheric performance for
500 hPa geopotential height forecasts or at a local perspective,
presenting precipitation performance for the Continental U.S.A.
These reviews and more details can also be found at GFS home-
page (http://www.emc.ncep.noaa.gov/GFS/.php).

MODE

MODE is applied in the following order: conversion of gridded
precipitation values of forecast and observed field into precipi-
tation objects; definition of measurement attributes for forecast
and observed objects; merging of objects in the same field;
matching of objects from the forecast and observed fields; com-
parison of forecast and observed object attributes and summary
of the results.

The object identification involves two parameters. First, a
convolution ratio R is applied to the data field, which consists
in smoothing the raw data using a convolution filter. The second
parameter is a threshold, T, which is applied to the convolved
field to create objects that look similar to those which a human
eye would draw. The choice of parameter T depends on whether
we are interested in more or less intense precipitation areas. Once
the objects have been identified, various attributes are assigned
for categorization and evaluation. A fuzzy logic process is used
for the merging and matching of objects, in which weightings are
assigned to the different attributes. As a result, values of interest
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are defined, which range between 0 and 1, with zero indicating
no interest, and one indicating strong interest. Finally, pairs of
objects which have values above the threshold are merged (if
the objects are in the same field) or matched (if they are in dif-
ferent fields).

MODE was applied to evaluate daily rainfall accumulation
(mm, at synoptic time 12 UTC) from 01/04/2010 to 31/03/2011 at
São Paulo state, Brazil. Comparisons were made with the outputs
from the 1◦ × 1◦ Global Forecast System (GFS) (NCEP, 2003)
model, on a 36-h forecast initialized at 00 UTC. As gridded ob-
servations, MERGE 0.25◦ × 0.25◦ fields (Rozante et al., 2010),
which consists of a combination of the Tropical Rainfall Measur-
ing Mission (TRMM) satellite precipitation estimates with surface
observations over South America, were used. The study area has
a high density of observations and according to Rozante et al.
(2010) MERGE performance is equivalent to averaging stations
data within the grid boxes.

For MODE evaluation, both observed and forecast fields
were interpolated to a new grid with 0.25◦ of spatial resolution,
on a domain from 53.6W to 43.6W of longitude and from 25.6S
to 19.6S of latitude covering São Paulo state and neighborhood
(Fig. 1). For object identification, the convolution radius R was
set to 2 (grid units) and the threshold T was 0.3 mm.day–1. This
threshold was used by Chou & Justi da Silva (1999) for identifying
rain events over South America’s. For the matching and merging
processes an interest value greater than 0.7 was considered.

a) An example of application: identification of objects

Figure 2 (upper panel) shows the raw precipitation fields from GFS
(left column) and MERGE (right column), valid for 1st April 2010
12 UTC, for the domain and spatial grid resolution considered
in the application of MODE. The values shown are 24-h rainfall
accumulations (mm). In Figure 2 (lower panel) we have the ob-
jects identification after the application of convolution ratio and
threshold to the raw fields. Three forecast objects and four ob-
served objects were identified. Each rain area identified within
the analysis field is referenced to as an object. Table 1 shows a
matrix with total interest value for each forecast/observed object
pair. We have assumed that a match occurs when the total interest
is 0.7 or greater. Using this threshold, forecast object 1 matches
observed objects 1 and 2 (therefore, observed objects 1 and 2 are
merged). Forecast object 2 matches observed object 4. Forecast
object 3 is unmatched, because total interest was less than 0.7,
for all objects of the observed field. Each object is indicated by a
distinct color, and those to be merged within the same field have
the same color (Fig. 2, lower panel).

Table 1 – Interest matrix. Total interest values are computed
for each forecast/observed object pair. Total interest values
greater than 0.7 are shown in bold numbers in the matrix.

ObservedForecast
1 2 3 4

1 1 0.86 0.51 0.25
2 0.33 0.07 0.51 0.90
3 0.48 0.15 0.25 –

The next step is the consideration of objects within a polygon.
A polygon is composed of a single object, or a combination of
objects within the same field in which these objects have neces-
sarily values of interest greater than 0.7 relative to at least one
object of compared field. Thus, by definition, a polygon is a set
of one or more objects in the same field, which is compared with
a set of one or more objects in another field. The combination of
objects considers that individual simple objects in the same field
can be merged before comparison, thus forming a large compos-
ite object.

Polygons are limited by lines and those polygons filled with
the same color in predicted and observed fields indicate matched
pairs of polygons. The comparisons are then done matching poly-
gons of the predicted and observed fields.

For this example, two pairs of polygons were compared
(Fig. 3). The first pair, identified by a red color, is formed by one
object of the forecast field in Figure 2 (red forecast object 2) and
one object of the observed field (red observed object 4 in Fig. 2).
The second pair identified by the green color, consists by the
comparison of a single object from forecast field (green forecast
object 1 in Fig. 2) with a composite of combined objects from the
observed field (objects 1 and 2, both green in Fig. 2). Blue objects
from forecast and observed fields were not merged or matched.

Table 2 presents some attributes of the polygons pairs com-
pared shown in Figure 3. The first pair of matched polygons (red
area) has an interest value of 0.90, while the second pair (green
area) has an interest value equal to 0.95. For the first pair of
matched polygons, the forecast area was 81 grid units, while the
observed area showed 14 units grid, with area ratio of 5.79; in-
dicating that the forecast highly overestimated the precipitation
area. For the second pair of matched polygons the forecast area
was closer to the observed area, with area ratio equal to 1.19.

Lower values for the centroid distance and the angular differ-
ence, for the pair of second set of polygons, with values of 2.59
and 8.35, compared to the pair of the first set, with values equal
to 2.69 and 30.72, indicates that the location and inclination
of rainfall areas forecast for the second set was closer to the
observation. Values of convex hull equal to 0 for the two pairs
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Figure 1 – Domain used in the evaluation of precipitation fields simulated by the GFS with the MODE tool bounded by the rectangle.

Figure 2 – Spatial field of 24-h accumulated rainfall (mm) simulated by the GFS, in 36-h forecast (left); observed by MERGE (right),
of 1 April 2010, both with spatial grids resolution and domain considered in MODE with a horizontal spatial resolution of 0.25◦ lati-
tude/longitude (upper panel). Objects identified by MODE (lower panel).
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of polygons, indicates an overlap of the polygons, with intersec-
tions areas of 14 and 761 grid points.

Figure 3 – Forecast (left side) and observed (right side) rain objects identified
by MODE, for a threshold of 0.3 mm and (lower panel) forecast and observed
polygons identifications for total interest values> 0.7.

Finally, the GFS tended to overestimate precipitation inten-
sity, for both the 50th (0.45 and 4.93 mm forecasted versus 0.32
and 2.36 mm observed for the 1st and 2nd pair of polygons re-
spectively) and 90th (1.30 and 16.79 mm forecasted versus 1.08
and 16.06 mm observed for the 1st and 2nd pair of polygons
respectively) percentile values. However, extreme values (90th
percentile) were better predicted.

Table 2 – Attributes of polygons pairs matched between GFS forecast and
MERGE observed fields for the case of 1 April 2010, shown in Figure 3.

Attributes
Polygon pairs matched

1 2
Total interest 0.90 0.95
GFS area 81 943
MERGE area 14 790
Area Ratio (AR) 5.79 1.19
Intersection area 14 761
Union area 81 972
Centroid Distance (CD) 2.69 2.59
Convex Hull Distance 0 0
Angular Difference 30.72 8.35
GFS 50th Intensity 0.45 4.93
MERGE 50th Intensity 0.32 2.36
50th Percentile Ratio (PR50) 1.41 2.09
GFS 90th Intensity 1.30 16.79
MERGE 90th Intensity 1.08 16.06
90th Percentile Ratio (PR90) 1.20 1.05

b) An example of application: traditional and new
verification measures

Figures 2 and 3, as described above, shows the objects and
pairs of polygons identified for the predicted (left) and observed
(right) field of daily rainfall accumulation on 1st April 2010.
The traditional verification measures are calculated based on the
rainfall areas identified after applying the parameters R and T, i.e.
based on grid points of Figure 3 (upper panel). The new veri-
fication measures suggested by MODE, area ratio, intersection
and union areas, centroid and convex hull distances, angular dif-
ferences, intensities and intensity ratios are calculated based on
each matched pair polygons, corresponding to the internal region
bounded by the black line, lower panel of.

The distribution of forecast and observed events can be de-
fined based on four categorical forecasts in a contingency table:
“a” number of event forecasts that is observed, usually called hits;
“b” number of event forecasts that is not observed, called false
alarm; “c” number of no-event forecasts corresponding to ob-
served events, called misses; and “d” number of no-event fore-
casts corresponding to no-events observed, called correct rejec-
tion. Based on these categories the following verification mea-
sures are defined as:

– Accuracy (A): total number of correct forecasts divided by
the total number of forecasts, it is the percent of correct
forecasts, A = (a + d)/(a+ b+ c+ d).

– Critical Success Index (CSI): total number of correct event
forecasts divided by the number of events forecasts and
observed, CSI = (a)/(a + b+ c).

– Bias (BIAS): total number of event forecast divided by
the total number of observed events, BIAS = (a +
b)/(a+ c).

– Probability of detection (POD): number of correct event
forecasts divided by the number of observed events,
POD = (a)/(a + c).

– False Alarm Ratio (FAR): number of false alarm divided
by the total number of event forecasts, FAR =

(b)/(a+ b).

The new verification measurements made between matched
pairs of polygons are: centroid distance (CD), area ratio (AR),
and intensities for the 50th and 90th ratio percentiles (PR50
and PR90).

The traditional verification measures determined for this day
are summarized in Table 3. The A is around 75%. The CSI varies
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around 67%. The BIAS indicates overestimation of precipitation
area of the order of 1.30. The POD shows performance in the
order of 92% due to the fact that GFS forecasts precipitation over
a large area, covering the area of observed precipitation. The FAR
value is in the order of 30%.

Table 3 – Traditional verification measures index verified by MODE for the daily
accumulation precipitation field of 1st April 2010, shown in Figure 3.

A CSI BIAS POD FAR
75% 67% 1.30 92% 30%

The new verification measures for this day were already shown in
Table 2 and are highlighted in bold. The area ratio (AR) is overes-
timated causing the displacement of centroid distance (CD) of the
polygons pairs compared. This area overestimation would explain
the traditional indices: high POD and low FAR, due to large num-
ber of hits and low values of misses. Rainfall intensities are also
compared with this new approach, although the traditional way
could be done making contingency tables for different categories.

RESULTS
a) Application of MODE for the daily forecasts of
January and July
MODE was applied daily for a whole year period, from 1st April
2010 to 31st March 2011. An one year period is not enough to
evaluate GFS performance, but since the objective of this study
was to present a new precipitation verification method, during
this year the rainy summer and dry winter seasons could be en-
compassed. Here we show the daily evolution of statistical in-
dices only for the months of January and July (Figs. 4, 5, 6
and 7), representative of rainy summer and dry winter months
respectively.

In January, GFS showed good performance, with a success
rate above optimal set for a useful forecast (60%, Fig. 4a). The
lowest scores of A coincide with days on which has the low-
est scores of CSI (Fig. 4b) and highest BIAS (Fig. 4c) and FAR
(Fig. 4e).

On Figure 5 we show the evolution of the daily new indices
for the month of January. In Figure 5a, it is observed that the GFS
model predicts events with larger spatial extent (in units of grid)
in relation to the observed. This greater precipitation forecast area
is found throughout the whole study period, as will be commented
on Figure 8. The largest overestimation of areas coincide with the
greater centroid distances between forecast/observed polygons
pairs (Fig. 5b), explaining the lowest performance of the tradi-
tional indices and also the good performance due to POD. There-

fore, the overestimation of the area and the displacement of the
forecast events imply in a higher number of false alarms. Regard-
ing the intensity of rainfall events, the events of weak to moderate
intensity (PR50) showed an overestimation pattern (Fig. 5c), while
events of higher intensities (RP90) tend to be forecasted near the
observed intensities (Fig. 5d). It is interesting to notice that not
only the area was overestimated, but also the intensity of rainfall,
but the 90th, despite the larger area, was better estimate.

For the month of July, the traditional and new indices are
shown in Figures 6 and 7, respectively. It is clear from both fig-
ures that the model simulates better precipitation fields for the
summer season. This is primarily due to fewer and weaker rain
events occurring in smaller areas during the dry season. Index A
(Fig. 6a) assumes on average values above 60%. The best scores
of CSI occur on days from 14 to 18/07, when the indices of POD
(Fig. 6b), BIAS (Fig. 6c) and FAR (Fig. 6e) have the best scores.
By checking the new indices it is found that precipitation events
forecast/observed had lower spatial extent in grid units (Fig. 7a)
compared to the daily evolution of January. The best perfor-
mance of the GFS, with higher CSI, POD and lower values of
BIAS and FAR on days from 14 to 18 coincides with the period
in which rainfall events had greater coverage area and therefore
with lower values of the centroid distance (CD) (Fig. 7b), agree-
ing with the fact that events with smaller spatial extent present
greater difficulty to be predict correctly in terms of location, and
thus have higher false alarms. In Figure 7d-e, the PR50 indicates
overestimation of the intensities, while PR90 presents sometimes
a pattern of overestimation and in other times an underestimation
pattern, but with a ratio closer to unity.

Days in which the new performance measures were absent
in the graphics are those without polygons pairs been compared.

b) Monthly Mean Evolution

In order to quantify the annual oscillation of the verification sta-
tistical indices evaluated, the monthly mean for each index was
calculated and is shown in Figures 8 and 9, where monthly
evolution refers to the average of the daily indices for the corre-
sponding month.

As Figure 8a shows, A, for each month evaluated, remained
above 70%. In the months between May to September (dry sea-
son, Prado et al., 2008) the A index was around 80%. CSI, by
having a direct relationship with the occurrence of rain, presents
satisfactory results, greater than 70%, in the summer rainy
months (December to March), while the lowest levels, below
50%, occurring in the months of the dry season (May to Septem-
ber) (as show in Fig. 8b), coinciding with the highest values
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Figure 4 – Traditional verification indices, for the daily rainfall accumulation of GFS, in 36-h forecast, identified by MODE for January 2011.
(a) Accuracy (A), (b) Critical Success Index (CSI), (c) Bias (BIAS), (d) Probability of Detection (POD), and (e) False Alarm Ratio (FAR).

Figure 5 – New verification measures index, for the daily rainfall accumulation of GFS, in 36-h forecast, identified by MODE for January 2011.
(a) Number of grid points with precipitation, (b) Centroid Distance (CD), (c) 50th percentile ratio (PR50), and (d) 90th percentile ratio (PR90).

of BIAS (Fig. 8c), and FAR (Fig. 8e) and lowest scores of POD
(Fig. 8d).

The GFS presented BIAS above 1, both in the dry and wet
season, agreeing with McBride & Ebert (2010), who also found

a pattern of overestimation of precipitation area with respect to
7 operational models over Australia for one year period. The high-
est values of overestimation (above 2) occurring from April to
October, thus covering the entire period of the dry season (May to

Brazilian Journal of Geophysics, Vol. 32(3), 2014
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Figure 6 – Traditional verification indices, for the daily rainfall accumulation of GFS, in 36-h forecast, identified by MODE for July 2010.
(a) Accuracy (A), (b) Critical Success Index (CSI), (c) Bias (BIAS), (d) Probability of Detection (POD), and (e) False Alarm Ratio (FAR).

Figure 7 – New verification measures index, for the daily rainfall accumulation of GFS, in 36-h forecast, identified by MODE for July 2010.
(a) Number of grid points with precipitation, (b) Centroid Distance (CD), (c) 50th percentile ratio (PR50), and (d) 90th percentile ratio (PR90).

September), with the maximum BIAS occurring on October. De-
spite the overestimation in the summer months, the model has
values close to the unity.

FAR values were below 30% in the months from December
to March, i.e. in summer season. In the months between May to
September, the FAR assumes the highest values, exceeding 50%,
thus indicating that in this period the expected rainfall events, in

terms of area, presents a high risk of false alarm (Fig. 8e).
The months from May to September (dry season) had the

worst performance, with lower values of CSI, POD and a marked
overestimation BIAS and high FAR. Thus, there is a need for
adjustments in the microphysics and cumulus parameterization
of the model, in order to have better performance in the region
studied.

Revista Brasileira de Geof́ısica, Vol. 32(3), 2014
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Figure 8 – Monthly mean traditional verification indices identified by MODE for period of April 2010 to March 2011. (a) Accuracy
(A), (b) Critical Success Index (CSI), (c) Bias (BIAS), (d) Probability of Detection (POD), and (e) False Alarm Ratio (FAR).

Despite the small predictability for the period from May to
September, highest values for A were observed. Although differ-
ent reasons may explain the differences in precipitation, we can
highlight two of them: the first, a higher frequency of days with-
out rain predicted/observed, and the second, that both forecast
and observed rain areas show little spatial area coverage. Thus,
if the prediction and observation are presented in different loca-
tions, although A is high, the FAR is also high, but CSI and POD
are smaller.

Figure 9 shows the monthly evolution for the new verifica-
tion measures proposed by MODE. It is observed that there are
more grid points with precipitation predicted than observed for
the whole period, with greatest areas from December to March
covering the summer rainy season (Fig. 9a). However, greatest
area ratio overestimate is found for the dry season, agreeing
with the highest values of BIAS. The period with smaller rain-
fall areas (from April to September), is the same one with longer
distances between the centroids of pairs of forecast/observed

Figure 9 – Monthly mean new verification indices identified by MODE for the period of April 2010 to March 2011. (a) Number of
grid points with precipitation, (b) Centroid Distance (CD), (c) 50th percentile ratio (PR50), and (d) 90th percentile ratio (PR90).

Brazilian Journal of Geophysics, Vol. 32(3), 2014
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polygons (Fig. 9b), agreeing with the lower scores of CSI and
POD and higher values of BIAS and FAR. The smaller distances
from the centroid occurs during the rainy season; coinciding
with larger coverage precipitation areas.

Interestingly, as was observed for the months of January and
July, the 50th percentile on Figure 9c shows an overestimate for
almost all the months evaluated. However, the 90th percentile is
closer to the observation intensity. In general, models tend to
overestimate the lowest precipitation intensities and underesti-
mate the highest intensities (Cartwright & Krishnamurti, 2007).

CONCLUSIONS

This study presented an object-based approach for the evaluation
of spatial forecast fields applied to daily accumulation rainfall
during one year over São Paulo state, Brazil. Beyond traditional
verifications measures, this new tool, MODE, is able to provide a
large variety of information about the forecast performance.

Based on the traditional verification measures, it is concluded
that the GFS has a reasonable representation when it takes into
account the accuracy index. The best predictability index of rain-
fall events occur in the months from December to March (JFM
– summer season), with high values of CSI, POD and smaller
BIAS and FAR. The new indices provide more information: there
was an overestimation pattern in terms of spatial coverage, in grid
units as in intensity of rain events. With regard to intensity, the
50th percentile simulated is generally larger than those observed;
however, the 90th percentile is close to the observations. The new
indices also show that the low scores of BIAS and FAR coincide
with the dry season, when the precipitation events have lower
spatial extent and are more difficult to be forecast in the right
position.

The advantage of MODE use is that as an object-based met-
ric, it allows to obtain a large variety of diagnostic and meaning-
ful information about the performance of precipitation forecast.
That is, while traditional statistics provide numbers that can be
used to monitor a model forecast performance the new indices
provide information about the way in which a forecast went wrong
or did well.
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