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INVERSION OF INTERVAL VELOCITIES:
APPLICATION TO A GEOLOGICAL MODEL FROM A PRE-SALT AREA

Thais Gomes Santana1 and Amin Bassrei2

ABSTRACT. Seismic methods study the propagation of elastic wave fields inside the Earth, with the goal to provide subsurface images. In this work, the determination
of the time interval velocity distribution is the main information provided. Several synthetic models were used, where one is based in a real situation, a dip section from the

pre-salt region, central part of the Santos Basin, Brazil. The methods used to determine interval velocities were based on the Dix transform, singular value decomposition
(SVD) and minimum relative entropy (MRE). Dix transform showed excellent results when used in simple geological models, and was coincident to the other two

methods. With the addition of a priori information, the SVD and MRE showed to be good methods for the determination of the interval velocities. When comparing
SVD and MRE methods the latter showed the best results. When the a priori information is constant, the SVD and MRE methods give the same velocity estimate given

from the direct application of the Dix transform.

Keywords: inversion of interval velocities, singular value decomposition, minimum relative entropy, pre-salt.

RESUMO. Os métodos sı́smicos utilizam o campo de propagação de ondas elásticas no interior da Terra, com o objetivo de fornecer imagens da subsuperf́ıcie.

Neste trabalho, a determinação do campo de velocidades intervalares é a principal informação a ser fornecida. Foram utilizados modelos sintéticos, sendo um deles
baseado em uma situação real, no caso uma sessão dip , na região do pré-sal, parte central da Bacia de Santos. Os métodos usados para determinar as velocidades

intervalares foram a transformada de Dix, a decomposição por valores singulares (SVD) e a entropia relativa mı́nima (MRE). A transformada de Dix, quando usada em
modelos geológicos mais simples apresentou excelentes resultados coincidente aos outros dois métodos. Com a adição de estimativas a priori , o SVD e o MRE se

mostraram como bons métodos para a determinação das velocidades intervalares, sendo que o MRE apresentou os melhores resultados. Quando a informação a priori
é constante, os métodos do SVD e MRE fornecem a mesma estimativa de velocidade que é obtida pela transformada de Dix.
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1Universidade Federal da Bahia, Instituto de Geociências, Rua Barão de Jeremoabo, s/n, Ondina, 40170-115 Salvador, BA, Brazil. Phone: +55(71) 3283-8508

– E-mail: tgs@cpgg.ufba.br
2Universidade Federal da Bahia, Instituto de Geociências, Centro de Pesquisa em Geof́ısica e Geologia, Instituto Nacional de Ciência e Tecnologia em Geof́ısica do
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20 INVERSION OF INTERVAL VELOCITIES IN A MODEL FROM A PRE-SALT AREA

INTRODUCTION

Seismic methods are based on the theory of acoustic and elastic
wave propagation in non-homogeneous media. Due to its resolv-
ing power the seismic reflection method is the most important
geophysical method applied to the oil industry. The main objec-
tive of seismic methods is the determination of the interval veloc-
ities. The interval velocity is the propagation velocity of the seis-
mic pulse in a given interval in time. For geophysical purposes
a geological medium can be described by the distribution of in-
terval velocities, and its determination is done in the last stages
of seismic processing. The accurate estimation of the interval
velocity field will allow obtaining more reliable seismic images.
This topic has great interest in exploration seismology and is
discussed in detail in several textbooks, like for instance in Hubral
& Krey (1990).

In this work the interval velocities are estimated using three
different methodologies. The first one is the classical Dix trans-
form, and the other two consider the estimation of interval ve-
locities as an inverse problem, where the input data are the pairs
of reflection time and RMS velocity. This information is usually
available in seismic processing flow at the stage of velocity anal-
ysis. In the second method, the inverse problem is solved by
generalized inversion implemented by singular value decompo-
sition or SVD. The third method is the minimum relative entropy
or MRE, which has a probabilistic principle. These two inversion
methods have the advantage to incorporate a priori information,
which is not possible in the Dix transform.

In order to test the efficiency, two synthetic models were used,
for the inversion of underdetermined problems, where there are
more unknowns than equations. In this situation there is a strong
need for a priori information. The first model is a 1-D random
velocity distribution, with 10 input data and 100 unknowns. The
a priori information is effective when it is constant, like for in-
stance when the interval velocity increases linearly from the sur-
face. SVD and MRE provided better results than Dix transform,
due to the fact that they can incorporate a non-constant priori
information. For this 1-D model, when comparing SVD to MRE,
the MRE results were slightly better than SVD.

The second model is a 2-D model inspired in a real situation
of the pre-salt geological environment of Santos Basin offshore
(Assine et al., 2008). The 2-D model is represented by 1,000
traces, and each trace has 1,000 intervals. Two situations were
considered. In the first case, from the interval velocity distribu-
tion, for each trace only 20 values of RMS velocity were computed,
whereas for the second case, for each trace 50 values of RMS
velocity were computed. Again, SVD and MRE provided better
results than Dix transform, and when comparing SVD to MRE,
the MRE results were slightly better than SVD.

Inverse Problems and Singular Value Decomposition
We can define a system ofM linear equations andN unknowns
as: ⎧⎨

⎩
g11m1 + g12m2 + · · ·+ g1NmN = d1,
g21m1 + g22m2 + · · ·+ g2NmN = d2,
gM1m1 + gM2m2 + · · ·+ gMNmN = dM ,

(1)

where gij are the coefficients of the linear system, the vector
d whose elements are d1, d2, . . . , dM , is the system output,
and the vector m whose elements are m1, m2, . . . , mN is
the system solution. In a compact form, the system of equations
can be expressed as

d = Gm. (2)

In forward modeling procedure, the data parameters are ob-
tained from the model parameters. The opposite happens in the
inverse problem, where the estimated model parameters are the
solution of the system of linear equations. In other words, we
determine the effects of a system where the causes are known
(Menke, 1989).

The inverse problem can also be formulated by integral equa-
tions, where the unknown function that describes the parameters
of the model is part of the integrand. The Fredholm integral equa-
tion of the first kind can be used to describe the inverse problem:

d(x) =

∫ b
a

G(x, y)m(y)dy, (3)

where d(x) is the function that represents the data, which is
known in the inversion process, G(x, y) is the kernel function
and depends on two variables, which also must be known and
m(y) is a function representing the unknown model parameters.

The solution of Eq. (1) is expressed by:

m = G−1d, (4)

if the matrix G is square and has full rank. In general this situa-
tion does not happen and the solution can be given by

m = G+d, (5)

where G+ is aN ×M matrix called the generalized inverse or
pseudo-inverse.

The singular value decomposition aims to obtain a general-
ized inverse matrix. TheM ×N matrix G can be decomposed
as:

G = UΣV T , (6)

where U is aM ×M matrix which contains the orthonormal-
ized eigenvectors of GGT ,

∑
is a M × N diagonal matrix

which contains the square of the eigenvalues of matrix GTG,
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and V is a N × N matrix which contains the orthonormal-
ized eigenvectors of GTG. The generalized inverse matrix will
be given by

G+ = V Σ+UT . (7)

Determination of Interval Velocities
Dix (1955) presented his transform vINT ↔ VRMS for a sim-
ple model, formed by flat, homogeneous layers. This transform,
first suggested by Dürbaum (1954), provides the interval veloci-
ties from RMS velocities.

The interval velocity corresponds to the propagation speed of
the seismic pulse in a given depth interval. On the other hand
RMS (Root Mean Square) velocity can have multiple definitions.
According to Dix (1955), it is defined as the inverse of the slope
of the tangent line to the curve T 2n(x)× x2 at x = 0, that is,

V 2RMS,n =

[
dT 2n(x)

dx2

]−1
x→0
, (8)

where T (x) is the traveltime as function of offset x. For any
point x �= 0, the RMS velocity is given by:

V 2RMS,n(M) =

[
dT 2n(x)

dx2

]−1
x→M

. (9)

Another way to define the VRMS is as the average quadratic
interval velocity, v, of the layers involved, or

V 2RMS(t) =
1

t

∫ t
0

v2(t′)dt′. (10)

In the discrete form the above equation is expressed as:

V 2RMS,n =

∑n
k=1 v

2
ktk∑n

k=1 tk
, (11)

and the interval velocity vn as:

v2n =
V 2RMS,nT0,n − V 2RMS,n−1T0,n−1

T0,n − T0,n−1 , (12)

where T0,n is the reflection traveltime from the surface to n-th
interface, considering zero offset between source and receiver.
VRMS,n is the RMS velocity down to the n-th interface. The pair
of Eqs. (11) and (12) express the Dix transform (Dix, 1955).

The determination of interval velocities can be expressed as
an inverse problem using Eq. (2), and we have that:

dj = TjV
2
RMS(Tj), j = 1, . . . ,M, (13)

and
mi = v

2
i , i = 1, . . . , N. (14)

Here the M × N matrix G is an operator from numerical
integration of Eq. (10). Using SVD the solution of the inverse
problems can be expressed by Eq. (5). The same form of solu-
tion is achieved using the least-squares method for the objective
function:

φ(m) =mTm+ 2λT (d−Gm), (15)

where λ is the vector of Lagrange multipliers. The minimum of
Eq. (15) uses the derivate concept ∂φ(m)/∂m = 0, or:

∂φ(m)

∂mT
= 2m− 2GTλ = 0, (16)

to yield
2m− 2G = GTλ. (17)

Substituting Eq. (17) into Eq. (2):

d = GGTλ, (18)

from where the vector of Lagrange multipliers is obtained as,

λ = (GGT )+d. (19)

Substituting the Eq. (19) into Eq. (17), we have the solution
of the inverse problem in the form:

m = GT (GGT )+d. (20)

The process of inversion through SVD has the advantage of
being able to incorporate a priori information, and the previous
objective function is modified:

φ(m) = (m−m0)2 + 2λT (d−Gm), (21)

where m0 is the prior information. Again the minimum of the
objective function is achieved by:

∂φ(m)

∂mT
= 2(m−m0)− 2GTλ = 0, (22)

to yield
m = GTλ+m0. (23)

If we substitute Eq. (23) into Eq. (2), we have that:

d = G(GTλ+m0), (24)

from where the vector of Lagrange multipliers is obtained as:

λ = (GGT )+(d−Gm0). (25)

Substituting Eq. (25) into Eq. (23), we obtain the solution of
the inverse problem as:

m = GT (GGT )+(d−Gm0) +m0. (26)

Note that if m0 = 0, Eq. (26) reduces to Eq. (20), as
expected.

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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22 INVERSION OF INTERVAL VELOCITIES IN A MODEL FROM A PRE-SALT AREA

Minimum Relative Entropy
Consider a source m emitting m1, m2, . . . , mN messages
with associated probabilities p1, p2, . . . , pN (where p1+p2+
· · · + pN = 1). Ii is defined as the information contained in
each messagemi (Lathi, 1968), and

Ii = log

(
1

pi

)
. (27)

The average information per message emitted by the source
is expressed as:

H(m) =

N∑
i=1

piIi, (28)

whereH(m) is denoted the entropy of the system.
Substituting Eq. (27) into Eq. (28) gives:

H(m) = −
N∑
i=1

pi log(pi). (29)

The entropy of a given source is a function of the message
probability. Before the experiment there is an uncertainty for not
knowing the results. But, after the experiment, the uncertainty dis-
appears completely when transforming it in gained information
(Rietsch, 1988). Since entropy is a measure of uncertainty the
probability distribution that generates the maximum uncertainty
will have a maximum entropy. This happens when all messages
are equally probable, ensuring the highest possible events and,
consequently, the maximum uncertainty.

Jaynes (1957) formalized the concept of maximum entropy,
and also examined the relationships between statistical mechan-
ics and information theory. In the absence of a priori information,
he proposed a different view on this issue, where he states that
the maximum entropy estimate is the less biased of a given in-
formation. Because there is insufficient knowledge to determine
which event is most likely to happen, we consider that the proba-
bilities of all events are equal. Therefore, the maximization of the
entropy is a methodology of logical reasoning that ensures no us-
age of any inconsistent ideas on the problem of prediction. The
principle of maximum entropy is applicable to problems with in-
complete data, may or may not also involve a repetitive situation
like a probabilistic experiment (Jaynes, 1982).

The principle of minimum relative entropy, or MRE, was de-
veloped in the field of statistics by Kullback & Leibler (1951).
The amount of information, I, obtained in the transmission of a
message can be expressed as:

I = log

[
q(x)

p(x)

]
, (30)

where p(x) is the prior probability density function (PDF), or
the likelihood that a given message was sent; and q(x) is the
posterior PDF, or the probability of such a message arrives to
the recipient. For the continuous case the relative entropy is de-
fined as:

H(q, p) =

∫
q(x) log

[
q(x)

p(x)

]
dx. (31)

The application of MRE in inverse problems is made using
the Fredholm integral equation of the first kind (Ulrych et al.,
1990):

dj =

∫ b
a

Hj(u)m(u)du, j = 1, . . . ,M, (32)

where dj are the known data, Hj(u) is the known kernel, and
m(u) is the unknown model parameters. Our objective is to ob-
tain a final estimate ofm, denoted by m̃ which satisfies Eq. (32).
The discrete version of Eq. (32) is written as:

dj =

N∑
n=0

Hj(un)m̃(un)Δu, j = 1, . . . ,M, (33)

where un andΔu are defined as:

un = (b− a)
( n
N

)
+ a, (34)

Δu = un+1 − un = b− a
N
. (35)

We can write the discrete Fredholm equation as:

dj

Δu
=

N∑
n=0

Hj(n)m̃(n), j = 1, . . . ,M, (36)

where u is a function of n. The vector m̃d(n) is an estimate of
m(n) as:

m̃(n) =

∫ ∞
0

m(n)q(m)dm. (37)

Substituting Eq. (37) into Eq. (36) gives:

dj

Δu
=

∫ ∞
0

q(m)

[
N∑
n=0

Hj(n)m(n)

]
dm,

j = 1, . . . ,M,

(38)

where q(m) is the PDF associated withm. Consider an initial
estimate of m(n) in the inversion process, denoted by s(u),
that corresponds to the a priori information to be used as an
input data of the inverse problem. According to Shore (1981),
it is assumed that s(n) are expected values of some PDF.

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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So we choose this initial PDF, expressed as p(m), as having
minimum relative entropy in relation another PDF which is con-
stant. The initial PDF proposed by Shore (1981) is:

p(m) =

N∏
n=o

1

s(n)
e[
−m(n)
s(n) ]. (39)

We will minimize the entropy of q(m) with respect to
p(m), taking into account the constraint given by Eq. (38), and
the normalization constraint applied to q(m) as:

∫ ∞
0

q(m)dm = 1. (40)

The objective function is constructed as:

φ(m) =

∫ ∞
0

q(m) log

[
q(m)

p(m)

]
dm

+ μ

[∫ ∞
0

q(m)dm− 1
]
+

M∑
j=1

λj

×
[∫ ∞
0

q(m)
N∑
n=0

Hj(n)m(n)dm− dj
Δu

]
.

(41)

The first term of Eq. (41) is the relative entropy integral. Taking
the derivate of φ(m) with respect tom and equaling to zero,

0 =

∫ ∞
0

{
log

[
q(m)

p(m)

]
+ 1 + μ

+

M∑
j=1

λj

N∑
n=0

Hj(n)m(n)

}
dm,

(42)

Reversing the summation order in Eq. (42), making c =
exp(−1 − μ), and writing in terms of the multiplicand,
we obtain:

q(m) = cp(m)
N∏
n=0

exp

×
[
−m(n)

M∑
j=1

λjHj(n)

]
.

(43)

Substituting the initial PDF, given in the Eq. (39) into
Eq. (43), we have that:

q(m) = c

N∏
n=0

1

s(n)
exp

×
⎧⎨
⎩−m(n)

⎡
⎣ 1
s(n)

+

M∑
j=1

λjHj(n)

⎤
⎦
⎫⎬
⎭ .

(44)

Applying the normalization constraint in Eq. (40) into
Eq. (44):

q(m) = c
N∏
n=0

1

s(n)

∫ ∞
0

exp

×
{
−m(n)

[
1

s(n)
+

M∑
j=1

λjHj(n)

]}
dm = 1.

(45)

Solving the integral in Eq. (45) we obtain an equation for c:

c =

N∏
n=0

⎡
⎣ 1
s(n)

+

M∑
j=1

λjHj(n)

⎤
⎦ . (46)

Substituting Eq. (46) into Eq. (45), we have that:

q(m) =

N∏
n=0

⎡
⎣ 1
s(n)

+

M∑
j=1

λjHj(n)

⎤
⎦ exp

×
⎧⎨
⎩−m(n)

⎡
⎣ 1
s(n)

+

M∑
j=1

λjHj(n)

⎤
⎦
⎫⎬
⎭ ,

(47)

where q(m) is the posterior PDF estimate. Substituting Eq. (47)
into Eq. (37), we obtain:

m̃(n)=

∫ ∞
0

m(n)
N∏
n=0

⎡
⎣ 1
s(n)

+
M∑
j=1

λjHj(n)

⎤
⎦ exp

×
⎧⎨
⎩−m(n)

⎡
⎣ 1
s(n)

+

M∑
j=1

λjHj(n)

⎤
⎦
⎫⎬
⎭ dm. (48)

Making a change of variable in the terms independent ofm:

α =
1

s(n)
+

M∑
j=1

λjHj(n), (49)

to give (48) in the form

m̃(n)=

∫ ∞
0

m(n)

N∏
n=0

α exp[−m(n)α]dm. (50)

Performing integration by parts, we arrive at:

m̃(n) =
1

1
s(n)
+
∑M
j=1 λjHj(n)

,

(n = 0, . . . , N),

(51)

where, m̃(n) is the MRE model parameters estimate, s(n) is
a priori model to be used in the inversion, Hj(n) are the ker-
nel matrix elements of the forward problem, λj are the Lagrange
multipliers, which are associated to the constraints in the mini-
mization problem.

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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24 INVERSION OF INTERVAL VELOCITIES IN A MODEL FROM A PRE-SALT AREA

RESULTS

The proposed methodologies to estimate interval velocity distri-
butions are applied to one 1-D model with 100 layers, and 2-
D model with 1000 layers representing a pre-salt model based
on real data displayed in Assine et al. (2008). Initially, the Dix
transform is applied directly to the RMS velocity data, and then
compared to the results obtained by the SVD and the MRE inver-
sions.

The performance of these methods was evaluated using the
criterion of relative RMS deviation (εRMS) defined as:

εRMS =

√∑N
i=1(v

true
i − vesti )2√∑N

i=1(v
true
i )2

, (52)

where vtrue is the vector of true velocities, and vest is the
vector of estimated velocities. This measure is global, that is, for
the all dataset, and can be computed for the three approaches
(Dix, SVD and MRE). In the case of Dix transform:

εDIX =

√∑N
i=1(v

true
i − vdixi )2√∑N

i=1(v
true
i )2

. (53)

For the SVD method:

εSV D =

√∑N
i=1(v

true
i − vsvdi )2√∑N
i=1(v

true
i )2

. (54)

And for the MRE:

εMRE =

√∑N
i=1(v

true
i − vmrei )2√∑N
i=1(v

true
i )2

. (55)

The first computational model has 100 layers with different
interval velocities. In this case, only 10 values of RMS velocities
are computed, the first value at the base of the 10-th layer, the
second at the base of 20-th layer, and so on, according to the dia-
gram of Figure 1. This characterizes an underdetermined problem
(M = 10 andN = 100) where the a priori information has an
important role.

Figure 2 shows the interval velocity curve in red for a situ-
ation of complex geological environment with multiple velocity
reversions. The VRMS curve is in black.

Figure 1 – Model with 100 horizontal plane layers with uniform time intervals,
where only 10 values of VRMS are calculated.

Figure 2 – Model with 100 horizontal plane layers, where only 10 values of RMS
velocity are calculated. The true time interval velocities vTRUE are in red and
the vRMS(t) in black.

Figure 3 shows the inversion using the VRMS as input. The
true interval velocities are in red, the estimated interval velocities
by Dix transform in squares, and the estimated interval velocities
by SVD in black dots. No a priori information was used and the
εDIX was equal to the εSVD (εDIX = εSVD = 6.68%).

Figure 3 – Inversion without a priori information. The vTRUE are in red,
the vDIX are in blue squares and the vSV D are in black dots.

The interval velocity model were then calculated with the pos-
sibility of incorporating a priori information. The same a priori
information was used for both methods (SVD and MRE).

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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Figure 4 shows the result for a priori information constant
and equal to 2,000 m/s, which has 41.17% of εRMS in rela-
tion to the true velocities. The εRMS was the same for the three
methods; that is, εDIX = εSVD = εMRE = 6.68%.

Figure 4 – Inversion with a priori information constant and equal to 2,000 m/s.
The vTRUE are in red, the a priori information is in purple, the vDIX are in
blue squares, the vSV D are in black dots, and the vMRE are in gray dots.

Figure 5 shows the results with a priori information with a
linearly increasing velocity, and a variation of 10 m/s in each in-
terval, which has 24.20% of εRMS in relation to the true veloc-
ities. In this case εSV D = 6.46% and εMRE = 6.32% was
slightly better. Notice that the εDIX does not change because it
does use a priori information; that is, εDIX = 6.68%.

Figure 5 – Inversion with a linearly increasing prior information, from 2,000
to 3,000 m/s; the velocity increases 10 m/s in each layer. The vTRUE are
in red, the vPRI are in purple, the vDIX are in blue squares, the vSV D are
in black dots, and the vMRE are in gray dots.

Figure 6 shows the results when the a priori velocity increases
25 m/s in each interval. In this case, the εRMS was 11.75%. Here
εSVD = 6.29% and εMRE = 6.19%. Again, εDIX = 6.68%.
The results are good, considering the fact that the true model
has a random pattern. Comparing the three methods the εMRE
is the lowest, followed by the εSV D and then by the εDIX .

Figure 6 – Inversion with a linearly increasing prior information vPRI , from
2,000 to 4,500 m/s; the velocity increases 25 m/s in each interval. The vTRUE
are in red, the vPRI are in purple, the vDIX are in blue squares, the vSV D
are in black dots, and the vMRE are in gray dots.

The model shown in Figure 7, is a situation with a pre-salt
geology, inspired on a dip section of the central part of Santos
Basin (right portion of Fig. 8 of Assine et al., 2008). The sea
floor curves gently and the next reflector in the model is also not
horizontal and with velocity of 2,200 m/s. In the model the veloc-
ities range from 1,500 to 6,200 m/s. The reflection time is dis-
played in the vertical axis, and ranges from 0 to 7,770 ms, and
the model has a horizontal length of 44,640 m.

Figure 7 – Two-dimensional true model with a pre-salt situation, based on
information contained in Assine et al. (2008). The color bar indicates the
vTRUE in m/s.

The 2-D model is represented by 1,000 traces, and each trace
has 1,000 intervals. From the interval velocity distribution, for
each trace only 20 values of vRMS were computed, being the
first value to the base of the 50-th layer, the second value at the
base of 100-th layer, and so on. Figure 8 shows this vRMS dis-
tribution. We also considered another situation, where for each
trace 50 values of vRMS were computed, being the first value to
the base of the 20-th layer, the second value at the base of 40-th
layer, and so on. Figure 8 shows this vRMS distribution.
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Figure 8 – Two-dimensional vSV D and vMRE distributions with 20 val-
ues of vRMS , and with a linearly increasing prior information. The color bar
indicates the vRMS in m/s.

The inversions without a priori information will not be
showed, since the two methods gave the same result: εDIX =
εSV D = 9.22% when the input data were 20 values of vRMS
and εDIX = εSV D = 5.87% when the input data were 20
values of vRMS .

Two a priori velocity distribution were used for the SVD and
MRE inverse methods: constant and equal to 2,000 m/s; linearly
increasing prior information, from 2,000 to 6,000 m/s; and lin-
early increasing prior information, from 1,500 to 6,500 m/s, the
velocity increases 5 m/s in each interval. The εPRI were, respec-
tively, 57.37% and 24.89%.

Figure 9 – Two-dimensional vSV D and vMRE distributions with 50 val-
ues of vRMS , and with a linearly increasing prior information. The color bar
indicates the vRMS in m/s.

The two a priori models were used in the SVD and MRE in-
versions. For the constant a priori information the result was
the same, that is, εSVD = εMRE = 5.87% for 50 values of
vRMS , and εSV D = εMRE = 9.22% for 50 values of vRMS .

For the second a priori information (velocity increase of
5 m/s for each interval), for the case with 20 values of of vRMS ,
the SVD result improved a little (εSV D = 9.14%), and the MRE
output was a little better that SVD (εMRE = 9.12%). This small
difference between SVD and MRE is not noticeable in the images,

in such a way that we are only presenting one image for both
methods (Fig. 10).

Figure 10 – Two-dimensional residual between vTRUE and the vMRE
(or vSV D ) with 20 values of vRMS , and with a linearly increasing prior
information. The color bar indicates the residual in m/s.

Figure 11 shows the result for the second a priori informa-
tion (velocity increase of 5 m/s for each interval), for the case with
50 values of of vRMS , the SVD and MRE results were the same
(εSVD = εMRE = 5.85%).

Figure 11 – Two-dimensional residual between vTRUE and the vMRE
(or vSV D ) for 50 values of vRMS , and with a linearly increasing prior in-
formation. The color bar indicates the residual in m/s.

In order to evaluate better the effectiveness of the methodol-
ogy in the 2-D example we obtain the residual velocities by sub-
tracting the estimated interval velocity distribution from the true
interval velocity distribution. Figure 10 shows the velocity resid-
ual when the input data had 20 values of RMS velocity and with
a linearly increasing prior information. Figure 11 shows the ve-
locity residual for the same prior information when the input data
had 50 values of RMS velocity.

CONCLUSIONS
The use of the Dix transform to obtain estimates of the interval
velocity field shows limitations, and it is feasible to only sim-
ple geological models. The SVD and MRE approaches are tech-
nically different: SVD is deterministic, and MRE is probabilistic,
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and for underdetermined problems (more unknowns than equa-
tions), they need a priori information. For a random 1-D model
the SVD and MRE methods provided better results, due to the fact
that they can incorporate a priori information. The second model
was 2-D, but the inverse approach was applied in a 1-D manner,
that it, trace by trace. After the inversion the 1-D interval veloci-
ties distributions were rearranged in a 2-D display. Also for this
second model the MRE provided better results than SVD, when a
non-constant prior information was used.
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