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REVERSE TIME MIGRATION BY INTERPOLATION AND PSEUDO-ANALYTICAL METHODS

Rafael L. de Araújo1 and Reynam da C. Pestana2

ABSTRACT. Within the seismic method, in order to obtain an accurate image, it is necessary to use some processing techniques, among them the seismic
migration. The reverse time migration (RTM) uses the complete wave equation, which implicitly includes multiple arrivals, can image all dips and, therefore, makes

it possible to image complex structures. However, its application on 3D pre-stack data is still restricted due to the enormous computational effort required. With recent
technological advances and faster computers, 3D pre-stack RTM is being used to address the imaging challenges posed by sub-salt and other complex subsurface

targets. Thus, in order to balance processing cost and with image’s quality and confiability, different numeric methods are used to compute the migration. This work
presents two different ways of performing the reverse time migration using the complete wave equation: RTM by interpolation and by the pseudo-analytical method. The

first migrates the data with different constant velocities and interpolate the results, while the second uses modifications in the computation of the Laplacian operator in

order to improve the finite difference scheme used to approximate the second-order time derivative, making it possible to propagate the wave field stably even using
larger time steps. The method’s applicability was tested by the migration of two-dimensional pre- and pos-stack synthetic datasets, the SEG/EAGE salt model and the

Marmousi model. A real pre-stack data from the Gulf of Mexico was migrated successfully and is also presented. Through the numerical examples the applicability
and robustness of these methods were proved and it was also showed that they can extrapolate wavefields with a much larger time step than commonly used.

Keywords: acoustic wave equation, seismic migration, reverse time migration, pseudo-spectral method, pseudo-analytical method, pseudo-Laplacian operator.

RESUMO. No método sı́smico, a fim de se obter uma imagem precisa, faz-se necessário o uso de técnicas de processamento, entre elas a migração sı́smica.

A migração reversa no tempo (RTM) empregada aqui não é um conceito novo. Ela usa a equação completa da onda, implicitamente inclui múltiplas chegadas, con-
segue imagear todos os mergulhos e, assim, possibilita o imageamento de estruturas complexas. Porém, sua aplicação em problemas 3D pré-empilhamento continua

sendo restrita por conta do grande esforço computacional requerido. Mas, recentemente, com o avanço tecnológico e computadores mais rápidos, a migração 3D

pré-empilhamento tem sido aplicada, especialmente, em problemas de dif́ıcil imageamento, como o de estruturas complexas em regiões de pré-sal. Assim, com o
intuito de equilibrar o custo de processamento com a qualidade e confiabilidade da imagem obtida, são utilizados diferentes métodos numéricos para computar a

migração. Este trabalho apresenta duas diferentes maneiras de se realizar a migração reversa no tempo partindo da solução exata da equação completa da onda:
RTM por interpolação e pelo método pseudo-anaĺıtico. No método de interpolação, a migração é aplicada utilizando-se várias velocidades constantes, seguido de um

procedimento de interpolação para obter a imagem migrada através da composição das imagens computadas a partir dessas velocidades constantes. Já no método

pseudo-anaĺıtico, introduz-se modificações no cálculo do operador Laplaciano visando melhorar a aproximação da derivada segunda no tempo, que são feitas por es-
quemas de diferenças finitas de segunda ordem, possibilitando assim propagar o campo de onda de forma estável usando-se passos maiores no tempo. A aplicabilidade

das metodologias foi testada por meio da migração de dados bidimensionais sintéticos pré- e pós-empilhamento, o modelo de domo de sal da SEG/EAGE e o modelo
Marmousi. Um dado real bidimensional, adquirido no Golfo do México não empilhado, também, foi usado e migrado com sucesso. Assim, através desses exemplos

numéricos, mostra-se a aplicabilidade e a robustez desses novos métodos de migracão reversa no tempo no imageamento de estruturas complexas com os campos de
ondas propagados com passos maiores no tempo do que os usados comumente.

Palavras-chave: equação da onda, migração sı́smica, migração reversa no tempo, método pseudo-espectral, método pseudo-anaĺıtico, operador pseudo-Laplaciano.
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INTRODUCTION

Since the beginning of the seismic digital era, several migration
methods have been developed in order to produce the most accu-
rate subsurface image with less computational cost. The reverse
time migration (RTM) proposed by Whitmore (1983), McMechan
(1983) and Baysal et al. (1983) is considered the most accurate
migration method. Using the complete wave equation, RTM im-
plicitly includes all the arrivals and has no limitations on reflectors
dip, allowing the imaging of complex structures. Historically it
had its use restricted, mainly due to its high computational cost.
But recently, with technological advances and faster computers,
3D pre-stack migration has been more commonly applied, espe-
cially in difficult imaging problems such as imaging of sub-salt
complex structures.

For pos-tack data, RTM is performed propagating the
recorded data in reverse time within the subsurface model, us-
ing half the velocity of the medium. After the reverse propagation
of the recorded wave field, it is captured at t = 0, the image con-
dition, to build the migrated image. For pre-stack data, the RTM
algorithm requires a different image condition. When migrating
unstacked data, typically, a shot is propagated in the direct way,
the recorded data is similarly propagated but in the reverse di-
rection or back propagated. In this case, the image is formed by
cross-correlation of the source and receiver fields at each prop-
agation step in time to determine when a reflection event occurs.
RTM can also be considered as a reverse process of modeling and
the same code used for modeling can also be used for performing
the RTM.

From the wave equation or any of its solutions, one can use
different strategies to solve its discrete equivalent by numerical
methods. The proposition of such methodologies is the core of
this study, in which are presented two ways for resolving the wave
equation, RTM by interpolation and pseudo-analytical methods.

Normally, the wave equation is approximated using finite dif-
ference second-order schemes to approximate the time derivative,
and fourth-order schemes for the spatial derivatives. Approxima-
tion of the time derivative can introduce numerical errors such as
pulse shape distortion and numerical dispersion. To avoid these
numerical problems, small time intervals have to be used, reduc-
ing the computational efficiency of this method. Consequently,
methods of finite differences become slow when used for mod-
eling large-scale, large offsets and high frequency acoustic data
due to the need to use several points per wavelength and small
time steps to minimize numerical undesirable artifacts.

The pseudo-spectral methods, where the spatial derivatives
are evaluated in the wave number domain, can help reduce this

numerical problem because they use accurate optimum operators
for a given spatial sampling of the grid. Using the Fast Fourier
Transform (FFT) to implement the pseudo-spectral method, one
can achieve computational efficiency and a high degree of accu-
racy (Kosloff & Baysal, 1982; Reshef et al., 1988).

However, there is no single and simple solution to improve the
computation of the time derivatives. This problem does not have
an optimal solution and recently several alternatives have been
proposed. In this paper, we propose two new methods to improve
the time derivative computation.

The pseudo-analytical method proposed here, using the
pseudo-spectral method to solve the spacial derivatives, allows
the obtaining of more accurate and stable results with lower com-
putational time than the conventional finite differences method
(second-order on time) if applied to a problem that would require
the same degree of precision.

The RTM by the pseudo-analytical method is performed with
a modification of the Laplacian operator, i.e., it uses a pseudo-
analytical operator which is comprised of second-order spatial
derivatives in order to improve the approximation by finite differ-
ences of the second-order time derivatives. The regular scheme to
approximate the time derivatives using finite difference operators
of second-order is widely used but requires small time sampling
in order to avoid numerical errors, even if accurate spatial oper-
ators are used. Modifications on the Laplacian operator leads to
a pseudo-differential operator that can be further simplified, as-
suming a constant reference velocity. Thus, it can be easily calcu-
lated in the wave number domain. It also shows that the pseudo-
analytical Laplacian operator is reduced to the Laplacian operator
when the time sampling interval used in the extrapolation is very
small, i.e., analytically when the propagation time step becomes
very small.

In RTM by interpolation, the wavefield evolution in time is
based on the wave equation solution for constant velocity case.
The wavefield propagation in time, i.e., its time evolution, is
made considering some number of constant velocities, here im-
plemented with the procedure proposed by Bagaini et al. (1995).
The wavefield time evolution is taken in the Fourier domain, us-
ing the exact solution of the wave equation for constant velocity.
Then, these fields are transformed back to the time-space domain
and a process of linear interpolation is applied. The contribution
of each wavefield in the migrated image is determined by a weight
function which is calculated according to the velocity model.

The validation of the proposed methods is demonstrated here
through post and pre-stack reverse time migration applied on the
SEG/EAGE and Marmousi synthetic data, plus a real data from the
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Gulf of Mexico. The numerical results show the proposed meth-
ods have the ability to image steep reflectors and complex struc-
tures using a larger time step than the commonly used by pseudo-
spectral methods, while preserving the entire range of frequencies
present in the data.

EXACT WAVE EQUATION SOLUTION

Given the complete wave equation:

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
− 1
v2
∂2P

∂t2
= 0 (1)

where P = P (x, y, z, t) is the pressure field and v =
v(x, y, z) is the velocity, to evaluate it analytically as a function
of time, it can be rewritten:

∂2P (x, t)
∂t2

= v2(x)
(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
P (x, t) (2)

where the vector position is defined by (x) = (x, y, z), the
wave propagation velocity model is given by v(x) and the pres-
sure field expressed as P (x, t).

Following the deduction presented by Pestana & Stoffa
(2010), an operator −L2 can be defined:

v2(x)
(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
= −L2 (3)

and the following differential equation is obtained:

∂2P (x, t)
∂t2

= −L2P (x, t) (4)

Given the initial conditions P (x, t = 0) = P0 and
∂P(x,t)
∂t
|t=0 = Ṗ0, the equation solution is:

P (t) = cos(Lt)P0 +
sin(Lt)

L
Ṗ0 (5)

Using the solution presented at Eq. (5) it is possible to eval-
uate the fields P (t+Δt) and P (t−Δt). Summing then and
using some trigonometric relations, it follows that:

P (x, t+Δt) + P (x, t−Δt) = 2 cos(LΔt)P (x, t) (6)

This equation can be used to perform the wavefield time
evolution, both in the forward or reserve direction.

For the reserve time migration, the wave field P (x, t−Δt)
can be computed using Eq. (6), knowing the fields P (x, t+Δt)
and computing the operator cos(LΔt) applied toP (x, t) at each
time step evolution.

RTM BY INTERPOLATION

The central idea of the reverse time migration by interpolation is
to use the complete wave equation solution with constant veloc-
ities, propagate the wavefield using a certain number of different
velocities followed by a process of interpolation in the time-space
domain. The contribution from each wavefield is calculated based
on the velocity model.

After a spatial Fourier transform, i.e., with the data at the time-
wave number domain, the time evolution is made considering dif-
ferent constant velocities. Then, an inverse Fourier transform is
applied, followed by a process of interpolation of the extrapolated
sections on the time-space domain. This way, the method permits
the propagation on the Fourier domain, using the complete wave
equation and involving the most representative velocities of the
wavefield. Conceptually, the idea is similar to the one used with
the PSPI (phase-shift plus interpolation) migration, commonly
applied to extrapolate the wavefield on depth but using the uni-
directional wave equation in the frequency-wave number domain.

Starting with Eq. (4) and following the procedures at Ray-
mond (1991), an pseudo-differential operator is defined to the j-
th derivative of P with respect to t, which is given by:

∂jtP ≈
1

(2π)3

∫ ∞
−∞

[
iL(x, k)

]j
ϕ(k)ei(k·x)dk (7)

where the k = (kx, ky, kz) are the wave numbers correspond-
ing to x and ϕ(k) is defined by the equation:

ϕ(k) =
∫ ∞
−∞
P (x)e−i(k·x)dx (8)

It is known that the expansion by Taylor series of the wave-
field P (x, t+Δt) from a known field P (x, t) is given by:

P (x, t+Δt) = P (x, t) +
∞∑
j=1

∂jtP (x, t)
j!

(Δt)j (9)

where ∂jt denotes the j-th derivative with respect to time.
Rewriting Eq. (9) and inserting Eq. (7), the next equation is

obtained:

P (x, t+Δt) = P (x, t) +
∞∑
j=1

Δtj

j!

×
[
1

(2π)3

∫ ∞
−∞

[
iL(x, k)

]j
ϕ(k)ei(k·x)dk

] (10)

It is known that the Taylor series expansion of the exponential
function ex is given by ex =

∑∞
j=0

xj

j!
. Using this relation and

Brazilian Journal of Geophysics, Vol. 32(4), 2014



�

�

“main” — 2015/5/13 — 12:15 — page 756 — #4
�

�

�

�

�

�

756 REVERSE TIME MIGRATION BY INTERPOLATION AND PSEUDO-ANALYTICAL METHODS

expanding the summation on Eq. (10), it can be observed that
the field P (x, t+Δt) can be written as:

P (x, t+Δt) =
1

(2π)3

∫ ∞
−∞
e[iL(x,k)Δt]ϕ(k)ei(k·x)dk (11)

Evaluating and summing the fields P (x, t + Δt) and
P (x, t−Δt) according to the solution on Eq. (11):

P (x, t +Δt) + P (x, t −Δt)

=
1

(2π)3

∫ ∞
−∞
ϕ(k, t)ei(k·x)

[
eiL(x,k)Δt + e−iL(x,k)Δt

]
dk

(12)

or:

P (x, t+Δt) + P (x, t−Δt)

=
1

(2π)3

∫ ∞
−∞
ϕ(k, t)· 2 cos [L(x, k)Δt]ei(k·x)dk

(13)

It can be noticed that for the constant velocity case, Eqs. (13)
and (6) are exactly the same solutions for the acoustic wave
equation.

It is worth to notice that the pseudo-differential operator in
the space domain L(x) = v(x)

√−∇2, when represented in
the space-wave number domain, has the following form:

L(x, k) = v(x)
√
k2x + k

2
y + k

2
z (14)

which is exactly the same pseudo-differential operator derived at
Zhang & Zhang (2009).

Moreover, it can be noticed that the time extrapolation is done
with the multiplication of the spatial Fourier transform of the field
by a cosine function whose argument depends on the wave num-
ber and the velocity. This way, the procedure can be interpreted as
a phase shift of the wave field applied on the Fourier domain.

The cosine function, in general, can be approximated by a
separate two-term series:

2 cos[L(x, k)Δt] ≈
n∑
j=0

aj(x)bj(k) (15)

where n is the number of terms, and aj(x) e bj(k) are separate
real functions depending on x e k, respectively.

This way, Eq. (13) can be rewritten:

P (x, t+Δt) + P (x, t−Δt)

≈
n∑
j=0

aj(x)
1

(2π)3

∫ ∞
−∞
ϕ(k, t)bj(k)ei(k·x)dk

(16)

In the solution given by Eq. (16), aj(x), considering the two-
dimensional case, represents a matrix that contains the weights

used in the linear interpolation. They are calculated based on the
velocity model for each reference velocity (aj(v(x))), which are
computed using optimum reference velocities. In order to find
these velocities, it was used the procedure proposed by Bagaini
et al. (1995) in which the reference velocities (v1, v2, . . . , vn)
are computed using the entropy of the velocity distribution criteria
in the [vm, vM ] interval, where vm is the minimal velocity of the
whole field and vM the maximum one. The terms bj are given
by bj(k) = cos(vj

√
k2x + k

2
y + k

2
zΔt), depending on each

reference velocity and on the time marching step.
Finally, the reverse propagation on time can be written as:

P (x, t−Δt) = P (x, t+Δt)

+

n∑
j=0

aj(x)FT−1{bj(k)FT P (x, t)}
(17)

From Eq. (17), for each marching step on time, the method
requires a fast Fourier transform (FT ) and n inverse Fourier
transform (FT−1). This way, the computational cost to obtain
P (x, t − Δt) is proportional to the number of terms (n) or the
amount of reference velocities (vj ’s) and to the cost of each Fast
Fourier Transform.

Regarding the method stability, a study was done based on
time and spatial sampling and on the reference constant veloc-
ity. Applying the eigenvectors methodology used in Pestana et al.
(2011), the presented method is stable for the 2D case if:

v
√
k2x + k

2
zΔt ≤ π (18)

Considering the highest spatial frequencies kx = π/Δx
and kz = π/Δz, and the maximum velocity present on the
model:

vmaxΔt

ΔxΔz

√
(Δx)2 + (Δz)2 ≤ 1 (19)

IfΔz = Δx:

vmaxΔt

Δx
≤
√
2

2
≈ 0.71 (20)

The same analysis can be done for the tri-dimensional case, in
which the stability condition is given by the following inequation:

vmaxΔt

Δx
≤
√
3

3
≈ 0.58 (21)

Considering that the regular pseudo-spectral method, using a
second-order approximation to the time derivative and computing
the spatial derivatives by the Fourier method, according to Kosloff
& Baysal (1982), for the 2D case, vmaxΔt

Δx
≤ 0.2. This way, it can

be seen that the presented method can perform the time evolution
of the wave field in a stable way and without numerical dispersion
using larger time steps than the regular pseudo-spectral method.

Revista Brasileira de Geof́ısica, Vol. 32(4), 2014
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RTM BY PSEUDO-ANALYTICAL METHOD

As seen before, numerical methods that uses second-order finite
differences schemes to approximate the time derivative, even the
ones that use the Fourier method to compute the spatial deriva-
tives, require a small time step in order to minimize such problems
as numerical dispersion. There are several solutions to this prob-
lem and the pseudo-analytical method is one of them, proposed
here to be applied with the reverse time migration.

The pseudo-analytical method, presented by Pestana et al.
(2011), consists in a modification on the Laplacian operator and,
this way, permitting a stable propagation of the wavefield using
larger time steps than the ones possible with the conventional
pseudo-spectral method. By the use of pseudo-analytical opera-
tors, a better approximation of the time derivative can be obtained.
Modifications to the way the Laplacian operator is computed lead
to a simplified differential pseudo-operator using a constant ref-
erence velocity which is easily calculated in the wave number
domain.

From Eq. (6), summing −2P (x, t) to both sides of the
equation:

P (x, t+Δt)− 2P (x, t) + P (x, t−Δt)
= 2
[
cos(LΔt)− 1]P (x, t) (22)

Rewriting it in a convenient way, in a similar way to the
second-order approximation of the time derivative by finite dif-
ferences:

P (x, t+Δt)− 2P (x, t) + P (x, t−Δt)
Δt2

= v2(x)
2 [cos(LΔt) − 1]P (x, t)

v2(x)Δt2

(23)

Expanding the cosine function on the right side of the Eq. (23)
and considering a constant velocity (v0), the following pseudo-
Laplacian operator can be defined:

Γ(L0,Δt) =
2[cos(L0Δt)− 1]

v20Δt
2

≈ 2

v20Δt
2

[
− (L0Δt)

2

2
+
(L0Δt)

4

24
− . . .

] (24)

where L20 = −v20∇2 and −∇2 in the Fourier domain is equal
toK2, whereK =

√
k2x + k

2
y + k

2
z while kx, ky and kz are

the spatial wave numbers.
Now, the operator Γ(L0,Δt) can be rewritten according to

the following expression:

Γ(L0,Δt) ≈ ∇2 + v
2
0Δt

2

12
∇4 − ... (25)

In addition, it can be noticed that the operator Γ(L0,Δt) is
exactly the same Laplacian operator (∇2), when the time interval
Δt is very small. This way, the constant velocity v0, that appears
on higher orders, is seen as a compensation velocity applied to
each term of the pseudo-Laplacian operator.

The pseudo-analytical method introduced by Etgen & Brands-
berg-Dahl (2009) is here called the zeroth order approximation
and is given by the following equation:

P (x, t+Δt)− 2P (x, t) + P (x, t−Δt)
= (v(x)Δt)2 Γ(L0,Δt)P (x, t)

(26)

where Γ(L0,Δt) in the Fourier domain is written as:

Γ(L0,Δt)⇐⇒ 2[cos(v
2
0 K

2Δt2)− 1]
v20Δt

2
(27)

As the Γ(L0,Δt) operator varies slightly with respect to
v0, more terms can be used to represent the pseudo-Laplacian
operator, this way, improving the approximation of the second
derivative in time.

Again applying the Taylor series expansion of the cosine
function on Eq. (22), the wavefield propagation equation can be
rewritten as:

P (x, t+Δt)− 2P (x, t) + P (x, t−Δt)
= −(LΔt)2P (x, t) + O(L,Δt)P (x, t)

(28)

where O(L,Δt) represents a higher-order time derivatives op-
erator that, when applied toP (x, t), tends to improve the approx-
imation of the second derivative in time.

Replacing Eq. (6) on Eq. (28):

O(L,Δt) = 2

[
cos(LΔt)− 1 + (LΔt)

2

2

]
(29)

Using the operator O(L,Δt) obtained on Eq. (29), Eq. (28)
is used to derive the expression for the second-order pseudo-
analytical method, given by:

P (x, t+Δt)− 2P (x, t) + P (x, t −Δt)
= −(LΔt)2P (x, t) + (v(x)Δt)4 Γ2(L0,Δt)P (x, t)

(30)

where the pseudo-Laplacian second-order operator Γ2(L0,Δt)
is given by:

Γ2(L0,Δt) =
2

(v0Δt)4

×
[
cos(L0Δt)− 1 + (L0Δt)

2

2

] (31)

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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It can be noticed that the first term on the right side of
Eq. (30) is exactly the same expression for the pseudo-spectral
approximation of the second derivative in time. And the second
term acts as a correction term.

If the operator Γ2(L0,Δt) is calculated in the Fourier
domain, Eq. (30) is written as:

P (x, t+Δt)− 2P (x, t) + P (x, t−Δt)
= −(vΔt)2∇2P (x, t)

+(v(x)Δt)4 FT−1{Γ2(K,Δt)FT P (x, t)}
(32)

With the same technique used in the second-order approx-
imation, higher orders approximations can be derived for the
pseudo-analytical method. For the fourth order approximation,
the solution for the wave equation has the form:

P (x, t+Δt)− 2P (x, t) + P (x, t−Δt)
= −(LΔt)2P (x, t) + 1

12
(LΔt)4P (x, t)

+ (v(x)Δt)6 Γ4(L0,Δt)P (x, t)

(33)

where Γ4(L0,Δt) is the pseudo-Laplacian operator given by:

Γ4(L0,Δt) =
2

(v0Δt)6

×
[
cos(L0Δt)− 1 + (L0Δt)

2

2
− (L0Δt)

4

24

] (34)

Concerning the method’s stability, applying again the eigen-
values method, the stability condition for the zeroth order approx-
imation is given by:

[
1 +
1

2
(vΔt)2Γ(K)

]2
≤ 1 (35)

If 12(vΔt)
2Γ(K) < 0, the method is stable. This way:

1

2
(vΔt)2F (K) = v2

cos(v0ΔtK)− 1
v20

< 0 (36)

Satisfying the equation (36) implies that | cos(φ)| < 1
where φ = v0Δt

√
k2x + k

2
y + k

2
z . Considering the maximum

frequency present in the data:

φ = v0Δt
√
k2x + k

2
y + k

2
z

= 2πΔtf ≤ 2πΔtfmax
(37)

This way, the largest sampling interval Δt that still ensures
accuracy for the method is related to the maximum frequency pre-
sented. Thus, fmax = 1

2Δt
, which corresponds to φ = π.

For the two-dimensional case, using again the maximum spa-
tial frequencies kz = π

Δz
and kx = π

Δx
, and still considering

Δx = Δz, from equation (37) follows that:

v0Δt

Δx
≤
√
2

2
≈ 0, 71 (38)

The method can still be extended to higher order approxima-
tions. For the second-order approximation:

1

2

[− (vΔtK)2 + (vΔt)4Γ2(K)] < 0 (39)

Rewriting the operator Γ2 as:

Γ2(K) =
Γ(K) +K2

(v0Δt)2
(40)

and replacing it on equation (39):

(vΔtK)2

2

[(
v2

v20
− 1
)
+
v2Γ(K)

v20K
2

]
< 0 (41)

Considering the approximation

Γ(K) = −K2 + v
2
0Δt

2

12
K4,

and doing the same considerations about the spatial frequencies
kz and kx and forΔx = Δz, the stability condition is achieved
to the second-order approximation:

v0Δt

Δx
≤
√
6

π
≈ 0, 78 (42)

RESULTS
In order to test the applicability of the proposed methods, two-
dimensional synthetic datasets were migrated, as well as a real
non stacked data.

To perform the post-stack migration, it was used the SEG-
EAGE salt dome model, whose velocity model is shown on Fig-
ure 1 and has velocities varying from 1524 m/s to 4481 m/s. The
grid spacing inx and z directions are both 12.19 m. The migrated
image, in this case, is obtained through the reverse propagation
in time of the seismic data recorded along the surface, z = 0,
from the final sample up to t = 0.

Figure 2 shows the result for the RTM by interpolation with
15 velocities and Figure 3 the migration by the pseudo-analytical
method using the fourth order approximation for the pseudo-
Laplacian operator with v0 = vmin . Both results were obtained
using the sample interval of the seismic data,Δt =0,004 s.

The pre-stack migration was tested with the Marmousi model,
the image condition used here is the cross correlation of the
propagated wavefield from the sources and the receivers. The final
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Figure 1 – SEG/EAGE salt model velocity field.

Figure 2 – Section from SEG/EAGE salt model migrated using the interpolation method with 15 velocities.

result is given by the sum of all migrated common source gath-
ers. The velocity field with velocities varying from 1500 m/s to
5500 m/s is shown on Figure 4. The velocity field grid has 369
points in the horizontal direction (x) and 375 on the vertical one
(z) and the spacings areΔx = 25 m and Δz = 8 m.

The migrated section using the interpolation method is shown
on Figure 5, while the one using the pseudo-analytical method

with a second-order approximation for the pseudo-Laplacian op-
erator appears on Figure 6. These results were obtained migrat-
ing 240 common source sections spaced by 25 m, where each
common source gather is formed by 96 channels also spaced
by 25 m.

At last, a 2D real data was migrated. It was acquired in the
central regions of the Gulf of Mexico, near the Mississippi canyon,

Brazilian Journal of Geophysics, Vol. 32(4), 2014
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Figure 3 – Section from SEG/EAGE salt model migrated using the pseudo-analytical method with fourth order approximation for the pseudo-Laplacian operator.

Figure 4 – Marmousi model velocity field.

one of world’s most productive regions for oil and gas and
where, according to Chowdhury & Borton (2007), the hydrocar-
bon trapping is strongly related to the presence of salt.

Data acquisition was made using the end-on technique with
the receiver line having 180 receivers spaced by 26.67 m. 1001
shots were registered, also spaced by 26.67 m. Each trace has
6.0 s with a time sampling of 4 ms, which gives a total of 1501
samples in each seismic trace. The velocity field grid, on Fig-

ure 7, has velocities varying from 1485 m/s to 4000 m/s, hav-
ing 1000 points in the horizontal direction (x) and 1185 on the
vertical one (z), with horizontal sampling interval of 26.67 m and
vertical sampling interval of 13.21 m.

The result from the RTM by interpolation applied with 5 ve-
locities can be seen at Figure 8 while Figure 9 shows the result of
the pseudo-analytical method with a second-order approximation
for the pseudo-Laplacian operator.
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Figure 5 – Section from Marmousi model migrated using the interpolation method with 10 velocities.

Figure 6 – Section from Marmousi model migrated using the pseudo-analytical method with second-order approximation for the pseudo-Laplacian operator.

To all the migrated images presented, a Laplacian filter has
been applied in order to attenuate low frequency events that ap-
pear due to the cross correlation image condition.

CONCLUSIONS

The presented methods were both successful migrating the syn-
thetic and real data. Application on synthetic data is very interest-
ing because the geological model is known accurately and, con-
sequently, that also applies to the velocity model. Applied on the

SEG/EAGE salt model and the Marmousi data, both interpolation
and pseudo-analytical methods were able to reproduce the syn-
thetic model precisely.

The SEG/EAGE salt model is characterized by strong vertical
and lateral velocity variations. For this reason, the migration by
interpolation required a larger number of velocities to achieve
a satisfactory result. This fact demanded a greater computa-
tional expense compromising the efficiency of the method. How-
ever, in the Marmousi model, characterized by geological com-
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Figure 7 – Gulf of Mexico data velocity field.

Figure 8 – Section from the Gulf of Mexico data migrated using the interpolation method with 5 velocities.

plexity, interpolation could be applied accurately using less ve-
locities, which also demanded less computational effort. The
pseudo-analytical method was also successful imaging both
models and is highly recommended because it has a lower
computational cost.

Alternatives to the present methods may include the use of
Chebyshev polynomials instead of Taylor series for the approx-

imations of the pseudo-Laplacian operator in the case of the
pseudo-analytical method. Regarding the interpolation, different
ways to distribute the velocities across the model are already
present in the literature and can be tested.

Finally, the real Gulf of Mexico data migration proved the
applicability of the present methods in two-dimensional data.
Application on 3D data should still be implemented and tested.
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Figure 9 – Section from the Gulf of Mexico data migrated using the pseudo-analytical method with second-order approximation for the pseudo-Laplacian operator.
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