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A PREDICTION MODEL OF THERMAL CONDUCTIVITY
OF ROCK USING MEASUREMENTS IN BIPHASIC MIXTURES

Ariston de Lima Cardoso1, Roberto Max de Argollo2 and Alexandre Barreto Costa3

ABSTRACT. In this study, we developed a model to predict the thermal conductivity of full rocks from measurements on biphasic mixtures of grains of these
rocks. Firstly, we measured the density and thermal conductivity of the full rock samples. The full samples were then grounded and we measured the effective ther-

mal conductivity of mixtures prepared with grains of these rocks in different porosities using air as saturating. Using the flexible model of thermal conduction developed
in this study, which we call Geoterm, and the rule of generalized mixture due to Korvin, we calculated the average values of the numerical factors of the equations of

these two models and, with these equations, we predicted the thermal conductivity of the integrity rock by adjusting the equations of these models with experimen-
tal data. Even with these equations and the data of the integrity rocks and mixtures, we predicted the effective thermal conductivity of the samples for the various

porosities of the mixtures. The predicted results for the full rock, as compared to the measured values, showed small and large discrepancies due to the large variation

range of the thermal conductivity of the full rocks, resulting in ranges also wide for the numerical factors of the two equations. In agreement with Krupiczka empirical
expression, the values predicted by the Geoterm and Korvin models for effective thermal conductivity showed lower discrepancies when compared to other models

observed in this study.

Keywords: rock thermal conductivity, effective thermal conductivity, binary mixture model.

RESUMO. Neste estudo, desenvolvemos um modelo para predizer a condutividade térmica de rochas ı́ntegras a partir de medidas em misturas binárias de grãos
destas rochas. Primeiramente, medimos a densidade e a condutividade térmica das amostras das rochas ı́ntegras. As amostras foram, em seguida, moı́das e

medimos a condutividade térmica efetiva de misturas preparadas com os grãos dessas rochas em diferentes porosidades usando ar como saturante. Usando o mo-
delo flexı́vel de condução térmica desenvolvido neste estudo, denominado Geoterm, e a regra da mistura generalizada de Korvin, calculamos os valores médios

dos fatores numéricos das equações destes dois modelos e, com estas predissemos a condutividade térmica da rocha ı́ntegra pelo ajuste dos parâmetros desses

modelos com os dados experimentais. Ainda com essas equações e com os dados das rochas ı́ntegras, como também das misturas, predissemos a condutividade
térmica efetiva das amostras para as várias porosidades das misturas. Os resultados preditos para a amostra ı́ntegra, quando comparados aos valores medidos,

apresentaram discrepâncias pequenas e grandes, consequência de a faixa de variação da condutividade térmica das rochas ser bem larga resultando em faixas também
largas para os fatores numéricos das duas equações. Em concordância com a expressão empı́rica de Krupiczka, os valores preditos pelos modelos Geoterm e Korvin

para condutividade térmica efetiva mostraram menores discrepâncias quando comparados a outros modelos verificados neste estudo.

Palavras-chave: condutividade térmica de rocha, condutividade térmica efetiva, modelo de mistura binária.
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6 A PREDICTION MODEL OF THERMAL CONDUCTIVITY OF ROCK USING MEASUREMENTS IN BIPHASIC MIXTURES

INTRODUCTION

Knowledge of the thermal properties of rocks is important in
quantitative studies of sedimentary basin evolution to construct
models that describe the thermal history of the basin. The ther-
mal conductivity of rocks is commonly measured in solid sam-
ples with dimensions that are compatible with the measuring in-
strument. However, it is often necessary to make these measure-
ments using fragmented rock samples. In the oil industry, for ex-
ample, coring wells is expensive, and the thermal conductivity
of sedimentary and crystalline rock samples must be determined
using drill cuttings. To do so, mixtures of the ground samples
are prepared, and models are used to obtain the thermal con-
ductivity from measurements of the effective thermal conductiv-
ity (ETC) of the mixtures. The conductivity of the rock grains de-
pends on several factors, such as the mineralogical composi-
tion, texture, structure, type and amount of fluid saturation, den-
sity, anisotropy and porosity. These parameters and properties,
which are closely related to the formation processes of the min-
erals and rocks, make the determination of the thermal properties
of fragmented samples a complex task that requires theoretical
or empirical modeling.

Petrophysical studies often require ETC measurements of
binary mixtures of rock grains that are saturated by air. Sev-
eral models and formulations have been proposed to predict
such measurements; all of them combine the porosity of the
mixture and the thermal conductivity of the mixed phases, and
some include an empirical factor. However, the appropriate model
for a given mixture is not always clear. Of the models avail-
able in the literature, some have been applied to sedimentary
rocks (e.g., Anand et al., 1973; Tenchov, 1998), while others
have been applied to sands (e.g., Tavman, 1996). We are not
aware of models that have been applied to igneous and meta-
morphic rocks.

In this paper, we develop a model to predict thermal con-
ductivity of full rocks from measurements on binary mixtures of
grains of these rocks. Firstly, we made measurements in the
whole samples; then, the samples were ground and prepared
mixtures with the grains. The samples were collected from out-
crops of basement rocks on the northeast Brazilian coast. The
lithologies analyzed in this work include granite, gneiss, ortho-
derived rocks and metasandstone.

This work is part by the Geoterm-Ne project, under which
the samples were collected, funded by Petrobras-Cenpes-Promob
and by the National Institute of Science and Technology of
Petroleum Geophysics – INCT-GP.

Thermal Measurements and
Effective Thermal Conductivity Models

Thermal conductivity measurements are usually made by study-
ing the transient behavior of a heat pulse that is injected into the
material. In granular materials, the irregularities, heterogeneity
and roughness of the grains complicate the heat transfer mech-
anism in the mixture. The heat is transported by conduction in
the solid grains and in the fluid, by convection in the fluid and
by radiation between the grains. The heat transport by radiation
is negligible in mixtures of small grains at temperatures below
200◦C; and the convection of heat is negligible in grains with di-
ameters less than 1 cm (Woodside, 1958 apud Woodside & Mess-
mer, 1961). In this study, we neglect the effects of radiation and
convection and consider small grains (less than 3 mm) at room
temperature.

In conductive transport, the heat pulse propagates through
the pores and grains of the mixture, and the driving mechanism
of the heat transfer depends on the relationships between the
thermal properties of the solid grains and the saturating fluid.
For mixtures in which the thermal conductivity of the solid is
greater than that of the fluid, most of the heat is conducted
through the solid grain contacts. This type of mixture is defined
by some authors as external porosity. When the thermal conduc-
tivity of the solid is less than that of the fluid, heat flows primarily
in the fluid phase, and the porosity is said to be internal (e.g.,
Carson et al., 2005).

Mixture models can be described by combining the values of
the quantity to be determined in the solid samples with the volume
fraction of each material in the mixture. In a mixture that contains
n elements with the same physical property Gi and volume frac-
tion φi, Lichtenecker & Rother (1931) apud Tenchov (1998) and
Korvin (1982) showed that the physical property of the mixtureG
can be represented by:

G =

[
n∑
l

φiG
t
i

]l/t
when t �= 0 (1a)

G = exp

(
n∑
l

φi lnGi

)
when t = 0, (1b)

and

n∑
l

φi = 1, (1c)

where t is a real number called of geometric distribution factor.

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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CARDOSO AL, ARGOLLO RM & COSTA AB 7

From Eq. (1a), in a binary mixture that consists of solid grains
with a thermal conductivity λs that is uniformly distributed in
a host fluid with a thermal conductivity λa, the (ETC) λef is
expressed by

λef
[
φλta + (1− φ)λts

]l/t
. (2)

Korvin (1982) developed the general mixture rule using the
theory of functional equations under appropriate boundary con-
ditions and showed that Eq. (2) is exact and represents the only
function for a two-phase composite with t, t �= 0, some arbitrary
real number in (−∞,+∞).

Several models and expressions have been proposed to pre-
dict the ETC in binary mixtures as a function of the thermal con-
ductivity of each phase and the porosity. Most of these models
are based on a few basic structural models, specifically the se-
ries, parallel, geometric, Maxwell (in its many forms) and effec-
tive medium theory (EMT) models. In the series (Eq. (3)), parallel
(Eq. (4)) and geometric (Eq. (5)) models, the ETC is given by the
weighted harmonic, weighted arithmetic and geometric weighted
means, respectively, of the two phases of the mixture:

λef =
1

φ/λa + (1− φ)/λs
=

λaλs

(1− φ)λa + φλs , (3)

λef = φλa + (1− φ)λs (4)

λef = λ
φ
aλ
1−φ
s (5)

Eqs. (3) to (5) can be obtained from the Korvin model
(Eq. (2)) with t = –1 (series model), t = 1 (parallel model)
and t = 0 (geometric model), respectively; the latter is the
limit of Eq. (2) by the L’Hospital rule. In the series and parallel
models, the phases in the mixture are arranged in layers that are
perpendicular and parallel to the direction of heat flow, respec-
tively, while in the geometric model, the phases are randomly
distributed. The series and parallel models therefore define the
minimum and maximum limits of the ETC of a mixture in which
the volume fractions and the thermal conductivities of the compo-
nents are accurately known and heat transport is only conductive
(Carson et al., 2006).

The Maxwell model (Maxwell, 1954) yields an exact solu-
tion for the effective electrical conductivity for small spheres dis-
persed within a continuous medium when the spheres are far
enough apart to not interact with each other. The Maxwell-Eucken
(Eucken, 1940 apud Carson et al., 2006; Maxwell, 1954) model
is the Maxwell model applied to thermal conductivity; in it, the

spheres are sufficiently far apart that local variations in the tem-
perature around each sphere do not interfere with the tempera-
tures around the neighboring spheres.

In binary mixtures, the Maxwell-Eucken model (ME) is di-
vided into two models: the inferior ME model (ME-I) for external
porosity mixtures, in which the solid is the dispersed phase and
air is the continuous phase (Eq. (6)):

λef = λa
3λs − 2(λs − λa)φ
3λa + (λs − λa)φ (6)

and the superior ME model (ME-S) for internal porosity mixtures,
where the solid is the continuous phase (Eq. (7)):

λef = λs
3λs + (λa − λs)(1 + 2φ)
3λs + (λa − λs)(1− φ) . (7)

The EMT model (Landauer, 1952) assumes a completely ran-
dom distribution for all phases and is described by the sum

∑
i

φi
λi − λef
λi + 2λef

= 0. (8)

For a binary mixture of solid grains with air as the saturant
the EMT model can be expressed by Eq. (9) which lies within the
Korvin bounds and the Maxwell-Eucken limits. It is an identifier

λef =
1

4

{
(3φ− 1)λa − (3φ− 2)λs

+
√
[(3φ− 1)λa − (3φ− 2)λs]2 + 8λaλs

}
.

(9)

that can be used to characterize a mixture as internal or external
porosity; those mixtures that lie between the ME-I and EMT mod-
els are external porosity mixtures, and those that lie between the
EMT and ME-S models are internal porosity mixtures (Carson et
al., 2005).

Figure 1 shows ETC versus porosity graphs for the mod-
els described above. The parallel (curve a) and series (curve f)
models define boundaries that enclose all of the other models;
these curves correspond to the Korvin model for t = 1 and
t = −1, respectively, and thus represent the maximum and
minimum bounds of the ETC for a biphasic mixture. Curves (b)
and (e) represent models ME-S and ME-I, respectively, which
define stricter limits within the Korvin bounds. Internal porosity
mixtures plot in the region between curves (b) and (c), and mix-
tures of external porosity fall between curves (c) and (e). Curve
(d) represents the geometric model, which coincides with the
Korvin model at t = 0.

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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8 A PREDICTION MODEL OF THERMAL CONDUCTIVITY OF ROCK USING MEASUREMENTS IN BIPHASIC MIXTURES

Figure 1 – ETC graphs of the models: (a) parallel; (b) superior Maxwell-Eucken;
(c) effective medium theory (EMT); (d) geometric; (e) inferior Maxwell-Eucken;
(f) series. Curves (a) and (f) define the Korvin bounds; curves (b) and (e) are the
ME limits of the Maxwell-Eucken’s model; curves (b) and (c) define the region
of internal porosity; and curves (c) and (e) define the region of external porosity.
(λs/λa = 100).

Empirical expressions

Many empirical expressions have been proposed for the ETC of
granular binary mixtures. Krupiczka (1967) obtained numerical
solutions for the ETC of granular materials for a model consist-
ing of long cylinders and another consisting of spheres in a cubic
lattice. He correlated the solutions of these models by taking into
account the porosity and derived the equation:

λef = λf(λs/λf)
A+B log(λs/λf ) (10)

with A = 0.280 – 0.751 logφ and B = –0.057A. Eq. (10) is
valid for 0.215 ≤ φ ≤ 0.476.

Woodside & Messmer (1961) constructed a modified resis-
tor model to predict the ETC of porous media by combining se-
ries and parallel models and using the electrical conductivity of
an aggregate of conductive particles saturated with an electrolytic
conductor as an analog. The equation obtained for the ETC in
this model is

λef =
aλfλs

λs(1− d) + dλf + cλf (11)

where c = φ− 0.03, a = (1− c) and d = ((1 − φ)/a) and
c is taken from Stephenson & Woodside (1958) apud Woodside
& Messmer (1961).

Flexible models

Models described by only the thermal conductivities φi and vol-
ume fractions φi are referred to as rigid models, while those in-
volving an additional parameter are referred to as flexible mod-
els. Krischel’s model (Krischel, 1963 apud Carson et al., 2006)
is the most commonly used flexible ETC model. This model,
which is expressed by Eq. (12), combines the series and paral-
lel models with a numerical factor p known as a weighting fac-
tor. Krischel’s model reduces to the series model for p = 0
and to the parallel model for p = 1, so the graph of Eq. (12)
lies within the entire region between the Korvin bounds when p
varies from 0 to 1. Many other flexible models that can cover
the Korvin region by choosing different values of the parame-
ter p have been proposed (see Carson et al., 2006). Because
these models can be constructed for any experimental points
by adjusting the parameter p, they allow for better performance
than other models. The problem is choosing a value for the
weighting factor p. Several studies have attempted to correlate
the factor p with characteristics such as the shape, dimensions
and porosity of the grains, but these correlations are depen-
dent on empirical constants; because p is determined empirically,
the correlations are not generally valid.

λef =
(1− p)λfλs
(1− φ)λf + φλs + p[φλf + (1− φ)λs] (12)

METHODOLOGY

The 19 rock samples analyzed in this work, including six gran-
ites (Gr), four gneisses (Gn), four orthoderived rocks (Or) and
five metasandstones (Me), were collected from basement out-
crops along the northeastern Brazil coastline during the project
Geoterm-Ne. In these whole rock samples, we analyzed the mass
density and the thermal conductivity. The mass density was de-
termined with a water pycnometer developed by Oliveira (2006)
which provides measurement precision of 0.2%. The thermal
conductivity was measured with a thermal properties analyzer, a
Quickline-30, equipped with a planar type sensor covering a range
from 0.1 to 6.0 W m–1 K–1 in a laboratory with temperature sta-
bilized in 22◦C. Rock samples were kept in the laboratory for at
least 48 h before being measured to acquire the same tempera-
ture. We made measurements on well polished faces to reduce
the effect of thermal contact resistance between the sensor and
the rock material. To account for the possible effects of anisotropy,
we made measurements on two mutually perpendicular polished
faces to obtain average values of the thermal rock conductivity.
We made a minimum of three measurements on each face and

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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take the average value to minimize effects of the heterogeneity
of the rock. The precision for the thermal conductivity measure-
ment is 10%.

After these analyses were performed, the whole rock samples
were ground to grains with size of medium sand. We prepared
binary mixtures of the dried grains in a cylindrical container
60 mm in diameter and 140 mm high using air as saturant. To
obtain the porosity, we calculated the volume of the mixture by
measuring its mass and using the density determined from the
whole sample. The porosity of the mixture was changed by com-
pressing the mixture in the cylinder to ensure a homogeneous
density throughout the column. This preparation allows an error
of about 3% for the porosity determination.

For each sample, we measured the ETC using the same an-
alyzer equipped with a needle sensor for the range from 0.2 to
1.0 W m–1 K–1. The needle is 105 mm long, 0.8 mm in diameter
and has a heat source at its midpoint together with a thermis-
tor to monitor the temperature. The needle was introduced into
the cylinder through an orifice at its bottom so that it is com-
pletely involved by the mixture. For each sample, we measured
the thermal conductivity for at least three porosity values to verify
the behavior between conductivity and porosity. The measures
in the mixtures were made in the laboratory with permanently
stabilized temperature, and the precision for the ETC measure-
ments is 10%.

RESULTS AND DISCUSSION

Table 1 presents the specific gravity (ρ) and average thermal
conductivity (λs) measurements obtained in full rock samples as
well as the porosity (φ) and the ETC determined in the mixtures.
The error in the measurements of density and thermal conductiv-
ity are 0.5% and 10% respectively. As described above, we mea-
sured the ETC for a minimum of three porosity values of each
mixture. The porosities of the samples were between 0.262 and
0.505, and the ETC values ranged from 0.188 to 0.392 W m–1 K–1.

In Figure 2, the experimental results from Table 1 are plotted
on the ETC graphs from Figure 1. Should be noted that about two-
thirds of these points corresponds to measurements of a same
sample at different porosities. Figure 2 shows that all of the mea-
surements lie within the Korvin model, which characterizes the
mixtures as binary. In addition, the measurements fall between
the EMT and ME-I models, which characterizes the mixtures as
external porosity one; this indicates that the heat conduction in
these mixtures is primarily through the rock grains.

In Figure 2, it is observed that all of the points lie between
the curves of the geometric and ME-I models. The orthoderived

and metasandstone rock samples plot across the bottom of the
region formed by these two models, while the gneisses plot
further to the top and the granite plots in the central region. In
general, however, the distribution appears to be independent of
lithology.

Figure 2 – Data from Table 1 plotted on the ETC graphs from Figure 1.
λs/λa = 100.

The observation that the ETC values measured in the binary
mixtures of rock grains from diverse lithologies and with a broad
spectrum of thermal conductivity occupy a limited region on the
graph led us to build a flexible type thermal conduction model
type that is more spatially restricted than the Korvin model in
an attempt to achieve more accurate results for the ETC of these
mixtures. This new model, which we call Geoterm, is expressed
by Eq. (13) and combines the geometric (Eq. (5)) and inferior
Maxwell-Eucken (Eq. (6)) models with a weighting factor p: for
p = 0, Geoterm reduces to the ME-I model, and for p = 1,
Geoterm reduces to the geometric model. The graph of Eq. (13)
lies in the region between the curves of these two models when
p varies from 0 to 1.

λef = (1− p)λf

2λf + λs

−2(λf − λs)(1− φ)
2λf + λs

+(λf − λs)(1 − φ)
+ pλφfλ

1−φ
s .

(13)

These two models were chosen because the points plotted
between their curves (see Fig. 2) and because the monotonic be-
haviors of these curves were similar, particularly in the porosity

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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Table 1 – Density (ρ, kg m-3) and thermal conductivity (λs, W m-1 K-1) measurements in whole rock
samples and porosity (φ) and ETC (λef , W m-1 K-1) measurements in the mixtures.

Sample ρ λs φ λef Sample ρ λs φ λef

Gr 01 2,588 2.11 0.467 0.228 Gn 10 2,647 2.54 0.338 0.378

Gr 01 2,588 2.11 0.428 0.268 Or 11 2,509 1.75 0.391 0.260

Gr 01 2,588 2.11 0.419 0.278 Or 11 2,509 1.75 0.329 0.346
Gr 01 2,588 2.11 0.379 0.308 Or 11 2,509 1.75 0.291 0.385

Gr 01 2,588 2.11 0.363 0.323 Or 12 2,650 2.01 0.419 0.243

Gr 02 2,663 2.20 0.475 0.195 Or 12 2,650 2.01 0.363 0.298

Gr 02 2,663 2.20 0.383 0.259 Or 12 2,650 2.01 0.323 0.358

Gr 02 2,663 2.20 0.339 0.291 Or 13 2,839 3.35 0.479 0.255
Gr 03 2,638 2.69 0.474 0.216 Or 13 2,839 3.35 0.416 0.341

Gr 03 2,638 2.69 0.421 0.257 Or 13 2,839 3.35 0.389 0.402

Gr 03 2,638 2.69 0.387 0.296 Or 14 2,616 2.91 0.397 0.261

Gr 03 2,638 2.69 0.371 0.308 Or 14 2,616 2.91 0.293 0.392

Gr 04 2,603 2.66 0.442 0.242 Or 14 2,616 2.91 0.308 0.379
Gr 04 2,603 2.66 0.391 0.299 Or 14 2,616 2.91 0.413 0.246

Gr 04 2,603 2.66 0.361 0.325 Or 14 2,616 2.91 0.359 0.299

Gr 05 2,578 2.85 0.407 0.279 Or 14 2,616 2.91 0.338 0.329

Gr 05 2,578 2.85 0.368 0.315 Me 15 2,583 2.19 0.457 0.244

Gr 05 2,578 2.85 0.344 0.336 Me 15 2,583 2.19 0.402 0.303
Gr 06 2,593 3.00 0.447 0.239 Me 15 2,583 2.19 0.347 0.384

Gr 06 2,593 3.00 0.386 0.296 Me 16 2,632 2.29 0.562 0.182

Gr 06 2,593 3.00 0.350 0.361 Me 16 2,632 2.29 0.486 0.241

Gn 07 2,674 2.04 0.505 0.200 Me 16 2,632 2.29 0.459 0.270
Gn 07 2,674 2.04 0.451 0.243 Me 17 2,628 2.68 0.502 0.188

Gn 07 2,674 2.04 0.419 0.286 Me 17 2,628 2.68 0.433 0.238

Gn 08 2,830 2.05 0.489 0.249 Me 17 2,628 2.68 0.385 0.292

Gn 08 2,830 2.05 0.450 0.309 Me 18 2,569 3.50 0.436 0.244

Gn 08 2,830 2.05 0.400 0.346 Me 18 2,569 3.50 0.375 0.305
Gn 09 2,666 2.60 0.438 0.239 Me 18 2,569 3.50 0.353 0.328

Gn 09 2,666 2.60 0.369 0.302 Me 19 2,649 2.28 0.372 0.357

Gn 09 2,666 2.60 0.322 0.360 Me 19 2,649 2.28 0.467 0.236

Gn 10 2,647 2.54 0.446 0.244 Me 19 2,649 2.28 0.415 0.289

Gn 10 2,647 2.54 0.370 0.334 Me 19 2,649 2.28 0.388 0.338

range of the analyzed mixtures. In addition, the Geoterm model
assumes that the mixture of interest consists of air-saturated,
homogeneous and isotropic grains, the mixture phases are ran-
domly distributed and the samples plot are within the external
porosity region.

The points in Figure 2 represent measurements of samples
at different porosities. To resolve the problem of predicting the
thermal conductivity of the whole sample using the ETC and

porosity measurements, we adjusted the Geoterm and Korvin
models curves, independently, to the measurements of ETC of a
same sample.

Figure 3 shows lines drawn between the limits of the Geo-
term model that were obtained by varying the factor p in Eq. (13)
from 0 to 1 in increments of 0.1, and Figure 4 shows lines drawn
between the limits of the Korvin model that were obtained by
varying t in Eq. (2) from –1 to 1.

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015



�

�

“main” — 2015/11/16 — 21:15 — page 11 — #7
�

�

�

�

�

�

CARDOSO AL, ARGOLLO RM & COSTA AB 11

Figure 3 – Illustration of the curves in the region of the Geoterm model obtained
by varying the weighting factor p from 0 to 1 in Eq. (13) in increments of 0.1.

Figure 4 – Illustration of the curves in the region of the Korvin model obtained
by varying the distribution factor t from –1 to 1 in Eq. (2) in increments of 0.1.

To use the Geoterm and Korvin models in the prediction
problem (to obtain λs), we need to choose values for the factors
p and t in Eqs. (13) and (2), respectively. We opted to use the
average values of p and t that fit the curves of the Eqs. (13)
and (2), respectively, in a graph of λef × φ to reproduce
λef = λs at φ = 0, taking the air thermal conductivity (λa)
as 0.026 W m–1 K–1 at φ = 1.

The adjustment process is exemplified in Figures 5 and 6. In
sample Or 12 (Fig. 5), λs = 2.01 W m–1 k–1 and the curves of
the Geoterm and Korvin models are fitted for λef = λs in the
Eqs. (13) and (2) with p = 0.576 and t = –0.142, respectively.
For sample Me 17 (Fig. 6) with λs = 2.68 W m–1 k–1, p = 0.505
and t = –0.160.

As seen in Figure 5, all of the adjusted curves fit the experi-
mental points of the samples well, which indicates that both the
Geoterm and Korvin models are good heat conduction models for
these mixtures for the porosity range used in this study.

Table 2 presents the factors p and t that reproduce the
thermal conductivity λs of the whole rock for the Geoterm and
Korvin models, respectively. The error associated to p and t is
about of 10%. The ranges of variation of p and t are large: p
varies from 0.386 to 1.037 with an average of 0.61 and a rela-
tive deviation of 28%, while t varies from –0.225 to 0.015 with
an average of –0.13 and a relative deviation of 48%. These vari-
ations reflect the broad spectrum of thermal conductivity values
for the different lithotypes and for the same type of rock, as has
been reported by several authors (e.g., Clauser & Huenges, 1995;
Labani & Anurup, 2007). All of these studies concluded that a
given lithotype cannot be characterized by a single thermal con-
ductivity value.

Figure 7 shows the curves of Eq. (13) for p = 0.61 and of
Eq. (2) for t = –0.13 superimposed on the experimental data
shown in Figure 2. These curves overlap in the porosity range of
our measurements showing that both models are valid.

Using these average values to p and t, the λs and φ val-
ues from Table 1 and taking the air thermal conductivity as
0.026 W m-1 K-1, we predict the ETC values using Eq. (13) for
p = 0.61 and Eq. (2) for t = –0.13.

In Table 3, using data from Table 1, we show the mea-
sured ETC (λef ) and the predicted ETC (λefp) from the in-
ferior Maxwell-Eucken (Eq. (6)), Geometric (Eq. (5)), Geoterm
(Eq. (13)) and Korvin (Eq. (2)) models as well as from the
Krupiczka (Eq. (10)) and Woodside-Messmer (Eq. (11)) ex-
pressions, together with the corresponding differences from the
measured values.

Table 3 shows that the smallest differences are associated
with the Geoterm and Korvin models and with the Woodside-
Messmer empirical expression. This indicates that these models
and expression can efficiently measure the ETC of air-saturated
binary mixtures of rock grains.

To calculate the predicted thermal conductivity (λsp) of the
whole rock, we make the adjustment shown in Figure 6 but now
fixing p as 0.61 and t as –0.13 to obtain λsp = λef for
φ = 0. The calculating process is exemplified in Figures 8 and
9. The sample Me 17 (Fig. 8) has λs = 2.68 W m–1 K–1 and
λsp = 2.18 W m–1 K–1 for the Geoterm model and λsp =
2.48 W m–1 K–1 for the Korvin model. For the sample Gr 01
(Fig. 9) with λs = 2.11 W m–1 K–1, λsp = 2.40 W m–1 K–1

for the Geoterm model and λsp = 2.41 W m–1 K–1 for the Korvin
model.

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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Figure 5 – Obtaining the factors p of the Geoterm model and t of the Korvin model by adjusting
the curves of these models to the experimental data of sample Or 12 and to the points λef = λs
at φ = 0 and λef = λa at φ = 1.
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Figure 6 – Obtaining the factors p of the Geoterm model and t of the Korvin model by adjusting
the curves of these models to the experimental data of sample Me 17 and to the points λef = λs
at φ = 0 and λef = λa at φ = 1.

Figure 7 – Curves for p = 0.61 from Eq. (13) and t = –0.13 from Eq. (2) for the
Geoterm and Korvin models, respectively, superimposed on the data shown in Figure 2.

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015



�

�

“main” — 2015/11/16 — 21:15 — page 13 — #9
�

�

�

�

�

�

CARDOSO AL, ARGOLLO RM & COSTA AB 13

Table 2 – Factors p and t that reproduce the real thermal conductivity in Eqs. (13) and (2), respectively.

Sample
Real value Geoterm model Korvin model
λs, W m-1 k-1 p t

Gr 01 2.11 0.689 –0.095
Gr 02 2.20 0.457 –0.180
Gr 03 2.69 0.515 –0.155
Gr 04 2.66 0.526 –0.150
Gr 05 2.85 0.464 –0.180
Gr 06 3.00 0.481 –0.170
Gn 07 2.04 0.783 –0.060
Gn 08 2.05 1.037 +0.015
Gn 09 2.60 0.477 –0.172
Gn 10 2.54 0.593 –0.135
Or 11 1.75 0.626 –0.128
Or 12 2.01 0.576 –0.142
Or 13 3.35 0.687 –0.100
Or 14 2.91 0.386 –0.225
Me 15 2.19 0.730 –0.080
Me 16 2.29 0.882 –0.040
Me 17 2.68 0.505 –0.160
Me 18 3.50 0.386 –0.214
Me 19 2.28 0.734 –0.078
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Figure 8 – Adjusting of the curves of the Geoterm model for p = 0.61 and Korvin model
to t = –0.13 to the experimental data of the sample Me 17, and to the point λef = λa in
φ = 1, to obtain the predicted thermal conductivity λsp = ETC in φ = 0.

In Table 4 we present the predicted thermal conductivity of
the whole rock obtained with the Geoterm and Korvin models
making p = 0.61 and t = –0.13 in their respective equations
and their respective discrepancies relative to the real λs.

The method developed in this work to obtain the rock ther-
mal conductivity from binary granular mixtures proved effective.
The large discrepancies observed in both models is because the

Eqs. (13) and (2) are quite sensitive to the values of p and t, re-
spectively, so that values away from the reference values have dis-
crepancies higher; and this not depend of the reference values,
but of the width of the range variation of this factors. In the varia-
tion range of the porosity of the mixtures in this study, from 0.26
to 0.51, the curves of the Geoterm and Korvin models practically
coincide only differing for porosities below about 0.25. Getting

Brazilian Journal of Geophysics, Vol. 33(1), 2015



�

�

“main” — 2015/11/16 — 21:15 — page 14 — #10
�

�

�

�

�

�

14 A PREDICTION MODEL OF THERMAL CONDUCTIVITY OF ROCK USING MEASUREMENTS IN BIPHASIC MIXTURES

Table 3 – Measured (λef ) and predicted (λefp) ETC values from the models and empirical expressions with the corresponding discrepancies relatives
to the measured values. ETC values are in W m-1 K-1.

Sample
Measured

ME-I Geometric Geoterm Korvin Krupiczka Woodside
Eq. (6) Eq. (5) Eq. (13) Eq. (2) Eq. (10) Eq. (11)

λef λefp δ, % λefp δ, % λefp δ, % λefp δ, % λefp δ, % λefp δ, %
Gr 01 0.228 0.108 52.0 0.271 19.0 0.198 13.0 0.203 0.2 0.166 27.0 0.237 3.8
Gr 01 0.268 0.122 54.0 0.321 20.0 0.232 13.0 0.241 10.0 0.188 30.0 0.265 1.1
Gr 01 0.278 0.125 55.0 0.334 20.0 0.240 14.0 0.251 10.0 0.194 30.0 0.271 2.4
Gr 01 0.308 0.142 54.0 0.399 29.0 0.283 8.0 0.301 2.3 0.224 27.0 0.302 2.0
Gr 01 0.323 0.150 54.0 0.428 32.0 0.303 6.3 0.324 0.3 0.239 26.0 0.314 2.7
Gr 02 0.195 0.106 46.0 0.267 37.0 0.195 0.1 0.199 2.1 0.164 16.0 0.233 19.0
Gr 02 0.259 0.141 46.0 0.402 55.0 0.284 9.8 0.301 16.0 0.224 13.0 0.301 16.0
Gr 02 0.291 0.164 44.0 0.489 68.0 0.342 18.0 0.370 27.0 0.268 8.0 0.336 16.0
Gr 03 0.216 0.108 50.0 0.298 38.0 0.212 1.6 0.216 0.2 0.175 19.0 0.241 11.0
Gr 03 0.257 0.126 51.0 0.382 48.0 0.267 3.8 0.277 7.8 0.209 19.0 0.281 9.4
Gr 03 0.296 0.141 52.0 0.447 51.0 0.309 4.4 0.326 10.0 0.238 20.0 0.309 4.2
Gr 03 0.308 0.149 52.0 0.481 56.0 0.331 7.6 0.352 14.0 0.254 18.0 0.322 4.5
Gr 04 0.242 0.118 51.0 0.344 42.0 0.242 0.2 0.250 3.2 0.194 20.0 0.264 9.2
Gr 04 0.299 0.139 54.0 0.436 46.0 0.302 1.0 0.318 6.3 0.233 22.0 0.305 1.9
Gr 04 0.325 0.154 53.0 0.500 54.0 0.344 5.9 0.368 13.0 0.264 19.0 0.330 1.4
Gr 05 0.279 0.132 53.0 0.421 51.0 0.291 4.4 0.304 8.9 0.225 19.0 0.295 5.7
Gr 05 0.315 0.151 52.0 0.506 61.0 0.346 9.9 0.368 17.0 0.263 17.0 0.327 3.9
Gr 05 0.336 0.164 51.0 0.566 69.0 0.385 15.0 0.414 23.0 0.292 13.0 0.348 3.6
Gr 06 0.239 0.117 51.0 0.359 50.0 0.250 4.7 0.257 7.3 0.198 17.0 0.265 11.0
Gr 06 0.296 0.142 52.0 0.480 63.0 0.328 11.0 0.345 17.0 0.249 16.0 0.315 6.6
Gr 06 0.361 0.161 55.0 0.569 58.0 0.385 6.8 0.413 14.0 0.290 20.0 0.346 4.2
Gn 07 0.200 0.097 51.0 0.225 13.0 0.168 16.0 0.170 15.0 0.147 27.0 0.210 4.9
Gn 07 0.243 0.113 53.0 0.285 17.0 0.208 14.0 0.215 12.0 0.173 29.0 0.247 1.5
Gn 07 0.286 0.125 56.0 0.328 15.0 0.237 17.0 0.247 14.0 0.192 33.0 0.270 5.7
Gn 08 0.249 0.102 59.0 0.242 2.7 0.179 28.0 0.182 27.0 0.154 38.0 0.221 11.0
Gn 08 0.309 0.114 63.0 0.287 7.1 0.209 32.0 0.216 30.0 0.173 44.0 0.247 20.0
Gn 08 0.346 0.133 62.0 0.357 3.3 0.256 26.0 0.270 22.0 0.205 41.0 0.284 18.0
Gn 09 0.239 0.120 50.0 0.346 45.0 0.244 2.1 0.252 5.5 0.195 18.0 0.266 11.0
Gn 09 0.302 0.149 51.0 0.475 57.0 0.329 8.8 0.350 16.0 0.253 16.0 0.322 6.5
Gn 09 0.360 0.176 51.0 0.590 64.0 0.404 12.0 0.440 22.0 0.311 14.0 0.362 0.5
Gn 10 0.244 0.117 52.0 0.329 35.0 0.233 4.3 0.241 1.4 0.188 23.0 0.259 6.3
Gn 10 0.334 0.149 56.0 0.466 40.0 0.323 3.2 0.344 3.0 0.249 25.0 0.320 4.3
Gn 10 0.378 0.166 56.0 0.540 43.0 0.372 1.7 0.402 6.2 0.286 24.0 0.347 8.3
Or 11 0.260 0.135 48.0 0.337 30.0 0.246 5.3 0.260 0.1 0.200 23.0 0.281 8.2
Or 11 0.346 0.166 52.0 0.438 27.0 0.316 8.8 0.342 1.0 0.254 27.0 0.327 5.4
Or 11 0.385 0.190 51.0 0.514 34.0 0.368 4.3 0.407 5.7 0.301 22.0 0.357 7.2
Or 12 0.243 0.125 49.0 0.325 34.0 0.235 3.3 0.246 1.0 0.191 21.0 0.269 11.0
Or 12 0.298 0.150 50.0 0.415 39.0 0.295 0.9 0.316 6.0 0.234 21.0 0.311 4.4
Or 12 0.358 0.172 52.0 0.494 38.0 0.349 2.6 0.380 6.2 0.277 23.0 0.343 4.2
Or 13 0.255 0.107 58.0 0.327 28.0 0.228 11.0 0.230 10.0 0.183 28.0 0.244 4.5
Or 13 0.341 0.130 62.0 0.444 30.0 0.302 11.0 0.313 8.3 0.229 33.0 0.294 14.0
Or 13 0.402 0.142 65.0 0.506 26.0 0.342 15.0 0.358 11.0 0.255 36.0 0.317 21.0

(to be continued)
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Table 3 – (continuation)

Sample
Measured

ME-I Geometric Geoterm Korvin Krupiczka Woodside
Eq. (6) Eq. (5) Eq. (13) Eq. (2) Eq. (10) Eq. (11)

λef λefp δ, % λefp δ, % λefp δ, % λefp δ, % λefp δ, % λefp δ, %
Or 14 0.261 0.137 48.0 0.447 71.0 0.308 18.0 0.322 23.0 0.235 10.0 0.304 16.0
Or 14 0.392 0.198 49.0 0.730 86.0 0.491 25.0 0.543 39.0 0.377 4.0 0.396 0.9
Or 14 0.379 0.187 51.0 0.680 80.0 0.458 21.0 0.503 33.0 0.349 8.0 0.382 0.7
Or 14 0.246 0.130 47.0 0.415 69.0 0.287 16.0 0.298 21.0 0.221 10.0 0.291 18.0
Or 14 0.299 0.156 48.0 0.535 79.0 0.364 22.0 0.388 30.0 0.275 8.0 0.336 12.0
Or 14 0.329 0.167 49.0 0.591 80.0 0.400 22.0 0.432 31.0 0.302 8.2 0.355 7.8
Me 15 0.244 0.112 54.0 0.289 18.0 0.209 14.0 0.215 12.0 0.173 29.0 0.245 0.5
Me 15 0.303 0.132 56.0 0.368 22.0 0.262 13.0 0.276 9.0 0.209 31.0 0.286 5.6
Me 15 0.384 0.159 59.0 0.470 22.0 0.330 14.0 0.356 7.4 0.259 33.0 0.330 14.0
Me 16 0.182 0.086 53.0 0.193 6.2 0.145 20.0 0.145 20.0 0.133 27.0 0.183 0.5
Me 16 0.241 0.103 57.0 0.260 7.8 0.189 21.0 0.193 20.0 0.160 33.0 0.227 6.0
Me 16 0.270 0.112 59.0 0.293 8.6 0.211 22.0 0.217 20.0 0.175 35.0 0.246 9.0
Me 17 0.188 0.099 47.0 0.262 39.0 0.188 0.2 0.190 1.2 0.160 15.0 0.220 17.0
Me 17 0.238 0.122 49.0 0.360 51.0 0.253 6.2 0.261 10.0 0.200 16.0 0.272 14.0
Me 17 0.292 0.142 51.0 0.450 54.0 0.311 6.6 0.328 12.0 0.240 18.0 0.310 6.2
Me 18 0.244 0.122 50.0 0.415 70.0 0.283 16.0 0.290 19.0 0.217 11.0 0.280 15.0
Me 18 0.305 0.149 51.0 0.557 83.0 0.373 22.0 0.392 29.0 0.275 10.0 0.331 8.5
Me 18 0.328 0.160 51.0 0.620 89.0 0.413 26.0 0.440 34.0 0.303 7.6 0.351 6.9
Me 19 0.357 0.146 59.0 0.432 21.0 0.303 15.0 0.323 10.0 0.237 33.0 0.312 13.0
Me 19 0.236 0.109 54.0 0.282 20.0 0.204 13.0 0.209 11.0 0.170 28.0 0.240 1.6
Me 19 0.289 0.127 56.0 0.356 23.0 0.253 12.0 0.265 8.4 0.202 30.0 0.278 3.7
Me 19 0.338 0.139 59.0 0.402 19.0 0.284 16.0 0.300 11.0 0.223 34.0 0.299 12.0
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Figure 9 – Adjusting of the curves of the Geoterm model for p = 0.61 and Korvin model to
t = –0.13 to the experimental data of the sample Gr 01, and to the pointλef = λa inφ = 1,
to obtain the predicted thermal conductivity λsp = ETC in φ = 0.

mixtures with porosity below this value is difficult resulting in not
have been possible to distinguish between these two models.

These variation ranges of p and t are larges because the
thermal conductivity of rock is highly variable. The variability
range of thermal conductivity is similar to all analyzed sam-

ples and within each lithology. The question is to set up ranges
narrower to p and t. The next step in this research is, therefore,
seek semi-empirical expressions which include the characteris-
tics of the mixtures as well as physical and geological character-
istics of the rock.
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Table 4 – Predicted thermal conductivity of the rock fully calculated with the models Geoterm
for p = 0.61 and Korvin for t = –0.13 as well as their discrepancies respect of λs.

Sample
Real value For p = 0.61 For t = –0.13

λs λsp δ, % λsp δ, %

Gr 01 2.11 2.40 14.0 2.41 14.0

Gr 02 2.20 1.66 25.0 1.70 23.0

Gr 03 2.69 2.20 18.0 2.30 14.0

Gr 04 2.66 2.25 15.0 2.40 10.0

Gr 05 2.85 2.14 25.0 2.20 23.0

Gr 06 3.00 2.32 23.0 2.36 21.0

Gn 07 2.04 2.70 32.0 2.90 42.0

Gn 08 2.05 3.83 87.0 4.30 110.0

Gn 09 2.60 2.03 22.0 2.00 23.0

Gn 10 2.54 2.42 4.7 2.58 1.5

Or 11 1.75 1.79 2.3 1.77 1.1

Or 12 2.01 1.90 5.5 1.90 5.5

Or 13 3.35 3.88 16.0 4.20 25.0

Or 14 2.91 1.85 36.0 1.80 38.0

Me 15 2.19 2.66 21.0 2.75 26.0

Me 16 2.29 3.63 59.0 4.30 88.0

Me 17 2.68 2.18 19.0 2.48 7.5

Me 18 3.50 2.14 39.0 2.12 39.0

Me 19 2.28 2.79 22.0 3.10 36.0

CONCLUSIONS

The Geoterm and Korvin heat conduction models showed to be
effective in dealing with binary mixtures of rock grains air-
saturated because their curves adjusted well to the experimental
data of ETT. Moreover, both models showed good results in pre-
dicting the ETC measurements in the studied mixtures. Thus, the
model and method developed in this work to determine the thermal
conductivity of rock from ETC measurements in biphasic granular
mixtures was showed to be effective.

The predicted results for the full sample, compared to the
measured values, showed discrepancies small and large, a con-
sequence of the range of variation of the thermal conductivity of
the rocks to be well large resulting in ranges also large for the
numerical factors of the two equations.

The Geoterm and Korvin heat conduction models proved to
be effective in dealing with air-saturated binary mixtures of rock
grains provided that their curves are adjusted based on ETC mea-
surements. Moreover, both models showed good results in pre-
dicting the ETC measurements in the studied mixtures. Thus, the

method developed in this work to determine the rock thermal con-
ductivity from ETC measurements in binary granular mixtures was
found to be effective.

When compared with the measured thermal conductivity of
the solid rock, however, these results are not satisfactory. The
p and t factors are highly variable, and the equations of the two
models are quite sensitive to variations in these factors. We sug-
gest defining narrower ranges of thermal conductivity values us-
ing data from granulated rock samples or drill cuttings.
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