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ABSTRACT. This paper introduces a new class of spatial filters, here coined the proportional convolution filters. These filters are constructed in such way that the

values assigned to each kernel cell are weighted as a function of the trigonometric distance of the cells to the kernel centre. A set of high-pass and low-pass proportional

filters were designed using a specially tailored algorithm and a Delphi-based code that allows producing multi-dimensional filters. These filters underwent a twofold

test. Firstly, the filters were tested against an instructive digital image of a candle flame. This image was employed as it shows large and detailed variations in color tones

(low frequencies) and an assortment of possible boundaries between tones (high frequencies). Secondly, the filters were applied to a Landsat-5 TM image containing a

variety of landforms. Results showed the efficiency of the filters and the adequacy of an array of kernel sizes to enhance both tonal and edge variations in a digital image,

demonstrating that the proportional filters can benefit numerous applications in several fields of Geosciences.

Keywords: convolution filtering, high-pass, low-pass, image enhancement.

RESUMO. Este artigo apresenta uma nova classe de filtros espaciais, aqui denominados como filtros de convolução proporcionais. Esses filtros são construı́dos de

tal forma que os valores atribuı́dos a cada célula do kernel são ponderados em função da distância trigonométrica das células para o centro do kernel. Um conjunto de

filtros proporcionais, tanto passa-altas como passa-baixas, foi projetado usando um algoritmo especialmente adaptado e um código baseado em Delphi que permite a

produção de filtros multidimensionais. Esses filtros foram submetidos a um teste duplo. Em primeiro lugar, os filtros foram testados em uma imagem digital de uma

chama de vela. Esta imagem foi utilizada por mostrar grandes e progressivas variações de cor (baixas frequências) e uma variedade de possı́veis limites entre os tons

(frequências altas). Em segundo lugar, os filtros foram aplicados a uma imagem Landsat-5 TM com diversidade tonal e de formas de relevo. Os resultados mostraram a

eficiência dos filtros e da adequação de diferentes tamanhos de kernel para melhorar tanto variações tonais como de borda em imagens digitais, demonstrando que os

filtros proporcionais podem ter inúmeras aplicações em diversos campos das Geociências.

Palavras-chave: filtros de convolução, filtros passa-altas e passa-baixas, realce de imagens.
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INTRODUCTION

The spatial distribution of data in a digital image can be improved
by a process known as spatial frequency filtering. This consists of
using various mathematical transformations (Drury, 2001) to se-
lectively emphasize or de-emphasize specific frequencies (high,
medium or low) in the variation of the digital numbers (DNs) of
the pixels of an image. Such mathematical filtering can be imple-
mented in the spatial domain by a process known as convolution
(Curran, 1985), which is used as one of the main filtering tools
by image processing systems because it involves little computer
time and simple mathematics, thus facilitating the use by begin-
ners in image processing.

Convolution filtering has been applied in many areas, includ-
ing noise filtering (Souza Filho et al., 1996), and the detection of
edges and enhancement of specific variations in shades of grey
(Mather, 1999), as well as the recognition of texture and shapes
in remote sensing images (Blom & Daily, 1982), with special vari-
ations of filters developed for each of these applications (Holder-
mann et al., 1978; Drury, 2001).

Convolution filters are either high- or low-pass, i.e., they
block all frequencies which are, respectively, lower or higher at
a given cutoff frequency. By eliminating lower frequencies, the
high-pass filter enhances edge and points, while excluding infor-
mation about color variation. Moreover, the enhancement of lines
can be spatially controlled to emphasize all lines in a given di-
rection. Usually, however, such directional control is not relevant,
and non-directional convolution filters are preferable.

In developing non-directional, isotropic convolution filters,
two main issues must be addressed: 1) the kernel dimensions
(number of cells in the matrix) of the convolution filter and 2) the
weight attributed to each of these cells. The dimensions of the
filter determine the extent to which an image will be altered, with
the choice being a function of the scale of the features to be en-
hanced, smoothed, or concealed. With low-pass filters, a small
matrix will eliminate very little information, while larger ones re-
sult in the enhancement of larger features, although eliminating
finer ones. With high-pass filters, however, smaller matrices re-
sult in the elimination of more information, providing finer spac-
ing or better definition of finer edges. A high-pass filter normally
enhances features that are less than half the size of the convolution
matrix used (Drury, 2001).

As stated by Drury (2001), along the convolution operation
“...a matrix is overlain on the image with its central cell on top
of a pixel and the other cells lying on top of the immediately sur-
rounding pixels. The DN for each pixel overlain by the convolution

matrix is multiplied by the corresponding weighting factor and the
products are summed. It is this sum of local area operations that
is used to compute the value to be used in place of the DN of
the pixel beneath the centre of the convolution matrix. An output
image is produced by the convolution matrix systematically being
moved over and transforming the DN of every pixel in the image...”
Although this notion on spatial filtering is widely acknowledged,
a technique that can efficiently balance the distribution of weights
in a kernel tailored for geological and geobotanical applications
has not been proposed yet.

Weight distribution involves tradeoffs favoring those pixels
located closer to the central cell of the matrix, since these are gen-
erally more highly correlated with the central pixel than to more
distant ones. In this way, the distortion inherent in the process
of convolution filtering is reduced, although a certain amount will
always exist, since the weights are distributed in a discrete rather
than a continuous manner in the kernel (Branco, 1998).

In this paper, a new approach for calculating these weights is
proposed. It is based on the trigonometric distance of each cell
from the central cell. A program in Delphi code was developed for
the generation of these filters, henceforth denominated propor-
tional convolution filters (PCFs). The low- and high-pass PCFs
were tested on two types of images: a very simple image of a
candle flame and a Landsat-5 TM image. The latter was aimed to
demonstrate the validity of the proposed method as a technique
for the digital processing of remote sensing data.

METHODOLOGY

Basis and development of proportional
convolution filters

Analysis of the various convolution filters described in the litera-
ture shows a tendency to attribute greater weight to more central
matrix cells, based on the principle that the distribution of weights
should be inversely proportional to the distance of each cell from
the central one, thus honoring the geometry of the features present
in the original image.

An image can be represented by the function Pi, j for the orig-
inal DN of each pixel in the image matrix, where i and j are the
row and column coordinates of that pixel. The filter used is a box
filter, which consists of a matrix of dimensions 2M + 1 rows by
2N + 1 columns to guarantee that the number of rows and cells
is always odd so that a single cell will always be at the exact center
of the matrix. Each cell in this box filter has a weighting of C , so
the complete matrix can be expressed by the function Ck,l , with
k and l being the cell coordinates within the filter.
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The calculation involved in a PCF is shown below for both
high- and low-pass versions. A high-pass PCF is yielded through
the following equation:

Dk,l =
√

k2 + l2 (1)

where:

Dk,l = distance of cell Ck,l from the center cell;

k = column indicator;

l = line indicator.

For a high-pass PCF, the value of each cell (except the central
one) must be negative and inversely proportional to its distance
from the center cell of the filter. The calculation of all cells in the
filter but the central cell is possible through the equation given
below:

Ck,l =
−1

Dk,l
=

−1
√

k2 + l2
(2)

The calculation of the central cell is accomplished by sum-
ming the absolute values of all the other cells:

C ′
k,l =

k=+M∑

k=−M

l=+N∑

l=−N

1
√

k2 + l2
(3)

For a low-pass PCF, the calculation of all cells is similar,
except that all their values are positive and given by:

Ck,l =
1

Dk,l
=

1
√

k2 + l2
(4)

The central cell of a low-pass filter, however, is given a value
of 1, since the function of such filtering is to exclude punctual
high-frequency information and favor that with greater spatial ex-
pression. In other words, the original pixel will be replaced by the
average of the values of the neighboring cells, thus “regionalizing”
the information.

The convolution operation of a box filter on an image Pi, j to
produce a new image Oi, j is expressed as in the equation below
(Drury, 2001):

O(i, j) =
M∑

k=−M

N∑

l=−N

× P(i + k, j + l)∗C(k + M + 1, l + N + 1)

(5)

This equation can be modified for a high-pass PCF by means
of Equation 6, which involves the combination of Equations 2

and 3 with Equation 5.

Oi, j =

[
k=M∑

k=1

l=N∑

l=−N

−
P(i+k, j+l)
√

k2 + l2

]

+

[
k=−1∑

k=−M

l=N∑

l=−N

−
P(i+k, j+l)
√

k2 + l2

]

+
Pi, j

k=M∑

k=−M

l=N∑

l=−N

√
k2 + l2

(6)

For low-pass PCFs, the kernel is obtained by the inclusion of
Equation 4 in Equation 5, which gives the following:

Oi, j =

[
k=M∑

k=1

l=N∑

l=−N

−
P(i+k, j+l)
√

k2 + l2

]

+

[
k=−1∑

k=−M

l=N∑

l=−N

−
P(i+k, j+l)
√

k2 + l2

]

+ Pi, j

(7)

In order to facilitate the generation of PCFs and their applica-
tion in image processing routines, a program in Delphi was pro-
duced to automatically create multi-dimensional high- and low-
pass PCFs in a format accepted by numerous open and commer-
cial software packages. This program is provided as part of the
manuscript and a general view of its operational window is illus-
trated and commented in the Appendix.

Figure 1 shows the geometry of the northeast quadrant of the
high-pass and low-pass PCFs with 13 × 13 cells, where the ra-
dial contours indicate the distance of the cells from the center of
the filter.

The PCFs are conceptually similar to Gaussian convolution
filters (e.g., Tao & Asari, 2004 and references therein) but show
enhanced features. Most importantly, the PCFs have the advan-
tage to produce cell weights lineally proportional to the distance
from the central cell. This avoids that cells distant from the center
are assigned with null values independently of the dimensions of
the kernel – a feature particularly important in large kernels that is
not taken in account in Gaussian filters.

Evaluation of the PCFs

Three basic approaches were used for the analysis of the pro-
posed PCFs:

(i) a first approach assumes the traditional exclusion of grey
tones (low frequencies) and edges (high frequencies)
through high-pass and low-pass PCFs, respectively. If the
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Figure 1 – A: ‘Geometry’ of a 13 × 13 high-pass proportional convolution filter (only NE quadrant of the kernel is shown). B: ‘Geometry’ of a 13 × 13 low-pass
proportional convolution filter (only NE quadrant of the kernel is shown). Arcs are explicatory isovalues.

application of these two PCFs does not cause distortion, it
should be possible to obtain a new image, equivalent to the
original one, by the sum of the images filtered by high- and
low-pass PCFs with the same dimensions. This test was
conducted on a 350 × 350 pixel segment of a Landsat-5
TM band 4 (TM4) image using filters of 31 × 31 cells and
127 × 127 cells.

(ii) a full correlation between the original image and the sum
of the filtered images is not a complete proof of the lack
of distortions; since such effects could be inversely com-
plementary and compensated by both high- and low-pass
filters. Thus, in a second approach to prove that no dis-
tortions are generated through PCF processing, we meas-
ured the numeric correlations in a series of PCFs with dif-
ferent dimensions. To test high-pass PCFs, we applied
28 filters, with dimensions varying between 3 × 3 and
255 × 255 cells, over a segment of the TM4 image. The
degree of correlation between the filtered images and the
original TM4 image should increase as the dimension of
the filters escalate. When the filter dimensions surpass the
original image in size, however, all features are of high-
frequency, and the filtered image will be identical to the
original (no information will be considered to be of low-
frequency). It is important to highlight that in convolution
filtering such test must take in account that the information
from some of the external rows and columns is lost due to
the boundary effect. Nonetheless, the correlation curve is
likely to display a coherent tendency.

(iii) a third approach involves a simple image of a candle

flame, since the internal portion of the flame is known to

reveal temperature variations, and consequently, a very in-

teresting gradient of colors. Assuming that a low-pass

filter will enhance information about color, these varia-

tions should be much clearer in the filtered image than

in the original one. By varying the dimensions of the fil-

ter, it should be possible to relate filter dimensions to fea-

ture characteristics. The candle flame was photographed

with ASA 100 Fujicolor film, with diffuse RMS granu-

larity (SD of 9), which has a resolution of 100 pairs of

lines per millimeter, in contrast to the 1000 to 1 in stan-

dard development. The photograph obtained was digital-

ized in a scanner with a resolution of 400 dpi in 3 chan-

nels (red, green and blue) of 8 bits each, resulting in a

jpeg-format image. For this test, low-pass PCFs were

employed with four different dimensions: 45 × 45,

65 × 65, 101 × 101, and 201 × 201 cells. This vari-

ation was considered sufficient to illustrate the effects of

filters of different dimensions. Since the purpose was to

compare the effects of the filter in the color composition,

each filter was applied to the red, green and blue chan-

nels. After the application of the filters, the grey levels were

stretched to occupy the 0-255 range, using a histogram

equalization function. The same experiment was repeated

with high-pass PCFs, although filters with smaller di-

mensions were used (7 × 7, 15 × 15, 31 × 31 and

61 × 61 cells).
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RESULTS AND DISCUSSION

(i) in the first quantitative test, the sum of the images yielded
through low-pass and high-pass PCFs revealed 100%
correlation with the original image.

(ii) the application of 28 filters with varied dimensions con-
firms these results, with an increase of correlation occur-
ring in agreement with an increase of high-pass PCFs di-
mensions, as expected (Fig. 2). For low-pass PCFs, the
correlation curve is equivalent (not shown), since the ex-
cluded information by high-pass filters is maintained by a
low-pass filter, and the correlation between a remote sens-
ing image using proportional low-pass filters and the orig-
inal image tends to decrease with an increase in filter di-
mensions. In numerical terms, the correlation of the orig-
inal image to that filtered by a 31 × 31-kernel and by a
255 × 255-kernel is 63.6% and 40.9%, respectively. This
analysis, however, varies with the nature of the original
data. The rougher the texture of the original image, the
lower it will be the correlation between the filtered image
and the original, as long as the same filter size is used.

Figure 2 – Diagram showing the correlation between the original TM4 image
and the resulting high-pass PC filtered TM4 image (Y-axis) vs. the number of
cells employed in the high-pass PCF (X-axis).

Figure 3 display a segment of a Landsat image (band 4) in-
cluding the area around the Camaquã copper mines, located in
the Rio Grande do Sul State, southern Brazil. Following the no-
tions above mentioned, it is possible to observe that a large part of
the tonal information in image 3A, which enables the distinction of
photogeological units, was lost after a high-pass PCF was applied
(Fig. 3B). However, the textural information in 3A was enhanced
in 3B, which shows, for example, a marked radial drainage pattern
less visible in the non-filtered image. Image 3C, in contrast, con-
tains only the tonal information, which was lost with high-pass
filtering.

Figure 4 shows DN profiles extracted from the original TM
band 4 image and equivalent 31 × 31 cells and 101 × 101 cells

low-pass filtered images. The filtered images show a great re-
duction in high-frequency features, whereas the lower frequency
features are strongly enhanced, thus indicating that there was no
significant distortions due to the filtering process. In the original
image, the low-frequency information is difficult to distinguish,
although it is clear in the filtered image, since it has been en-
hanced.

(iii) Figure 5 shows the results of low-pass PC filtering of a
flame image. Several filter dimensions were employed,
spanning from 45 × 45, 65 × 65, 101 × 101 and 201
× 201 cells. A qualitative assessment of the pictures
shows that the base of the flame portrays a gradation of
colors from black to white, including various tones of red
and yellow. A comparison of the original image (Fig. 5A)
with those in 5B and 5C shows that the color intensity in
the filtered images is greater, which indicates the intended
enhancement. Likewise, the yellow central portion of the
flame, faint in the Figure 5A image and enhanced in Fig-
ures 5B and 5C, is fuzzier in Figure 5D. Figure 5E shows
the internal features and the visible external contour of the
flame, but significantly distorted. This distortion is the re-
sult of the excessively large dimensions of the filter, which
thus includes uncorrelated background pixels in the con-
volution. This is especially clear in the contour of the lower
portion of the flame, initially concave, but convex after fil-
tering. Similarly, the enlargement of the top of the flame
in Figures 5G, 5H and 5I clearly shows various colored
regions, although their definition are not clear in the origi-
nal image (5F). Image 5J shows the presence of important
artifacts, again due the excessive filter size.

The effect of high-pass PCFs applied to original flame im-
age of Figure 5A is seen in Figure 6, which shows the results
yielded by filters with dimensions of 7 × 7, 15 × 15, 31 × 31
and 61 × 61 cells (Figs. A, B, C, and D, respectively). Here,
the edge of the flame is sharply defined in all four images, but
its thickness varies in relation to the filter used. The information
about the original color in the interior of the flame is lost when a
smaller number of cells are included in the high-pass filter (Figs.
6A and 6B). Given the image resolution and the filter dimensions
tested, it is clear that this information is related to low frequencies
of color variation. When larger filters are employed, color fea-
tures at the base of the flame appear as in image 6C, and are even
more obvious in Figure 6D. This effect of kernel size is explained
in Figure 2. The original color information disappears with the
use of smaller high-pass filters (Figs. 6A and 6B), since for fil-
ter dimensions between 7 × 7 and 15 × 15 cells, this class
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Figure 3 – Landsat image of the area around the Camaquã copper mines, located in the Rio Grande do Sul State, southern Brazil. Original (unfiltered) TM band 4
image (A). TM band 4 convolved by 77 × 77 high-pass (B) and low-pass (C) proportional convolution filters, respectively.

(A)

(B)

(C)

Figure 4 – DN profiles extracted from the TM band 4 image. Original image (A). TM4 convolved by 31 × 31 (B) and
101 × 101 (C) low-pass proportional convolution filters. For comparison, the circles indicate the same region at the three
profiles. X and Y coordinates of the samples are given at the bottom of each profile.
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Figure 5 – (A) Raw candle flame image. Figures (B) to (E) are low-pass PC filtered images with kernels made of 45 × 45,
65 × 65, 101 × 101 and 201 × 201 cells. Figures (F) to (J) are respective enlargements of the top of the flame. The images were
contrast enhanced using an equalization function.

Figure 6 – Images of a candle flame after high-pass proportional convolution filtering. Figures (A) to (D) were produced with
kernels made of 7 × 7, 15 × 15, 31 × 31 and 61 × 61 cells, respectively.
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of information is related to low frequencies in a tone variation.
When larger filters are applied (Figs. 6C and 6D), the spectral
information referring to the different color features present at
the base of the flame starts to appear in the image (Fig. 6C,
31 × 31 filter), and is clearly visible in Figure 6D (61 × 61 fil-
ter). This image shows visually that with the increase in filter size
the correlation with the original image increases, since the num-
ber of features considered to be of high-frequency in the filtering
process also increases.

CONCLUSIONS

The method proposed in this paper for the construction a new
class of filter – the proportional convolution filter – has proved
successful for the establishment of adequate box sizes for filters
used to enhance remote sensing images. The use of low-pass
PCFs makes it possible to enhance spectral, tonal information,
although information contained in a texturally rich image must be

added back to the low-pass filtered product for throughout image
interpretation. This procedure facilitates the interpretation of an
image by furnishing both textural and edge information. More-
over, filter dimensions are critical. When adequately selected in
relation to feature size (in terms of number of pixels), the resulting
image shows no significant distortions. Furthermore, filters larger
than those usually found in the literature will often by necessary.
In the production of such large filters, however, it is extremely im-
portant to use weights proportional to the distance from the center
in order to achieve distortion-free results.
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APPENDIX

Appendix – Illustration of the proportional convolution filter (PCF) software interface. In order to run the program and create a spatial
filter, the user must provide the number of lines and columns to be used in the kernel and to specify whether it will be a low-pass or
a high-pass filter. The user can also favor a high or low gradient between adjacent values in the kernel by playing with the distance
exponent option (default value is 1) and the attenuation factor (default value is 0). To graphically preview the distribution of relative
weights in the kernel, it is possible to visualize it as a grid of blocks with varying vertical exaggerations (default value is 10).
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