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ABSTRACT. Using simple examples we show the main features of the phase spectra, which have to be taken into account in seismic data processing. In this case

the peculiarities of phase spectra processing in terms of probabilistic and statistical characteristics are considered. Based on previous theoretical results and using the

results of the analysis of the spectra calculated for the real seismic signals, there are formulated simple criteria to ensure high performance and stability of the statistical

procedures for the phase spectra processing. It allowed us to construct a simple procedure for continuous extension of the phase spectra of signals observed on real

traces, and thereby ensure the uniqueness of their determination. The uniqueness is important for the joint processing and analysis of large sets of phase spectra,

calculated from the observed seismic signals. Such obtained spectra can be effectively used in various practical problems. Thus, based on the analysis of synthetic

and real data, we show that using the phase spectrum can reduce the zone of uncertainty in determining the pinch-out points of a horizon.

Keywords: phase spectrum, seismic data, thin-layer reservoir, pinch-out zone.

RESUMO. Usando exemplos simples, mostramos as principais caracterı́sticas dos espectros de fase, que devem ser consideradas no processamento de dados

śısmicos. Neste caso, as peculiaridades do processamento de espectros de fase em termos de caracterı́sticas probabiĺısticas e estat́ısticas são consideradas. Com base

em resultados teóricos anteriores, e utilizando os resultados da análise dos espectros calculados para os sinais sı́smicos reais, são formulados critérios simples para

garantir alto desempenho e estabilidade dos procedimentos estat́ısticos para o processamento de espectros de fase. O que permitiu-nos construir um procedimento

simples para a expansão cont́ınua do espectro de fase dos sinais observados em traços reais e, assim, garantir a unicidade de sua determinação. A unicidade é importante

para o processamento e a análise em comum de grandes conjuntos de espectros de fase, calculados a partir dos sinais sı́smicos observados. Tais espectros obtidos

podem ser usados com eficácia para resolver vários problemas práticos. Assim, com base na análise dos dados sintéticos e reais, é mostrado que o uso do espectro de

fase pode reduzir a zona de incerteza na determinação dos pontos de acunhamento de um horizonte.

Palavras-chave: espectro de fase, dados sı́smicos, reservatório delgado, acunhamento.
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INTRODUCTION

The phase component of the spectrum or phase spectrum of
short-time interval of seismic trace is an extremely important
characteristic in the analysis of seismic signals related to the lo-
cal objects. Examples of such signals are reflections of different
types, in particular, PP and PS waves associated with thin-layer
target horizons. Unfortunately, the phase spectrum is given lit-
tle attention in practical seismic exploration, and the number of
publications on the subject is very limited. At the same time, the
phase spectrum contains even more information than the ampli-
tude component, which is usually used in the dynamic analysis of
real seismic data. In this case, as a rule, it is not considered that
the amplitude spectrum contains, basically, information about the
integral or energy characteristics of the signal, while the phase
spectrum contains information about its differential characteris-
tics. Orientation to analysis of only the amplitude spectrum of the
seismic signal leads to the fact that during the processing of real
data there is a loss of important information about the structure of
the phase spectrum of target signal. As a result of its reduction to
the minimum-phase and even to the zero-phase spectrum infor-
mation about the phase spectrum of the observed signal are lost
or significantly distorted.

The current interest to the phase spectra of seismic signals
may be connected with several reasons: first, some traditionalism
in focus of the real data processing on the arrival times of observed
signals. This unification of the form of signals (in particular, by
their reduction to the zero-phase spectrum) guarantees improving
their selection and correlation on the original seismograms. Sec-
ondly, such reasons are justified if to consider the original seismic
trace as a realization of a random process. Similar assumptions
are often used in the development of certain procedures, for ex-
ample, the optimal Wiener filtering. Third, the processing of large
sets of source signals (taking into account changes of the phase
components) is much more complex than processing, based on
the above assumptions.

Interest in the phase spectrum can be renewed for dynamic
analysis of complex wave fields in connection with the solution of
inverse dynamic problems for thin-layer objects. We only have to
understand the limitations of the above assumptions (zero-phase,
minimum-phase), which allowed us to exclude the phase compo-
nent of the spectrum in the traditional real data processing. Thus,
it is well-known that even for a single thin-layer we cannot com-
pletely restore the elastic parameters using only the amplitude
spectrum of the reflected signal, see Berzon (1965) and Khudzin-
skii (1966). Understandings about the importance of phase spec-
tra in the study of many technical processes have manifested
in actively developing modern methods of spectral analysis. In

particular, the absence of capacity to analyze this component in
the local spectrum with wavelet analysis of temporal processes
favored to the creation of S-transformation. A key feature of this
transformation is the possibility of combining a frequency depen-
dent resolution in time-space domain to obtain the local phase
information, see Stockwell et al. (1996).

A low noise stability of the estimates obtained by real seismic
traces is one of the main difficulties in the processing and inter-
pretation of the phase spectra. The traditional ways of increasing
stability of the estimates through the application of accumulative
procedures, as well as other procedures for joint analysis of the
phase spectra, make a demand on the unique determination of
this component (such a requirement is completely absent when
considering the amplitude spectra).

A simple model experiment, whose results are presented in
Figures 1 and 2, illustrates the importance of the accumulation
procedures in the unique determination of the phase spectra.
This experiment used a simple pulse in the form of decaying si-
nusoids, see Figure 1(a). Its spectral components (amplitude
and phase) are presented in Figure 1(b). In this experiment the
phase component was determined in the interval [−π, π ] that
is sufficient to perform a single-valued inverse Fourier transform.
This definition of the phase spectrum is also sufficient to carry
out the averaging of the spectral characteristics and to obtain a
stable estimate, as a form of the initial pulse and its two spec-
tral components. It requires the invariability of arrival times for
the considered signals, or the exact values of the correspond-
ing times. In case of violation of the requirement (it is a typical
phenomenon for a real seismic experiment) the situation changes
dramatically. Thus, when the difference in arrival times of sig-
nals is 10 ms, which is less than 1/3 of the period of this signal,
we obtain a significant distortion when trying to construct esti-
mates of the waveform by averaging the spectral components in
the phase determined on the interval [−π, π ]. The correspond-
ing result is illustrated in the subsequent parts of Figure 1, which
presents several methods of estimating the original signal using
only the two observations. At the same time, Figure 1(c) shows
the result of summation of two signals without taking into account
the changing the time of their arrival. We see that in this case
there is some distortion of the signal with changing (decreasing)
its apparent frequency. Such a distortion of the signal is a well-
known fact, which demanded the development of correlation
methods for the observed seismic signals and adjusting their
arrival times at the implementation of accumulation procedures
for different purposes (estimating the velocity spectrum, con-
structing the stacked seismic sections, for example). Implemen-
tation of the procedure and the correlation of accounting changes
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1 – Determination of the original signal form and its spectrum on the basis of two observed signals using different methods (explanation in text).

of arrival times of signals permit accurately to reconstruct the
shape of the initial pulse in the summation of the observed pulses
in the time domain and provide its location on the average time
of arrival of the two considered signals (see Fig. 1(d)). However,
the summation of the spectra of these signals in determining the
phase component in the range provides a very significant distor-
tion of the signal, which is much higher than what we had in the
absence of correlation procedures (see Fig. 1(e)). At the same
time using the continuation of the phase spectrum provides us a
high accuracy in determining the shape of the initial pulse and its
location in the time domain, see Figure 1(f).

The above situation and the problem remain unchanged with
an increase in the number of accumulated signals and the pos-
sible reduction of the time shifts between neighboring signals,
see Figure 2. Here we use the same type of signal, but for the
accumulation there are taken 12 signals, which represent some
part of the seismogram. The minimum delay between the arrival
time of signals was 1 ms, the maximum time shift reached 20 ms.

It is evident that if we ignore these shifts in the summation of
signals in time domain, then we get above the distortion of the
signal shape (see Fig. 2(a)), which is completely eliminated by
correlation and accounting shifts of signals (see Fig. 2(b)). We
also have a strong distortion of the signal in the summation of
spectral components in the case of determining the phase com-
ponent in the interval [−π, π ] (see Fig. 2(c)), and its continua-
tion in the interval (−∞, ∞) permits us to calculate the shape
of the signal with high accuracy. Obtained for these two cases,
evaluation of amplitude and phase spectra are shown in red, see
Figures 2(e) and 2(f). The latter figures show that the phase com-
ponent of the spectrum can be measured not less stable than the
amplitude component in the case of its uniqueness in the interval
(−∞, ∞). It should be noted that ensuring the uniqueness of
the determination of the phase component for each of the traces
allows us, even in complicated models of wave field related to
the multiplicative factor models, to obtain consistent estimates of
unknown parameters, see Goldin (1976).
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(a) (b)

(c) (d)

(e) (f)
Figure 2 – Determination of the original signal form and its spectrum on the basis of twelve observed signals using different methods (explanation in text).

UNIQUENESS OF THE PHASE SPECTRA IDENTIFICATION
USING THEIR STATISTICAL CHARACTERISTICS

Calculation of phase spectra of the real data

Before turning to the peculiarities of the phase spectra let us de-
termine how they are calculated. Apparently, the calculation pro-
cedure of the phase spectrum using Fourier’s transform presents
no difficulty, see Titchmarsh (1948). But it is important to note
that such studies were done for relatively short-time intervals of
the traces. Often the time interval can be less than 100 millisec-
onds, and the number of samples does not exceed 100. Usually,
in the selection of appropriate intervals ones use a rectangular
window. However, it has been noticed that the estimate of the

signal strongly depends on the width and shape of the applica-
ble window, see Jenkins & Watts (1969). Using special windows
can significantly improve the stability and the statistical signifi-
cance of spectral estimates of the energy characteristics of random
processes, see Hennan (1970). Selection of the seismic record-
ing interval is similar as using some window in time domain.
In frequency domain, it is equivalent to smoothing the signal
and random noise spectra. Assume that we are able to use the
best window in the selection of recording interval for subsequent
spectral analysis. Then by the spectral analysis we shall under-
stand the computation and analysis of individual spectra of dis-
crete time intervals or parts of traces t j

1 , t j
2 , where j specifies

the number of selected interval of the trace, and t j
1 , t j

2 determine,
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respectively, the initial and end points of the selected time inter-
val. This approach allows us to separate a complex wave field on
individual components, often differ in their spectral composition,
and for each discrete given j-th time interval of the trace to write
down the following model:

y(t) = s(t) + ζ(t), t ∈
[
t j
1 , t j

2

]
(1)

Here s(t) is a useful signal, whose spectrum is necessary to
be calculated with highest accuracy, and ζ(t) is a part of the re-
alization of a stationary random process with correlation function
2σ 2 R(τ ). Note that when considering the real seismic traces,
the assumption of stationarity of the process with respect to ζ(t)
can be satisfied only for relatively small time intervals. Under the
useful signal, depending on the problem, there are understood
separate seismic pulses or the whole set of such impulses.

Using arbitrary types of windows in the selection of the inter-
val for the spectral analysis, we can consider the input signal to
the discrete Fourier transform in the following form:

ŝ(t) = g(t)∙y(t) = g(t)∙[s(t)+ζ(t)], t ∈ [0, T ], (2)

where g(t) is the window function, which is different from zero at
t ∈

[
t j
1 , t j

2

]
and identically equal to 0 for all other values of time

variable t . It follows from Equation (2) that the selected window
should minimally distort the shape of the signal component and
suppress as much as possible the disturbance. It is easy to write
the discrete analog for this presentation, which is used in spectral
analysis, see Mitrofanov (1979) for details.

Calculating the discrete spectrum of discrete signal given by
Equation (2) allows us to construct estimates of the spectrum
signal component at a fixed set of frequencies ωl = l1ω,
l = 1, . . . , L , where 1ω = 2π1 f is a step in frequency,
which is defined in hertz (Hz) and can be chosen either randomly
or in accordance with the duration of a given signal. The cor-
responding estimate of the spectrum component (or spectrum of
the observed seismic signal) is a complex quantity. In that case
the spectrum of the signal at a fixed frequency ωl will be denoted
by Ŝl and, by definition, this value can be regarded as the value
of the Fourier transform constructed for the discrete analogue of
Equation (2). In accordance with this representation, the imagi-
nary and the real components of the calculated spectrum will al-
ways have the sum of the smoothed spectrum of the signal and
noise. So, Ŝl , l = 1, 2, . . . , L , are random in nature and can be
represented by using probabilistic characteristics, and the corre-
sponding probabilistic characteristics will be different when con-
sidering different spectral components. It is important to always
keep in mind such characteristics during the spectral analysis of
real data.

Due to limited time-window function g(t), we obtain a rather
important property, which applies to all spectra obtained in ac-
cordance with Equation (2). They will be analytic in the corre-
sponding frequency band, see Titchmarsh (1948). In particular,
this applies to the values of the spectrum as well as to the values
of the smoothed spectrum of the true signal S̃l , and to the values
of spectrum of the noise ζ̃l .

Based on the calculated values of Ŝl we can always define
the value of the phase spectrum of the seismic signal at a fixed
frequency ωl , as

φ̂l = arctg

(

−
Im Ŝl

Re Ŝl

)

= arctg

(

−
Im Ŝl + Im ζ̃l

Re Ŝl + Re ζ̃l

)

,

(3)

which allows us to determine the value φ̂l in the interval
[−π/2, π/2]. Here Re S̃l , Im S̃l are the real and imagi-
nary components of the true signal spectrum, respectively, and
Re ζ̃l , Im ζ̃l are the corresponding components of the spec-
trum of the noise. Since φ̂l is the angle of the radius-vector
of point Ŝl with coordinates Re S̃l , Im S̃l , then analyzing the
signs of coordinates, we can simply extend the definition of
value φ̂l in the interval [−π, π ]. This extended value of φ̂l

will exactly be regarded as a calculated value of the phase spec-
trum of the real data. In this case, for the values of the phase
spectrum related to the smoothed signal component there a no-
tation φ̃l will be used, but for brevity, in some cases the notation
φl will be used for general representation of the phase spectrum
component at a fixed frequency.

Discontinuity of the phase spectrum component

It was shown in the Introduction that a solution of the problem of
unique determination of the phase spectrum component in the in-
terval (−∞, ∞) is very important for joint analysis of the sets
of phase spectra when the arrival times are not precisely known.
In order to solve this problem we have to consider an important
property of the phase spectrum component as piecewise continu-
ity of the given function, see Mitrofanov (1986). At the same time
two types of discontinuities may exist. The first type of discon-
tinuity introduces a change in the phase spectrum on the value
±2π , and the second type of discontinuity leads to a change in
the phase spectrum on the value ±π . The nature of these types
of discontinuities is quite different. For example, if the first type
of discontinuities is associated with the transition to a new sheet
of the Riemann surface for the values of the complex spectrum,
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the second type of discontinuity characterizes the behavior of the
spectrum at a point where its value is zero. It is well-known that
the information about the behavior of analytic functions at points
of zero is greatly important. Therefore, the fact that this informa-
tion is contained in the phase spectrum, rather than in ampli-
tude, once again emphasizes on the importance of using the phase
characteristics in the spectral analysis of seismic signals.

For a better understanding of the phase spectra of real seis-
mic signals, the origin of these types of discontinuities will be
analyzed in major details. Following Mitrofanov (1986) and us-
ing the above notations, we consider the behavior of the differ-
ence φ̃l+1 − φ̃l , calculated for a given discrete signal s̃(t) and
obtained by “cutting” it out of the observed trace using the win-
dow g(t). We have already noted that the spectrum S̃l , calculated
for this signal, is an analytic function. It is easy to specify the
maximum width of windows, for which the amplitude spectrum
|S̃l | is a continuous function of the frequency or the parameter
ωl = l1ω, 1ω = ωl+1 − ωl , in the processed frequency
band, see Khurgin & Yakovlev (1971). It is also easy to show that
φ̃l+1 − φ̃l has the following properties:

lim
1ω→0

(
ϕ̃l+1 − ϕ̃l

)
=






±2π

0
±π

(4)

The first two equalities in Equation (4) are obvious. They fol-
low the analyticity of S̃(ω) in the corresponding frequency band,
which gives continuity of φ̃(ω) under the condition |S̃(ω)| 6= 0
for any ω ∈ (ωl+1, ωl), and the definition of φ̃(ω) in the inter-
val [−π, π ], but not in the interval (−∞, ∞).

To prove the validity of the last equalities in Equation (4) in
the interval (ωl+1, ωl) let us represent the imaginary and real
components of the spectrum in the form of polynomials of a finite
order: Re S̃(ω) = Pn(ω), Im S̃(ω) = Qm(ω). Assume that
at a point ω0 ∈ (ωl+1, ωl) the polynomials Pn(ω), Qm(ω)

have the following representations

Pn(ω) = (ω − ω0)n0 ∙ P∗(ω), n0 ≥ 1

Qn(ω) = (ω − ω0)n0 ∙ Q∗(ω), m0 ≥ 1

with P∗(ω0) 6= 0, Q∗(ω0) 6= 0. Due to this reason there is a
valid equality which is given below:

lim
ω→ω0±0

arctg

(

−
Im S̃(ω)

Re S̃(ω)

)

=






arctg(±∞) = ±π/2 + kπ, n0 > m0

arctg(−α) + kπ n0 = m0

arctg(±0) = 0 + kπ, n0 < m0

where k is an integer and α is a real number; it proofs
equality (4).

Thus, the function φ̃(ω) can only have two types of dis-
continuity, which correspond to the first and third equalities in
Equation (4). If the first type is associated with the definition of
φ̃(ω) in the interval [−π, π ], the second type characterizes
the behavior of the radius-vector S̃(ω) in the vicinity of the dis-
continuity point, i.e., the second type has an useful information
about the structure of the seismic signal, which can be used in
the sequel in the dynamic interpretation. Discontinuities of the
first kind can be eliminated by supplementing the definition of
φ̃l in the interval (−∞, ∞), or by using explicit expressions
for the derivatives of φ̃(ω) at corresponding points. Disconti-
nuities of the second type are unremovable, which entails un-
certainty of the infinite type in calculating derivatives of φ̃(ω)

at corresponding points.
It is followed from the above proof of (4) that the continuity of

the phase component of the phase spectrum under of the seismic
signal depends not only on the kind of used window, determining
the band of analyticity of S̃(ω), but also on the ratio of orders of
zeros of its real and imaginary components.

To understand the nature of discontinuities of the second type,
as well as for the subsequent development of algorithms, the fol-
lowing statement is important, firstly formulated in Mitrofanov
(1986): if min{n0, m0} is an odd number, then the function
φ̃(ω) has the second type of discontinuity at the point ω0.

To prove the sufficiency of this statement, let us consider a
pair {S−

ω , S+
ω }, where

S±
ω = S̃(ω0 ± ω), ω > 0.

In consideration of the orthogonality of the real and imaginary
components of the spectrum, we can write the cosine of the angle
between vectors S−

ω , S+
ω , see Gelfand (1989):

cos
(
S−
ω ∧ S+

ω

)

=

Re S̃(ω0 − ω) ∙ Re S̃(ω0 + ω)

+ Im S̃(ω0 − ω) ∙ Im S̃(ω0 + ω)

|S̃(ω0 − ω)| ∙ |S̃(ω0 + ω)|

(5)

In the conditions formulated above and analyticity of S̃, we
have a monotonic convergence |S̃(ω0 − ω)| to | Re S̃(ω0)| or
| Im S̃(ω0)| when ω → 0, depending on which of the orders of
zeros is smaller. A similar convergence holds for |S̃(ω0 + ω)|.
Hence considering the oddness of the order of zero, we find that
cos(S−

ω ∧ S+
ω ) → −1 when ω → 0. Consequently, the angle

between S−
ω , S+

ω tends to π , and hence, the phase component
has a jump when passing through the point ω0.
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Under the same orders of zeros in Re S̃(ω), Im S̃(ω), it is
enough to transform Equation (5) into

cos(S−
ω ∧ S+

ω ) =
Re S̃(ω0 − ω) ∙ Re S̃(ω0 + ω)

| Re S̃(ω0 − ω)| ∙ | Re S̃(ω0 + ω)|

×

(

1 +
Im S̃(ω0 − ω) ∙ Im S̃(ω0 + ω)

Re S̃(ω0 − ω) ∙ Re S̃(ω0 + ω)

)

×







1 +

(
Im S̃(ω0 − ω)

Re S̃(ω0 − ω)

)2




×



1 +

(
Im S̃(ω0 + ω)

Re S̃(ω0 + ω)

)2








−1/2

and, by taking into account the continuity of Re S̃(ω), Im S̃(ω)

which follows from analyticity of S̃(ω), it is also easier to show
that the second factor tends to 1. Accordingly, we find that
cos(S−

ω ∧ S+
ω ) → −1 when ω → 0 for odd-order zeros. It

allows us to prove the necessity of the formulated statement about
the existence of the second type of discontinuities in the function
φ̃(ω), since its violation leads to the fact cos(S−

ω ∧ S+
ω ) → 1

when ω → 0.
Thus, the discontinuities of the second type of function

φ̃(ω) are possible only at the points where |S̃(ω)| = 0. The
statement mentioned above allows us to better understand the
process of formation of such discontinuities. The radius-vector,
decreasing to zero, enters in a relevant discontinuity point, hav-
ing one direction, and turns out in a different direction. In the pa-
per Mitrofanov (1986) several examples are considered regarding
appearance and the lack of discontinuities in φ̃(ω) at the points
where the modulus of the spectrum is equal to zero. Two such
examples are shown in Figure 3. It is interesting that at the first
look the discontinuous phase spectrum (of the second type) has
more regular behavior of S̃l at the origin than the continuous one,
see Figures 3(a) and 3(b).

Furthermore, the above proof scheme may serve as a ba-
sis for constructing algorithms for isolating such discontinuous
points. These algorithms must provide singling out the points of
the anomalous decreasing in |S̃(ω)|, and then to analyze con-
verging the right-hand part of Equation (5) to −1 in the vicinity
of such points, or by analyzing the decay rate of Re S̃(ω),
Im S̃(ω) to determine the point of sign alteration at most slowly
changing component. Although these algorithms are very time
consuming computationally, their implementation has allowed us
to analyze and study of these types of discontinuities in the real
seismic data processing.

A somewhat different approach for isolating points of discon-
tinuities of the second type can be based on their significant dif-
ferences (in magnitude) from the discontinuities of the first type.
So, we can assume that there is a discontinuity of the second type
in a point ω ∈ 1ω, if the following inequality is true

π − δ < |φ̃l+1 − φ̃l | < π + δ (6)

where 0 < δ < π . Obviously, such an algorithm, having an
exceptional simplicity, will reliably single out points of such dis-
continuities for small 1ω, see Sysoev & Evdokimov (1986) for
details. But the question of choosing the appropriate value and
finding the optimum value for this criterion remains unresolved.
Some recommendations will be given below.

Another important point in the analysis of phase spectra and
their processing at the discontinuity points of the second type is
the question of choosing the direction of the discontinuity, i.e.,
sign of π when passing through the corresponding point. The
main difficulty here is that the discontinuity of this type may lead
to ϕ̃(ω) /∈ [−π, π ]. This question is nontrivial, see Sword
(1984), where it was done as an attempt to construct an algo-
rithm for determining the direction of the discontinuity based on
the methods of integer optimization. But these algorithms have
high complexity. We propose below a different scheme of anal-
ysis of these situations, based on the statistical properties of the
phase components of the spectra, calculated from the observed
seismic signals.

Statistical properties of phase spectra and algorithms
for their continuation

The above-described character of discontinuities of the phase
spectra leads to the idea of their isolation and use in the unam-
biguous definition of this component for each of the processed
signal. This can be done by analyzing the difference of the phase
spectra, computed at two adjacent frequencies, i.e., for differences
φ̃l+1 − φ̃l . In this case, taking into account the presence of
noise in real data, it is important to study their joint density. It
allows us not only to construct the stable procedure to continue
the phase component in the interval (−∞, ∞), but also to guar-
antee conformality of the spectral transformation, which will in-
volve the phase spectra of the real seismic signals, such as pro-
cedures for decomposing a wave field using a multiplicative factor
models, see Mitrofanov et al. (1993). This study was performed
in papers Mitrofanov (1979, 1986). Corresponding expression
was constructed for the joint distribution density of the two values
of the phase spectrum φl , φm calculated at arbitrary frequencies
ωl , ωm , and computational features arising in the construction
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Figure 3 – Examples of discontinuous (a) and continuous (b) behavior of the phase spectrum.

of this function were studied. General view of the constructed
function for the case of the phase spectrum of the noise ζ̃l (af-
ter application of a smoothing window) is shown in Figure 4(a).
Its projections for various correlation coefficients ρlm , which are
possible between the values of the spectrum obtained at different
frequencies, are shown in Figure 4(b). It should be noted that the
resulting values, correlated with the real and imaginary part of the
spectrum, are direct consequences of the windows used for the
selection of signals in the spectral analysis.

Enough attention was given to the properties of the phase
spectrum distribution fixed frequency in Levin (1957). Using these
results, it is easy to construct an expression for the distribution
density of φ̃(ω) at a fixed frequency ω, by taking into account the
signal and the random components of the spectrum. It has a fairly
simple form:

g(φl) =
e−μ2

l /2

2π

(
1 + e−χ2

l /2 ∙ 8(χl) ∙ χl

)
,

where 8(x) is the probability integral, see Gradshtein & Ryzhik
(2000), χl = μl cos(φl − φ S̃

l ), and μl = |S̃l |/σl is the ratio
of signal-to-noise ratio in the spectral domain at the frequency
ωl . View of this function, constructed for different values φ̃ S̃

l
and signal-to-noise ratio is shown in Figure 5.

Summarizing the results of these works we can indicate the
following basic statistical properties of the phase spectrum of the
seismic signal:

First – A typical feature of the distribution function of the phase
spectrum at a fixed frequency ωl is that it has a maximum at
φ̃l = φ̃S

l , whose value depends of the signal-to-noise ratio for a
given frequency.

Second – Using windows to select the signals from the initial
observations leads to the appearance of correlation in the phase

spectrum of noise, which approximates the structure of this func-
tion to the distribution of the phase spectrum, containing the
signal component.

Third – Transition to the difference of the phase spectra, in par-
ticular, to the difference φ̃l+1 − φ̃l , substantially simplifies the
structure of distribution, actually bringing it closer to the structure
of the projections shown in Figure 4(c), where the location of the
maximum is determined by Equation (4).

These properties, as well as Equation (4), allow us to con-
struct a simple algorithm for extending the phase spectrum, cal-
culated on real data, in the interval (−∞, ∞) on the basis of its
continuous extension. At the same time the continuous extension
of the phase spectrum will be understood as follows: on the ba-
sis of φ̃l , defined in the interval [−π, π ], it is required to find
out the discontinuities of the first type and take them into account
in calculating φ̃l . In order to determine the discontinuities of the
first type the following criterion is introduced: there is disconti-
nuity of the giving type in the interval [ωl , ωl+1], if the following
inequality is valid:

∣
∣φ̃l+1 − φ̃l

∣
∣ > δ I (7)

where δ I is a pre-specified threshold. A removal of these dis-
continuities is carried out by adding the appropriate value +2π

or −2π providing a single-valued definition of the phase com-
ponent in the interval (−∞, ∞).

The most serious moment in the implementation of criterion
(7) is the determination of δ I . This value should be selected by
taking into account the possible changes in the smoothed signal
spectrum S̃l and the existing distribution of the noise component
ζ̃l . Obviously, it must satisfy the following inequalities:

max
ω∈1ω

∣
∣φ̃ S̃

l+1 − φ̃ S̃
l

∣
∣ < δ I < 2π − max

ω∈1ω

∣
∣φ̃ S̃

l+1 − φ̃ S̃
l

∣
∣
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Figure 4 – Probability density function for couple values of phase spectrum (a) and its projection (b) when ϕl = π/2.

Figure 5 – Probability density function for different signal-to-noise ratio μl and values of ϕ̃ S̃
l .
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But this estimate presented above is very inaccurate. In the
paper Mitrofanov (1979) an attempt was made in order to build
a more accurate estimate of this quantity based on the theory of
testing hypotheses and using the constructed distribution function
g(φl , φm), which gives the possibility of constructing a density
function of the difference between the values of the phase spectra,
g(φl+1 − φl). At the same time possible errors were consid-
ered, which include an omission of true change in the magnitude
of the phase spectrum on 2π or −2π , as well as false changes
of the phase spectrum at these values. The appearance of such
errors is associated to the fact that the subsequent value φl+1

should be determined in the interval [φl − π, φl + π ], but not
in [−π, π ]. This is clearly seen in Figure 6(a). Not taking into
account this fact leads to errors in the phase spectra processing.
The number of possible discontinuities or the probability of dis-
continuity of the first type in the absence of discontinuities of the
second type is equal to an integral over the interval [−π, φl −π ]
when φl > 0, and in the interval [π + φl , π ], if φl < 0 (the
corresponding region is shaded in Fig. 6(a)). When δ I 6= π , we
can skip some of these discontinuities for δ I = δ1 > π (region I
in Fig. 6(a)) or indicate false discontinuities when δ I = δ2 < π

(region II in Fig. 6(a)). Due to the fact that the value φl can be
arbitrary, the two-dimensional fields must be considered in the
analysis of the errors, see Figure 6(c). Calculation of integrals in
these areas allows us to determine the optimal δ I .

Figure 6 – Determination of probability of different kind breaks when ϕl is a
fixed value (a) or changed evenly (b).

However, in this work we have not yet received the results of
the second type of discontinuities, that follow from Equation (4).
So, the frequencies, where |S̃(ω)| = 0, had to be excluded
from the analyzed intervals, that led to an increase in errors of
false change of the phase spectrum in practice. The obtained re-
sults regarding to behavior of the phase spectrum in the points
|S̃(ω)| = 0 help us to correct the interval of possible changes
δ I to the interval (4.2, 4.4), which also provides optimal contin-

uation of the phase spectrum in the real data processing.
The analysis of phase spectra of real and synthetic seismic

signals confirms the obtained theoretical results very well. Figure
7(a) shows a histogram of real phase spectra, calculated on these
frequencies. It is seen that at the fundamental frequency 12 Hz,
related to the initial values of the phase spectrum, the histogram
has the form close to the theoretical curve. For other frequency
histograms have more complicated structure. The latter is con-
nected not only with the change in the ratio signal/noise at other
frequencies, but also with a significant dependence of the distri-
bution of the phase spectrum of observed signals on the value
of the phase spectrum of useful signal. This dependence, due to
the changes in the arrival times of useful signals and the hetero-
geneity of the reflection properties of the real medium, can lead
to a significant difference between the empirical densities of the
theoretical functions type.

Despite the heterogeneous nature of the histograms of the
original phase spectra, their structure begin to change when we
turn to the differences 1φl = φl+1 − φl , defined by the dif-
ference 1ω (see Fig. 7(b)). As we can see, in this case, the his-
togram have a more uniform behavior with well-marked extremes,
which, according to our research, should be close to one of three
values 0, π or 2π . Grey dotted line in all figures shows the his-
tograms corresponding to zero values of the amplitude spectra.

Such properties of the phase components are confirmed by
other experiments as well. For example, Figure 7(c) presents the
results that were obtained in the investigation of phase spectra
of synthetic seismograms, and the remaining three figures show
the summary results of other experiments, obtained using vari-
able windows during the signal selection and decreasing in step
frequency. It is clearly seen that the choice of the optimal window
and step frequency not exceeding 1 Hz, allows us, using the above
thresholds δ I in the criteria (7), to extend the phase spectrum in
a continuum way practically without errors, keeping in mind the
information about the discontinuities of the second type.

EXAMPLES

Let us turn to the model experiments, which were carried out un-
der the research project of the Petrobras, S.A., see Priimenko et
al. (2005) and Mitrofanov et al. (2005). The main goal of the
project was studying pinching-out zones of thin layers, as well
as searching ways of analyzing and processing seismic data to
enhance certainty in picking the pinching-out points. Accurate
picking the pinching-out zone is one of the most actual and com-
plex problems, because in such tasks the resolution of seismic
methods is essentially important.

Revista Brasileira de Geof́ısica, Vol. 30(1), 2012



“main” — 2012/8/27 — 11:33 — page 25 — #11

MITROFANOV GM & PRIIMENKO VI 25

Figure 7 – Histograms of the phase spectra constructed by the initial values (a) and their difference (b), as well
as aggregate histograms constructed by the difference of the phase spectra in the case of mathematical modeling
(c), using windows with a small (d) and with a large smoothing (e) and a decrease in step frequency (f).

Based on real data, a model was prepared, containing several
major intermediate boundaries and the target object (see Fig. 8).
A fairly simple type of model that preserves the basic features of
a real medium, was chosen deliberately, because allowed, while
maintaining the global structure of the medium, to focus on the
target object, located directly under one of the reference horizons
named horizon A. Several techniques were used to calculate fields
of the reflected waves, which were analyzed afterwards.

There were considered two modifications of the model (see
Fig. 9). In the case of the simple model 1 the reservoir is directly
adjacent to the horizon A (see Fig. 9(a)). The reservoir thickness
was varied from 0 to 30 m and the pinch-out point lies at the given
horizon. In the case of the more complex model 2 the reservoir,
contained an oil-water contact (OWC), is located approximately
40 m below the horizon A (see Fig. 9(b)). Its thickness was varied
from 0 to 20 m (at the highest point).

Figures 10 and 11 present the results of the analysis of re-
flected signals. These signals belong to the specified local ar-

eas of the general model, containing the pinching-out points of
the target horizon. The reflected signals were selected from the
zero-offset sections, taking into account changes in their arrival
time. This choice of signals allowed to constrict the analyzed
time interval.

Note, that the traces, contained the analyzed reflected sig-
nals, were located on the free surface of the original model at the
points with coordinates of 1 km (trace No. 10) and further with
the step 100 m. At the same time the first signal reflected from
the pinching-out zone (in all the cases) corresponded to the four-
teenth trace. The wave field was calculated in all of the experi-
ments on the basis of the ray method using Ricker’s wavelet. The
shape of the pulse, corresponded to the reflection from the bound-
ary outside of reservoir, is well represented at all the figures on the
first of shown trace intervals.

Figure 10 presents the results of two experiments for the
simple model 1. For the first of the presented experiments, the
pulse frequency was 50 Hz (see Fig. 10(a)), and for the second
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Figure 8 – Structure of general model of medium with the target reservoir (a), and the values of elastic parameters (b).

Figure 9 – Two models of reservoir pinch-out zone.

experiment it was equal to 75 Hz (see Fig. 10(b)). The original
signals, reflected from the target object, are shown in both figures
above. The amplitude component is shown in the middle of the
figure, and the phase component – at the bottom.

It is seen that at a frequency of 50 Hz for the initial section
(see Fig. 10(a)) we can determine the change in the waveform as-
sociated with the wedging-out of horizon from traces No. 21-22,
when a widening in the impulse shape is observed. We perhaps
can make a similar identification of the horizon pinching-out zone
by analyzing variations of the energetic characteristic, and also
the amplitude spectrum. At the same time, by using the phase
spectrum we already are able to clearly identify changing in the
pulse shape for the fourteenth signal. But the most interesting

thing does happen when we turn to the analysis of changes in
the waveform associated with the wedging-out of the horizon, for
a frequency of 75 Hz (see Fig. 10(b)). In this case, change in the
waveform is now determined for the seventeenth trace. At the same
time, on the amplitude spectrum of this section we can see such
changes starting with fifteenth trace, and on the phase spectrum
again starting with fourteenth trace. It is important that the struc-
ture of the phase spectrum for pulses with a frequency of 50 Hz
and 75 Hz is very close (compare the relevant parts of Figs. 10(a)
and 10(c)). Thus, analysis of the phase spectrum for the signal
with a lower frequency allows us to get the same results as for the
signal with higher frequency. The result is based on the fact that
the phase spectrum, in contrast to the amplitude spectrum, is less
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(a) (b)

Figure 10 – The results of the model experiment for the simple model 1 with fundamental frequency of the incident impulse: (a) 50 Hz and (b) 75 Hz.

(a) (b) (c)
Figure 11 – The results of the model experiment for the model 2 with fundamental frequency of the incident impulse: (a) 25 Hz, (b) 50 Hz, and (c) 75 Hz.

dependent on the fundamental frequency of the incident pulse.
Therefore, the special features, associated with the wedging-
out of the horizon may appear more significant at a relatively
low frequency signal.

Experiments, carried out with the model 2 (see Fig. 11),
confirm a much lower dependence of the structure of the phase
spectrum of the fundamental frequency of the incident pulse, than
it may appear in the structure of the reflected signal and its am-
plitude spectrum. A comparison of Figures 11(a)-(c) shows that
the phase spectrum is changed. At the same time, the amplitude
spectrum has significant variations and these changes are mainly
connected with the redistribution of energy. Obviously, it gives an
opportunity to localize more accurately the pinching-out zone of
the target horizon. But the phase spectrum can do it in the case
of a low fundamental frequency of the incident pulse. Analysis of

the results presented in Figure 11 points to another important fea-
ture, associated with a significant reaction of the phase spectrum
to modifications of the structure of the medium. Thus, the OWC
is manifested in traces with numbers greater than 41 by means of
a drastic change in the structure of the phase spectrum. A weak
dependence of these manifestations in the phase spectrum, de-
pending on the frequency of incident pulse, allows to determine
the OWC for the frequency 25 Hz (see Fig. 11(a)). Such identi-
fication cannot be done using both the original reflected signals
and the amplitude spectrum.

The results of the analysis of phase spectra for the signals
(with relatively low fundamental frequency), reflected from the
real target, can serve as the confirmation of the results obtained
in model experiments. These results are presented in Figure 12,
which shows a part of the time section, where there are reflections
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(a)

(b)

Figure 12 – Real data processing corresponded to the area of a possible pinch-out zone of the target object: (a) – original
data, (b) – results obtained using the amplitude and phase spectra.

from the target object (see Fig. 12(a)). In this case, the dotted
lines marked a target interval in order to clarify the pinching-out
point of the object. Figure 12(b) shows the corresponding inter-
val and the amplitude (middle part of the figure) and phase (lower
figure) spectra calculated for this interval. Analysis of these spec-
tra indicates that the original signals, as well as the values of the
amplitude spectrum, can determine the pinching-out zone of the
target horizon up to trace No. 52. The accuracy of the resulting
estimates may be low, because the level of the amplitude varia-
tions is very low. At the same time, the values of the phase spec-
trum of this region can be adjusted up to trace No. 61 with a rather
high degree of reliability, due to the fact that there are significant
variations in the corresponding values of phase component.

CONCLUSIONS

The results presented in this work indicate on the importance
and perspective of using the phase spectrum of seismic signals

in the analysis of fine-grained structural features of the medium:
pinching-out points, thin-bed effect, and others. However, this re-
quires using the improved procedure in determining the phase
spectrum: defined in the interval (−∞, ∞), but not in the in-
terval [−π, π ]. Otherwise we will lose or significantly distort
information about the phase spectra in their processing. Special
investigations of the discontinuities of the phase spectrum and
its statistical characteristics, connected with the presence of vari-
ous types of noise in real data, are important for the single-valued
determination of the phase spectrum in the interval (−∞, ∞).
These studies have allowed us to explain the behavior of sets of
phase spectra calculated for the real signals. In addition, they pro-
vided an opportunity to formulate a criterion for the continuous
extension of the phase spectrum, which ensures the efficient de-
termination of the values of this component in the joint processing
of large sets of phase spectra.

The effectiveness of using the phase spectra is confirmed
by studying the phase spectra obtained for pinching-out zones
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of target horizons. It is shown that the phase spectrum can be
substantially more informative than the amplitude spectrum. The
pinching-out point can be more reliably determined by analyzing
the phase spectra, reducing the area of uncertainty. The main ad-
vantage of phase spectra in this case is that the influence of struc-
tural features of the target horizon on the structure of the phase
spectrum is weakly dependent on the frequency of the incident
impulse. Therefore, at low frequencies one can obtain the results
similar (by accuracy) to the results, that could be obtained at a
high frequency.

ACKNOWLEDGMENTS

This work was supported by the Petrobras Institute for Research
and Development – CENPES, RJ, Brazil. The first author is es-
pecially thankful to the Universidade Estadual do Norte Flumi-
nense Darcy Ribeiro, RJ, Brazil, for providing support as a visiting
researcher in LENEP/CCT/UENF. We also are thankful to Keerti
Sharma M.Sc. and the anonymous referees for helpful sugges-
tions and comments.

REFERENCES

BERZON IS. 1965. Using model of thin layers medium for joint using the

amplitude and phase spectra characteristics of a layer. Izvestiya, Physics

of the Solid Earth (Fizika Zemli), 1(6): 57–65.

GELFAND IM. 1989. Lectures on Linear Algebra. Dover Publications,

185 pp.

GOLDIN SV. 1976. To theory of the spectrum-statistical method of seis-

mograms processing. Soviet Geology and Geophysics, 17(1): 95–103.

GRADSHTEIN SI & RYZHIK IM. 2000. Table of Integrals, Series and

Products. Academic Press, 1204 pp.

HENNAN EJ. 1970. Multiple Time Series. New York: John Wiley & Sons,

Inc., 575 pp.

JENKINS GM & WATTS DG. 1969. Spectral Analysis and its Applica-

tions. San Francisco: Holden-Day, 525 pp.

KHUDZINSKII LL. 1966. Determining some parameters of homogeneous

layers by their phase spectrum characteristics. Izvestiya, Physics of the

Solid Earth (Fizika Zemli), 2(5): 19–28.

KHURGIN YI & YAKOVLEV VP. 1971. Finite Functions in Physics and

Technologies. Nauka, Moscow, 389 pp.

LEVIN BR. 1957. Theory of Random Processes and its Application in

Radio Engineering. Soviet Radio Press, Moscow, 756 pp.

MITROFANOV GM. 1979. Using flattened windows in spectral analysis

of seismic traces. Soviet Geology and Geophysics, 20(1): 56–63.

MITROFANOV GM. 1986. Processing of phase spectra of multichannel

seismograms. Soviet Geology and Geophysics, 27(10): 301–312.

MITROFANOV GM, HELLE HB, KOVALIEV VP & MADATOV AG. 1993.

Complex seismic decomposition – theoretical aspects. In: Extended

Abstracts of papers, EAGE 55th Conference, Stavanger, CD-ROM.

MITROFANOV G, PRIIMENKO V, SOARES FILHO DM & GROCHAU MH.

2005. Phase spectrum applied to pinch out zones analysis. In: Proceed-

ings of 9th International Congress of the Brazilian Geophysical Society,

Salvador, Brazil, 11-14 September 2005, 6 pp.

PRIIMENKO VI, MUNDIM CE, SOARES FILHO DM, GROCHAU MH,

MITROFANOV GM, ANDRE ABQ, MATSUMURA C, MISSAGIA RM &

OLIVEIRA SA. 2005. Seismic modeling of thin layer reservoirs with pinch

out points. PRAVAP19 Grant, Petrobras, Final Report, Macaé, Brazil,

99 pp.

STOCKWELL RG, MANSINHA L & LOWE RP. 1996. Localization of the

complex spectrum: the S transform. IEE Paper: Trans. Signal Process-

ing, 44: 998–1001.

SWORD C. 1984. The generalized frequency-dependent surface-con-

sistent statics problem. Stanford University. Ph.D. Thesis, SEP – 35,

123 pp.

SYSOEV AP & EVDOKIMOV AA. 1986. Correction of seismic signal

form correction based on the spectrum-statistical method (SSM). Soviet

Geology and Geophysics, 27(5): 256–267.

TITCHMARSH EC. 1948. Introduction to the Theory of Fourier Integrals.

The Clarendon Press Oxford, England, 394 pp.

NOTES ABOUT THE AUTHORS

Georgy Mikhailovich Mitrofanov graduated in Geology and Geophysics, Novosibirsk State University (NSU), Akademgorodok, Novosibirsk, Russia, in 1972.
He received his Ph.D. in Mathematical Physics in 1984 and title of Associate Professor in 1989, both at NSU. He is currently a visiting professor of LENEP/UENF,
Brazil. Areas of interest: seismic data processing, direct and inverse problems of geophysics, reservoir characterization.

Viatcheslav Ivanovich Priimenko graduated in Applied Mathematics and Mechanics, Novosibirsk State University (NSU), Akademgorodok, Novosibirsk, Russia,
in 1978. He received his Ph.D. in Mathematical Physics in 1990 and title of Associate Professor in 1997, both at NSU. He is currently a professor of LENEP/UENF,
Brazil. Areas of interest: direct and inverse problems of geophysics and petroleum engineering, mathematical and numerical modeling.

Brazilian Journal of Geophysics, Vol. 30(1), 2012


