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ABSTRACT. The problem of automatic classification of facies was addressed using the Fast Independent Component Analysis (FastICA) of a data set of geophysical

well logs of the Namorado Field, Campos Basin, Brazil, followed by a k-nearest neighbor (k-NN) classification. The goal of an automatic classification of facies is to

produce spatial models of facies that assist the geological characterization of petroleum reservoirs. The FastICA technique provides a new data set that has the most
stable and less Gaussian distribution possible. The k-NN classifies this new data set according to its characteristics. The previous application of FastICA improves the

accuracy of the k-NN automatic classification and it also provides better results in comparison with the automatic classification by means of the Principal Component
Analysis (PCA).
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RESUMO. O problema da classificação automática de fácies foi abordado através da Análise de Componentes Independentes Rápida (FastICA – Fast Independent
Component Analysis ) de um conjunto de dados de perfis geof́ısicos de poços do Campo de Namorado, Bacia de Campos, seguida de classificação por k vizinhos
mais próximos (k-NN – k-nearest neighbor ). A classificação automática de fácies é utilizada para gerar modelos de distribuição espacial de fácies que auxiliam a

caracterização geológica dos reservatórios de petróleo. A técnica FastICA encontra um novo conjunto de dados com distribuição mais estável e menos gaussiana

possı́vel e o k-NN classifica esse novo conjunto de acordo com suas caracteŕısticas. A aplicação prévia da FastICA melhora a porcentagem de acerto da classificação
automática pelo k-NN, fornecendo melhores resultados quando comparada com a classificação automática por Análise de Componentes Principais (PCA – Principal
Component Analysis ).
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2Universidade Estadual de Campinas, Prédio do DGRN, Rua João Pandiá Calógeras, 51, Barão Geraldo, P.O. Box: 6152, 13983-970 Campinas, SP, Brazil. Phone: +55(19)

3521-4659; Fax: +55(19) 3289-1562 – E-mails: emilson@ige.unicamp.br; vidal@ige.unicamp.br



�

�

“main” — 2015/10/18 — 14:30 — page 120 — #2
�

�

�

�

�

�

120 AUTOMATIC CLASSIFICATION OF LITHOFACIES USING FAST INDEPENDENT COMPONENT ANALYSIS

INTRODUCTION

The automatic interpretation of well log data is supported by mul-
tivariate analysis because there are many factors like data com-
plexity, processing errors, and statistical limitations of the multi-
variate analysis techniques. Many statistical multivariate methods
like Principal Component Analysis (PCA) or Discriminant Analy-
sis (DA) have been applied to analyse multiple geophysical well
logs to produce lithofacies models (Flexa et al., 2004; Rosa et
al., 2008; Sancevero et al., 2008). These methods together with
the knowledge of petrophysical proprieties are often used in flow
simulators of a petroleum field. Such task is complex because
the measurements express the change of the physical proprieties
which can not always be directly associated with lithological varia-
tions. The purpose of this work is to apply a two-fold methodology
to automatic classification of lithotypes using geophysical well
logs as input data. In this two-fold methodology, the Fast Inde-
pendent Component Analysis (FastICA) is applied first, followed
by the k-nearest neighbor (k-NN) pattern recognition method.

In general, the classification of raw well log data using the
k-NN is not sufficiently efficient and/or efficacious because of in-
herent redundancies in the data. This problem may be overcome
by rearranging the information of the orginal data set into a new
linearly independent (LI) set which still contemplates the original
information, but remove such redundancies. A simple strategy to
obtain a new LI data set is the well known process of dimension
reduction. For example, in the PCA a new data set with reduced
dimension can be created by selecting only the autovectors cor-
responding to the highest autovalues. However, the focus of au-
tomatic classification is not to select a particular new data set, but
to obtain the highest prediction accuracy.

Like the aforementioned multivariate methods, the Indepen-
dent Component Analysis (ICA) is classified as a Blind Sig-
nal Separation method (Murata et al., 2001) and does not need
a priori any information neither about the statistical distribution
nor about the spatial coordinates of the data. Because the exis-
tence of independent input signals is assumed based on the par-
ticular physical laws of independent events that are involved, this
method can in principle be applied to several kinds of geolog-
ical, physical or geophysical data (Casey, 2001). Different from
other methods like PCA, ICA searches for non-Gaussian compo-
nent estimations, that is, the components that are as disparate as
possible from the Gaussian distribution (Comon, 1994). Most of
the multivariate analyses find new Gaussian components and this
fact distinguishes ICA from the other methods. Being so, ICA pro-
vides more reliable results in situations where the Gaussian com-
ponents do not conform to the expected result. Then, the search
for non-Gaussianity is one of the most important aspects of the

method. In terms of computing, there are many different approx-
imations that can be used to find the least Gaussian components
possible.

The ICA, as it is presented in its first versions (Comon, 1994),
has a high computational cost, because it is based on succes-
sive matrix multiplications, requiring a great computational effort
for its use. For this reason, many researches were motivated to
develop optimized ways of finding the independent components
(Cardoso & Souloumiac, 1993; Hyvärinen, 1999; Marchini et al.,
2009). In the literature, the FastICA method stands out for being
a hundred times faster than the ICA method (Hyvärinen, 1999).
The main advantages of FastICA when compared to traditional ICA
methods are:

(i) the convergence is cubic, which means a very fast con-
vergence, a fact that has been confirmed by simulations
and experiments based on real data (e.g. Giannakopoulos
et al., 1999);

(ii) there are no step size parameters to choose, meaning that
the algorithm is easy to use;

(iii) it does not require previous estimation of a probability
distribution function;

(iv) the independent components can be estimated one by
one, decreasing the computational effort of the method in
cases where only some of the independent components are
of interest.

In this work, the independent components found using the
FastICA method were used as training data for the pattern recog-
nition method known as k-nearest neighbor (k-NN). The k-NN
is a classifier algorithm based on the structural distance between
test and training sets (Cover & Hart, 1967). Given a test set
with many samples, each one is spatially analyzed and a label
(class) is assigned according to the maximum number of neigh-
bors in the chosen neighborhood. For this particular application,
the classes were defined using core samples extracted from wells
of the Namorado Field in Campos Basin, Brazil, avoiding approx-
imations or calibration problems between lithology and log sam-
ples for each log. A quantitative analysis of the proposed method-
ology was conducted by a series of tests varying the values of
the FastICA and k-NN parameters, using well log input data ex-
tracted from depth intervals where core samples are available. The
final product of each test is a success rate plot, where the perfor-
mance of the classifier can be observed according to the variation
of the parameter value. These results can be used for comparison
with those obtained using other statistical multivariate methods,
or to support geological interpretation in regions where reservoir
properties have to be estimated from seismic data.
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METHODOLOGY

The methodology consists in using the independent components
extracted by the FastICA as a new training and test data set for the
k-NN classification method. This new data set has a maximum
number of dimensions equal to the number of input variables, i.e.,
geophysical well logs. For example, if the sonic (DT) and density
(RHOB) logs of a well are used, two independent components are
found. The set of values of the independent components at a par-
ticular depth is called sample.

The k-NN is a well known and simple automatic classifica-
tion method (Dasarathy, 1991; Sancevero et al., 2008). The k-NN
method is easy to implement and allows spatial sample calcu-
lations, justifying its use in this work. However, as a supervised
classification method, it is necessary to use at least some of the
core data as target values in the training process. The training
process defines labels for each sample that is used to classify the
rest of the samples that have no associated core data. The result of
each sample classification is an output label (class). The output
label is compared to the known core data, allowing the calcula-
tion of the number of correct predictions. The number of correct
predictions divided by the total number of samples is the success
rate of the method.

FastICA
The ICA approach has some disadvantages, such as problems
with the contrast function maximization, computational cost and
the choice of the learning rate. To solve those limitations, the
FastICA approach was proposed.

FastICA is based on a fixed-point algorithm and the speed of
the method, compared with ICA, is improved by the large num-
ber of data points (samples) used in a single step of the algorithm
(Hyvärinen & Oja, 1997). In addition to this characteristic, Fast-
ICA works similarly to a neural algorithm, because both of them
allow parallel computing, i.e., the data processing can be carried
out by multiple operations in each step. Moreover, the FastICA
is computationally simple and requires small space in memory
(Hyvärinen, 1999).

The employed fixed-point algorithm is based on Newton’s
method (Macleod, 1984). Each independent component w+ is
iteratively updated by

w+ = w− f(x)
f ′(x)

, (1)

wherew is a random initial guess of a non Gaussian component
that iteratively converges to the actual independent component
w+, by maximizations of some contrast function f(x) (Comon,

1994). In the traditional ICA context, the contrast functions can
be: Skew : f(x) = x2, Pow3 : f(x) = x3,Gauss :
f(x) = exp

(− x2

2

)
andTanh : f(x) = tanh(x).

In the FastICA, the negentropy (F ) contrast function

F = E{xg(wTx)} − βw = 0 (2)

is used, because it allows the Kuhn-Tucker stationarity condition
(Kuhn & Tucker, 1951). β = E{wT0 xg(wT0 x)} andw0 is the
optimum value of the process. The Jacobian of the Negentropy
(F ) can be written as

JF (w) = E{xxT g′(wTx)} − βI. (3)

As it is usual in multivariate statistical methods, a statistical
centralization of the data is applied, known as whitening (Hyväri-
nen et al., 2001). If the data are whitened, then E{xxT } ≈ I
and Eq. (3) can be rewritten as JF (w) = E{g′(wTx)}−βI.
Approximating β to w values, instead of w0, the complete
fixed-point algorithm can be written as

w+ = w − [E{xg(w
Tx)} − βw]

[E{g′(wTx)} − β] . (4)

After rationalizing Eq. (4), we obtain

w+ = E{xg(wTx)} − E{g′(wTx)}w. (5)

Equation (5) finds one independent component at a time. If
the purpose is to find all n possible independent components
of a particular data set, then it is necessary to calculate n + 1
different independent components, and for each single compo-
nent, decorrelate the other n components, resulting in compo-
nents that are linearly independents. To accomplish the linear in-
dependence, a deflation scheme based on the Gram-Schmidt-like
decorrelation (Zhang & Chan, 2006) is applied, resulting in

wn+1 = wn+1 −
n∑

i=1

wTn+1wiwi. (6)

Considering the effect of data whitening, Eq. (6) is normalized:
w∗n+1 = w

+
n+1

/||w+n+1||.

k-Nearest Neighbors (k-NN)
The k-Nearest Neighbors (k-NN) is a supervised classifier algo-
rithm based on the structure and distance between samples of a
test and a training set (Cover & Hart, 1967). Given a test set with
many samples, each sample will be spatially analyzed and a label
(class) will be assigned that is equal to the most commonly found
label among the nearest neighbors.

Brazilian Journal of Geophysics, Vol. 33(1), 2015



�

�

“main” — 2015/10/18 — 14:30 — page 122 — #4
�

�

�

�

�

�

122 AUTOMATIC CLASSIFICATION OF LITHOFACIES USING FAST INDEPENDENT COMPONENT ANALYSIS

The k-NN is a type of instance-based learning, because even
with the establishment of the whole training set, it does not
perform an explicit generalization beyond the training set. In-
stead, it simply compares new samples with the training samples.
Nevertheless, k-NN is one of the simplest classification algo-
rithms and it is recommended in cases where statistical distri-
butions of the samples are unknown or in cases where the initial
parameter choices are intricated. For example, classifiers based
on Artificial Neural Networks (ANN) demand the choice of some
crucial parameters to obtain a better performance, such as num-
bers of neurons, learning rate, number of iteractions, etc. These
informations are in general selected according to the statistical
characteristics of the data (França, 2009). Unsupervised classi-
fiers like the k-means demand the choice of several parameters
(MacQueen, 1967). In the k-NN, sample distances are calcu-
lated using Euclidian metric and the only initial parameter that
needs to be set is k, which is the number of neighbors to be
analyzed for each sample (Toussaint, 2005).

DATA

Well log data from the Namorado Field in Campos Basin were
selected to evaluate the proposed methodology. The data selec-
tion was motivated by the immediate availability of these data from
the Agência Nacional do Petróleo, Gás Natural e Biocombust́ıveis
(ANP), and for being considered a school field (Barboza, 2005).
The Namorado Field is located in the north central part of the hy-
drocarbon accumulation zone of the Campos Basin and it was
discovered in 1975 (Vidal et al., 2007). The log data used were:
Sonic (DT), Gamma Ray (GR), Resistivity (ILD), Density (RHOB),
and Neutronic Porosity (NPHI), extracted from seven wells:
NA01, NA02, NA04, NA07, NA011A, RJS234, and RJS42. The
sampling frequency of the log data is 0.2 m depth. Core data
were available only through some specific intervals of the wells.
The number of available samples in the data of all seven wells is
4732 samples. There are 1950 samples that can be directly asso-
ciated to the available core data. The samples with core data are
used in the validation tests.

TRAINNING AND VALIDATION

Five independent components were calculated by applying Fas-
tICA to the five well logs, where each component has 1950
samples. Therefore, the data matrix composed of the indepen-
dent components (IC) has dimensions 1950×5. However, it is
important to notice that, as the classification is carried out by
means of statistical relationships based on the spatial distance

among the samples, the number of independent components
(NC) for the training and test will vary based on the particular
available data (e.g. Efron & Tibshirani, 1995). For this reason,
NC was a variable from 1 to 5 in four of our tests.

Having fixed a particular NC, the samples were divided into
two sets to allow validation of the classifications: a training set
(TR) and a testing set (TS). The TR contains the samples associ-
ated to the available core data and was used to predict the labels
of each sample in TS. There are many ways to separate the data in
TR and TS, and the interpreter must choose the way this division
will be carried out (e.g. Leite & Souza Filho, 2009).

Two types of data division were applied: (Type 1) after as-
signing an index i = 1, 2, . . . , 1950 to each sample, TR was
composed by even indexed samples and TS by odd indexed sam-
ples. In this case, both TR and TS have 975 samples; and (Type 2)
a random division into two groups containing 975 samples each.
When Type 2 TR/TS division was used, each test consisted of a
hundred times runs of the algorithm, each one corresponding to a
different random TR/TS distribution of samples. In this case, only
the average results are presented.

Two types of labels were used: (Type A) labels based on
29 lithotypes identified in the core samples of the wells in the
Namorado Oil Field; and (Type B) labels based on groups of
characteristics of these lithotypes, dividing them into reservoir,
interlaminated and non reservoir rocks. The reservoir label cor-
responds to the facies related to thicker packages of sandstones
with high values of porosity and permeability; the interlaminated
label refers to sandstones intercalated with shales, fine grained
sandstones and conglomerates; and the remaining lithotypes
were labelled as non-reservoir.

RESULTS

In the first test batch, TR and TS was defined using Type 1 divi-
sion and Type A labelling was applied. Results show the max-
imum success rate obtained when all independent components
and small values for k are used. Tests with fewer components
show that the maximum success rate is observed for large val-
ues of k and do not have the same effiency (Fig. 1).

The second test batch was carried out using Type 1 TR/TS
divison and Type B labelling. As seen in the first test batch, the
classification using all components provides the higher success
rate. Compared with the first batch, this one presents a higher
success rate for all cases (Fig. 2). This is expected because the
possible labels were reduced from 29 to only three.

The two previous test batches can already be used to eval-
uate the methodology. Those results are not related to a possi-

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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Figure 1 – First test batch: Even/Odd test, Classification of lithofacies.

Figure 2 – Second test batch: Even/Odd test, Classification of characteristics.

ble spatial correlation among the samples, and the efficiency of
the classification does not come from that particular TR/TS divi-
sion. However, to include randomness in the creation of TR and
TS, a third test batch using Type 2 TR/TS division was employed.
Type A labelling was used.

As seen in the two previous tests, the number of independent
components directly influences the success rates (Fig. 3). In com-
parison with the first test batch, there is a small decrease in the
average of correct predictions. However, a direct comparison is
not possible, because the first batch was conducted using a fixed
TR/TS separation and resulted in the same success rate for all

tests, while the third test batch, with a variable TR/TS separation,
produced different success rates for each classification attempt.

In the fourth test batch, Type 2 TR/TS divison and Type B la-
belling was used. Similarly to the previous test batch, the average
success rate decreases in comparison to the rates of the second
batch, but both have a similar behavior (Fig. 4). It is clear that the
results strongly depend on how the data are split into TR and TS
and also on the labelling of the samples.

The four test batches show that the FastICA provides maxi-
mum success rates between 60% and 70% for Type A labelling,
and between 83% and 86% for Type B labelling.

Brazilian Journal of Geophysics, Vol. 33(1), 2015
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Figure 3 – Third test batch: Random test, Classification of lithofacies.

Figure 4 – Fourth test batch: Random test, Classification of characteristics.

COMPARISON BETWEEN FastICA AND PCA

In order to compare the use of ICA and PCA to generate the input

data to the k-NN classifier, two more test batches were conducted.
A fifth test batch was applied using Type 1 TR/TS division, Type A

labelling and five FastICA components. The results are shown in

Figure 5. The sixth and last test batch was conducted using Type 1

TR/TS division, and Type B and five FastICA components. The re-

sults are found in Figure 6. In all situations, the FastICA was more
efficacious than the PCA.

CONCLUSIONS

The results of this work show that the use of independent compo-

nents calculated by FastICA as input to the k-NN classifier pro-
vides high accurate lithofacies (reservoir; non reservoir; interlam-

inated) predictions, particularly when training and test samples

are randomly divided and all independent components are used.

In such cases, the success rates are above 80%. However, when

all lithotypes has to be classified, the success rate is reduced to
less than 70%. In comparison to the use of PCA, FastICA may

Revista Brasileira de Geof́ısica, Vol. 33(1), 2015
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Figure 5 – PCA× ICA Comparative: Even/Odd Test, Classification of lithofacies, All Components.

Figure 6 – PCA× ICA Comparative: Even/Odd Test, Classification of characteristics, All Components.

improve the k-NN success rate from 77% to 86% when few

neighbors and all independent components are used.
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