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LOCAL LOW PRESSURE AREAS IN ANTICLINE STRUCTURES

Boris P. Sibiryakov1, Lourenildo W.B. Leite1, Egor P. Sibiryakov2 and Wildney W.S. Vieira1

ABSTRACT. In order to localize low pressures zones in sedimentary basins for oil and gas exploration, it is necessary to know P and S wave velocities for medium.
Strictly speaking, we need to know the rock densities for all layers, and in addition there are many correlation tables between seismic velocities and densities; besides,

density is a parameter admitted to change slowly with depth to the top of the target interface. P wave velocities are considered a conventional asset, and S wave velocities
can be obtained from special field survey, in particular from converted P-S waves registered by VSP technology, and by petrophysical measurements. The theory in this

paper deals with stress prediction in the subsurface, and takes in consideration the constitutive parameters (density and Lame’s), and the geometry of the reservoir target
surface. The model does not separate the different contributions (porosity, fluids) to the rock velocities controlled by the constitutive parameters. It is not a necessary

condition that an anticline be a potential structure for oil and gas accumulation. This role can be played by horizontal structures if there is a positive γ = VS
VP

ratio discontinuity, or a negative discontinuity of the Poisson, σ, ratio across the horizontal boundary. These conditions are responsible for producing a pressure
discontinuity, such that beneath the boundary there will be a sufficiently lower pressure zone than above the boundary. In this case, the lower horizontal boundary is said

to be an attractor surface for fluids of the any kind; in the opposite case, this boundary does not have fluid attractor properties.

Keywords: seismic structured media, porous media, anticline structures, pressure prediction.

RESUMO. Com o objetivo de localizar zonas de baixa pressão em bacias sedimentares voltadas à exploração de óleo e gás, é necessário conhecer as velocidades das
ondas P e S para o meio. Mais especificamente, precisamos conhecer a densidade das rochas em todas as camadas, e aditivamente existem várias tabelas de correlação

entre velocidade e densidade das rochas; além disso, é um parâmetro que varia lentamente com a profundidade até o topo da interface-alvo. A velocidade das ondas P é
considerada uma informação convencional, e a velocidade das ondas S pode ser obtida por levantamentos especiais de campo, em particular a partir da conversão P-S

registrada por tecnologia VSP, e por medidas petrof́ısicas. A teoria deste trabalho trata da predição de tensão na subsuperf́ıcie, e leva em consideração os parâmetros

constitutivos (densidade e de Lamé), e a topografia em superf́ıcie do reservatório-alvo. O modelo não separa as diferentes contribuições (porosidade e fluidos) para
estabelecer as velocidades nas rochas controladas pelos parâmetros constitutivos. Não é uma condição necessária que uma superf́ıcie anticlinal seja uma estrutura

potencial para o acúmulo de óleo e gás. Esta condição pode ser representada por uma superf́ıcie horizontal, se existir uma discontinuidade na razão γ = VS
VP

, ou
uma descontinuidade negativa na razão de Poisson, σ, através da superf́ıcie. Estas condições são responsáveis por produzir uma descontinuidade de pressão, de tal

forma que abaixo da interface existirá uma zona de pressão mais baixa do que há acima da mesma. Neste caso, a parte inferior da superf́ıcie é considerada como um

atrativo de fluidos de qualquer tipo; e no caso oposto, esta superf́ıcie não é dotada de propriedades de atração de fluidos.
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226 SEISMIC OF POROUS MEDIA

INTRODUCTION

The anticline structure can be a very useful trap, especially if it has
a negative discontinuity in the γ = VS

VP
ratio. In this case, exists

also an additional horizontal stretching due to the negative curva-
ture of the anticline structure. It is interesting, that the effects of
slope and curvature are in opposite directions; the slopes produce
an additional compression, while the average curvature produces
a horizontal stretching.

If there is an anticline structure with a positive discontinuity
in the γ ratio, it can be a compensational effect. The additional
pressure due to the γ discontinuity, and the additional stretch-
ing due to the average curvature may eliminate each other. In this
case, the anticline structure is not a fluid attractor.

The present paper is part of a major project under the theme
prediction of stresses and strains using P and S wave velocities
in order to localize areas of low pressure in oil and gas productive
layers as natural suction pumps. This project is structured in dif-
ferent and independent parts, and as a result the paper Sibiryakov
et al. (2013b) is already accepted for publication, and another by
Sibiryakov et al. (2013a) has been submitted and is under review.

The first part of the project is related to conventional seis-
mic investigations in order to obtain the distribution of the P and
S wave velocities, and also to obtain the configuration of seis-
mic boundaries in sedimentary basins. The second part is related
to the prediction of stress and strain in the geological structures,
and also to the prediction of the nontrivial behavior of pressure,
since it can decrease with depth and create natural pumps that
accumulate fluids. The third part is related to the prediction of
discontinuity in pressure between solid and fluid, what depends
on the structure of pore space.

In the present description we restrict our attention to isotropic
models, and for anisotropic situations the equations are more
complicated, there are more control parameters, and the data
needs more processing. Every layer forming the geological 3D
structure model has constant elastic parameters.

It is mandatory that the acquired data be three components,
otherwise it is necessary to apply special processing to obtain
the S wave information from P-S phase conversion. S waves
can be used from land data obtained with horizontal vibroseis
and VSP technology, and from marine data using AVO technol-
ogy looking for converted P-S-P waves. In special cases, we
can use petrophysical measurements of borehole samples for VP
and VS and density ρ.

The first published appearances about pore space and
integral geometry were presented by Sibiryakov (2002) and
Sibiryakov & Prilous (2007). The theory of porous media is based

on integral geometry, because such mathematical discipline
deals with collective geometrical properties of real reservoirs. It
has been shown by Santaló (1953) that such collective properties
are namely for porosity, specific surface area, Average curvature
and Gaussian curvature (Smirnov, 1964). For example, cracked
media have as a rule small porosity, but very large specific sur-
face area, what creates anomalous high γ ratio, and it means that
the Poisson coefficient, σ = 1−2γ2

2−2γ2 , can be negative, and this
discussion can be seen in Sibiryakov (2013) and Sibiryakov &
Sibiryakov (2010).

METHODOLOGY

The role of slope angles and curvatures

In order to predict the stress-strain state in geological structures
we need to integrate the elastic equations of equilibrium. The
boundary conditions are for continuity of forces and displace-
ments. The equilibrium equations contain the elastic parameters;
that is, the VP and VS velocities, and the rock densities.

It should be clear that these parameters and the boundary
configuration have to be obtained from the seismic processing
and imaging. It means that we need to have detailed velocity anal-
ysis from previous investigations. As for the special case of the
shear wave velocity distribution, results of exploration with spe-
cial explosion and horizontal vibroseis can be used.

The stresses in geological structures represent a very com-
plicate subject in a six dimensional space, because there are in
the usual case six components of the stress tensor in any point of
the medium.

The present work is dedicated to the solution of a simpler
problem: the pressure prediction in the vicinity of geologic struc-
tural boundaries. The scalar invariant pressure is very important,
and it is the simplest characteristic of stress-strain condition. This
paper answers a question about the boundary attraction for fluids,
or the condition of a boundary not being a fluid attraction.

Figure 1 represents a model for a sedimentary basin, where
we aim at a reservoir volume limited on the top by a S surface,
where the layers above it are responsible for the overload weight
that causes the stress field in the underground rocks. The stress
pattern varies according to the γ ratio, that can present important
discontinuities across the interfaces. Therefore, the aim is the S
surface where the stress discontinuity will varie according to its
topographic form, and this effect measured by the spatial slopes
and curvatures of the reference S surface. The physical aspects
of this theory does not take geological faulting and lithological
variations in the rock volume, and only the bending of the forma-
tions (above and below the S interface) that defines the anticline
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structure. For geological representations, special block drawings
for reservoir representations are found, for instance, in Chopra &
Marfurt (2007).

Figure 1 – Block perspective illustrating a sedimentary basin. It shows the
Cartesian arbitrary system (x, y, z), the layer blocks limited by curved inter-
faces, a subtle reservoir volume limited above by the S surface represented by
z = z0(x, y), and a flat free surface at z = 0.

In the usual case, a geological structure represents a very
complicate problem for the solution of the equilibrium equations,
which are given by (Kupradze, 1963; Novacky, 1975):

∂σxx

∂x
+
∂σyx

∂y
+
∂σzx

∂z
= 0;

∂σxy

∂x
+
∂σyy

∂y
+
∂σzy

∂z
= 0;

∂σxz
∂x
+
∂σyz
∂y
+
∂σzz
∂z
= ρg;

(1)

where the symbology and units are: σ [N/m2] for stress, ρ [kg/m3]
for density, and g [m/s2] for gravity acceleration. The spatial vari-
ables (x, y, z) stand for the Cartesian system of coordinates,
with z pointing positive downwards inside the underground.
Physically, the system of Eqs. (1) means that: (1st) the sum of
the stress variation along the vertical axis is given by the weight
of the overburden column; (2nd) the sum of the stress variation
along the horizontal x-axis is chosen to be null; and (3rd) the
sum of the stress variation along the y-axis is also chosen to be
null. The gravity acceleration, g = g(z), is considered constant
in the underground volume in consideration, and also g = gz
when it is needed a convenient notation.

The total solution of the system of Eqs. (1), u(T) = u(C)+u(P),
is given by the complementary solution, u(C) , of the three ho-
mogeneous equations, added to the particular solution, u(P), of
the inhomogeneous system obtained via Green’s function and
convolution (Roach, 1986).

The particular solution for the displacement component
uk(x), (k = x, y, z), is given by the Poisson integral with

respect to the structural volume V as:

uk(x) = g
1

V 2s

∫
V

Γkz(x,y)dVy. (2)

It is interesting that this integral depends mainly on the shear
velocity VS [LT−1]. Γkz(x,y) [L−1] is the Green tensor for
the system of Eqs. (1) (fundamental solution, where in the third
equation ρg is replaced by ρgδ(x)δ(y)δ(z)), and it is given by
Kupradze (1963).

For the solution represented by Eq. (2), and others in the
sequel based on this formulation (see, for instance, Eqs. (17) and
(31)), once the displacement field, uk(x), is known, then the
deformation, stress, and pressure fields can be calculated. But,
we demonstrate ahead for simple models that the contribution of
the particular solution in Eq. (2) is small and, as a result, the
complementary solution is more important.

The system of Eqs. (1) with the particular solution in Eq. (2),
and a possible general complementary solution, establish a very
complicate problem. To obtain a complementary solution, u(C), is
already a special problem by itself.

However, we can obtain an elegant complementary solution
to system of Eqs. (1) by considering a plausible model described
by simple geometric relations for the S surface, z = z0(x, y),
and by the overburden weight components Pk = ρgznk ,
[N/m2], in the form:

Px(S) = ρgz0(x, y)nx;

Py(S) = ρgz0(x, y)ny; (3)

Pz(S) = ρgz0(x, y);

where ni = cos(n, xi) is the direction cosine between the
surface normal vector, �n, and the arbitrary (x, y, z) Cartesian
system. The stress expressions for Eqs. (3) (with σ for nor-
mal and τ tangential stress components) on the interface S are
written as:

Px(S) = σxxnx + τyxny + τzxnz|S
= ρgz0(x, y)nx;

Py(S) = σyyny + τxynx + τzynz|S
= ρgz0(x, y)ny;

Pz(S) = σzznz + τxznx + τyzny|S
= ρgz0(x, y).

(4)

We can now consider that the rock displacements on the bound-
ary z = z0(x, y) to be related with the vertical displacement
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by the formulas:

ux = uz cos(ρg, x);

uy = uz cos(ρg, y); (5)

cos(ρg, z) = 1.

On the boundary, represented by the surface z = z0(x, y),
the vertical strain is given by the relation:

ezz =
∂uz

∂z
=
ρgz(x, y)

λ + 2μ
; (6)

that comes from Eqs. (1) considering a flat structure. Under inte-
gration, Eq. (6) gives the displacement,

uz(z0(x, y)) =

∫ z0
0

ρgz(x, y)

λ + 2μ
dz

=
ρgz20(x, y)

2(λ+ 2μ)
.

(7)

In the above equation, the quantities ρ and g are allowed to
varie as a function of z(x, y); but, the solution in the right hand
consider them constant with z(x, y).

The horizontal strain, exx = ∂ux
∂x = ux,x, with Eq. (5),

using the convenient symbology, is expressed by:

exx =
∂

∂x
uz(x, y) cos(n, x); (8)

with the result under derivation by parts,

exx = uz,x
z0,x√

1 + z20,x + z
2
0,y

−uz z0,xx√
1 + z20,x + z

2
0,y

(
1− z20,x

1 + z20,x + z
2
0,y

)
.

(9)

For the above Eq. (9),

uz,x(x, y) =
ρg

λ+ 2μ
z0(x, y)

∂z0(x, y)

∂x
. (10)

Equation (9), with Eq. (7), can be rewritten in the following form:

exx(z0(x, y)) =
ρgz0
λ + 2μ

z20,x√
1 + z20,x + z

2
0,y

− ρgz20
2(λ + 2μ)

z0,xx√
1 + z20,x + z

2
0,y

×
(
1− z20,x

1 + z20,x + z
2
0,y

)
.

(11)

The total dilatation (θ = � · −→u ) (vertical compression and
horizontal decompression) on the boundary z = z0(x, y) takes
the result:

θ(z0(x, y)) =
gz0

V 2P

⎡
⎣1 + z20,x + z

2
0,y√

1 + z20,x + z
2
0,y

⎤
⎦

− gz
2
0

2V 2P
[z0,xxϕ1(x, y) + z0,yyϕ2(x, y)] ;

(12)

where,

ϕ1(x, y) =
1 + z20,y(

1 + z20,x + z
2
0,y

)3/2 ; and

ϕ2(x, y) =
1 + z20,x(

1 + z20,x + z
2
0,y

)3/2 .
(13)

The quantity named Pressure P is defined as the average of
the normal stresses; that is:

P =
1

3
(σxx + σyy + σzz); (14)

and it is the first invariant of the stress tensor. Using the general-
ized Hooke’s law for isotropic medium:

σij = λθδij + 2μeij ; (15)

the pressure in Eq. (14) is now directly related to the dilatation,
and we specify it in the form,

Pθ = (λ +
2

3
μ)θ = Kθ, (16)

whereK = λ+ 2
3
μ stands for the pressure module.

Some observations about the dilatation Eq. (12) are now
important.

First, that Eq. (12) depends on VP , and on the first and sec-
ond order space derivatives of the surface z = z0(x, y). The
first derivative terms, (z0,x(x, y), z0,y(x, y)), are slope angles.
The second derivative terms, (z0,xx(x, y), z0,yy(x, y)), relate
to the surface general curvature (Smirnov, 1964).

Second, in the case that the P wave velocity does not change
across the boundary (this is very rare situation), the dilatation
has a continuous value. But, in the usual case the P wave has a
discontinuity across the boundary and, as given above, the pres-
sure is given by the product of pressure module (K) to the dilata-
tion (θ), that can also change across the boundary (Sibiryakov
et al., 2004).

Third, the first term of the Eq. (12) contains the square of the
first derivative, which means that, for not very large angles, the
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slope effect results in the increase of pressure due to the struc-
ture. However, the curvature effect is more interesting.

Fourth, for negative curvature (anticline structure) there is a
decrease in pressure, and this effect increases with depth due to
the z20(x, y) factor in the second term of Eq. (12), instead of in
the first term where there is the factor z0(x, y).

Fifth, and continuing, the sign of the second derivative is neg-
ative, and the curvature is also of a negative value. This means,
the anticline structure produces a low pressure zone, which is a
favorable condition for fluid accumulation.

For positive curvature (sincline structure), we have the
opposite effect.

Sixth, consider the ideal case of a spherical arc; then, the
value of the second term in Eq. (12) may have the value of the
first term. This means that the negative curvature produces a pla-
nar stretching near the top and shortening near the rim.

Seventh, the first term in Eq. (12) is related to the slope an-
gles, with a positive contribution to the dilatation. This means that
this term produces an increase in compression as a function of
the increase in the amplitude of the anticline structure.

The question that we raise now is: When is it possible that
the simple representations in Eq. (5) is sufficiently accurate to
diminish the pressure field in the vicinity of the anticline dome?

It should also be clear that the contributions of the Poisson
integral in Eq. (2) to the displacement and stress fields are small,
in comparison to the fields due to elementary geometrical and
physical properties of structures (tangent and vertical forces, and
displacements along the structure boundary).

Contribution of the Poisson Integral to Displacements
We can represent the contribution of the Poisson integral Eq. (2)
to the displacement field as the difference of two integrals in the
form:

Δuk(x) = g

(
1

V
(+)2
S

− 1

V
(−)2
S

)∫
V

Γkz(x,y)dVy, (17)

where V (+)S (above) and V (−)S (below) are seismic wave veloci-
ties across the structure S boundary. The integrand is the Green
tensor given by:

Γkz(x,y) =
1

8π

[
(1 + γ2)δkz

+(1− γ2)(xk − yk)(z − z
′)

r2(x,y)

]
1

r(x,y)
,

(18)

where y = (x′, y′, z′) is the integration variable throughout
the volume V . The two integrals in Eq. (17) are interpreted as

material substitution: the first integral relates to the material which
is eliminated from the structure, and the second to the material
which is occupied by the real structure. Figure 2 illustrates the
coordinate system, the geometry of the reservoir volume V , the
integration variable y in the volume V , and the reference point x
along the S surface.

Figure 2 – Block diagram representing a reservoir volume V limited above by
the surface S represented by z = z0(x, y). The integration variable y and the
S surface reference point x are also shown.

The quantity r is the geometrical distance between the x and
y points. The contribution in Eq. (17) vanishes if the velocities
V
(+)
S and V (−)S are equal. On the other hand, the displacement

field due to the elementary method expressed by Eqs. (6) and (7)
is given by:

u0z =
ρgz20

2(λ + 2μ)
=
gz20
2V 2P
. (19)

Let us consider a simple but important structure model
represented by a spherical body characterized by the volume
V = πR2h, where R is the average radius of the structure,
and h is the amplitude. The result for the integral in Eq. (17) gives
a simple and good numerical condition for an estimation method
(formulas of the type in Eq. (12)), that is given by:

Rh

8

ΔVS
VS
� 4γ2z20; (20)

where ΔVS = V
(+)
S − V (−)S . Considering that the γ ratio

be about γ2 ≈ 0.25, then the numerical condition in Eq. (20)
simplifies to:

h

R

ΔVS
VS
� 8

(z0
R

)2
. (21)

This interesting result says that for small value of h with respect
toR, the Eq. (21) is true, specially for large z0, and it establishes
that a spherical segment represents well an anticline structure.

Brazilian Journal of Geophysics, Vol. 33(2), 2015
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Contribution of the Poisson Integral to Stresses
For estimating forcesPk, (k = x, y, z), at the S boundary from
stressesσki, such thatPk = σkini, there is an analogous equa-
tion to the one for displacement in Eq. (17), which is given by:

Pk(x) =
1

4π
ρgz

∫
V

PΓkz(x,y)dVy = − 1
4π
ρgz

∫
V

×
{[
aδkz + b

(xk − yk)(z′ − z)
r2

]
∂

∂n

(
1

r

)

+a

[
cos(n,xk)

z′ − z
r3

− cos(n, z)xk − yk
r3

]}
dVy;

(22)

where
a =

1

2π

μ

λ + 2μ
, b =

3

2π

λ+ μ

λ + 2μ
,

and P under the integral stands for a general operator for the
concentrated forces in the integration point y; that means, placed
at in the Green function Γkz, that includes differentiation, multi-
plication, summation and convolution to construct the force field
(Kupradze, 1963). Comparing Γkz in Eq. (17) with PΓkz in
Eq. (22) above, the P [L−1] operator stands for the directional
derivative ∂

∂n
= nk

∂
∂xk

with respect to the normal to the S
surface (see Fig. 2).

Considering the structure to be a spherical segment, as done
for obtaining the result in Eq. (20) followed by Eq. (21) above, the
estimation of stresses for this simple model gives the numerical
condition:

ρgV

2πR2
(
γ21 − γ22

)� ρgz0. (23)

Or, in another simplified form, as:

h

2

(
γ21 − γ22

)� z0. (24)

The estimations in Eqs. (24) and (21) mean that the simple spher-
ical model offer a good method for stress estimation, if the depth
z0 to the structure is much larger than its amplitude h; this is a
usual situation in most oil deposits.

Test Example: Anticline Structure with
Low Slope Angles
Figure 3 shows the case of an anticline structure modeled by a
Gaussian surface defined by:

z0(x, y) = H − he−(
x2+y2

a2
), (25)

where H is the depth to the rim of the structure, a the average
radius, and h is the amplitude of the Gaussian dome.

For calculating the pressure across the model surface, the
parameters for the two media are defined as: VP above is

3000 m/s, and 3200 m/s below; γ = VS/VP above is 0.5, and
0.577 below; the density is ρ = 3000 kg/m3 above and below;
and the gravity value was taken as g = 9.8 m/s2. The figures that
follow are the results obtained with these parameter values.

Figure 4 shows the elementary overburden pressure field
P0 = Pz(S) = ρgz0 behavior above the S surface, and with
a consistent low around the dome.

Figure 5 shows the overburden weight pressure discontinu-
ity ΔP0 = 4

3
P0(γ

2
1 − γ22) form across the S surface, and

with a consistent low around the dome as expected for the given
parameters.

Figure 6 shows the cubic dilatation θ calculated with Eq. (12),
where the red color is for the medium above, and the green color
for the medium below the S surface. The figure shows a consis-
tent form for the dilatation with respect to the specified model.

Figure 7 shows the distribution of the dilatation pressure Pθ,
where is clear a low area around and under the dome. This dis-
tribution is calculated by Pθ = (λ + 2

3
μ)θ = Pθ(z0) us-

ing Eq. (12) referenced to the S surface z0(x, y). The pres-
sure immediately above the S surface (blue color) is given by
P
(+)
θ = Pθ − 1

2ΔPθ , and immediately below (red color) by
P
(−)
θ = Pθ +

1
2
ΔPθ.

The pressure unit used is N/m2 = 1 Pascal (Pa), which is
equivalent to 1 Pa= 9.8692×10-6 atm (atmosphere).

It is interesting to observe that the pressure below the S
surface (blue color) is sufficiently less than the pressure above
(red color) by about 1.0×107 [N/m2] (about 200 atmospheres).
The main role in pressure decrease is played by the negative
curvature of the anticline arc, and by the negative discontinuity
of the γ parameter. This structure acts as an attractor for fluids.
Besides, we can see a pressure increase near the periphery of
the structure, and this means that around the periphery of an an-
ticline there is a border for fluid migration to below, or to above,
the anticline S surface.

Figure 8 shows the pressure discontinuity ΔPθ across the
S surface, where is clear a low pressure area around and under
the dome. This is a convenient figure to see the nuance and de-
tails for the analysis of fluid migration around the dome and rim of
the structure. Fluids should migrate from a high to low a pressure
zone, but we still have to consider the petroleum geology princi-
ples to form a complete analysis of the migration process as, for
instance, the source and sealing rocks, and structural attitudes.

Figure 9 shows the difference between the pressure disconti-
nuities as calculated by the two related models: overburden mi-
nus dilatation pressures, and given byΔP0θ = ΔP0 −ΔPθ,
using results as shown in Figures 5 and 8. The rim area shows

Revista Brasileira de Geof́ısica, Vol. 33(2), 2015
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Figure 3 – Topography of the anticline model according to Eq. (25) representing the S surface separating the two media. The vertical axis
indicates the surface position and amplitude z0(x, y) for h = 10,H = 3000, and a = 1000.

Figure 4 – Normal overburden weight as pressure P0 according to Eq. (3).

Figure 5 – Normal overburden weight as pressure discontinuityΔP0 across the S surface, and consistent with the results of Figure 4.
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Figure 6 – Cubic dilatation θ according to Eq. (12). The values in green are for the layer below the S surface, and in blue for the layer aboveS.

Figure 7 – This structure is a fluid attractor. Result for the dilatation pressure Pθ using Eq. (12) and θ as shown in Figure 6. The blue color is
for the medium above, and the red color is for the medium below the S surface.

Figure 8 – Result for the dilatation pressure discontinuityΔPθ = K1θ1 −K2θ2 using the results in Figure 7 to analyze the details of the
pressure variation around the dome and rim.
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Figure 9 – Difference between the overburden and the dilatation pressure discontinuities ΔP0θ = ΔP0 − ΔPθ using the results as shown in
Figures 5 and 8.

the expected value around zero, and the dome presents a discrep-
ancy between these two models, but by only around 0.1 atm, what
represents a good approximation considering a discontinuity of
200 atm forΔP0 andΔPθ.

For the case of Figure 10, we inverted the physical condi-
tions through the parameters of the anticline; that is, γ = 0.577
above, and γ = 0.5 below the S surface. The result gives an-
other picture, as the inverse of the Figure 7; that is, the pressure
below the S surface is larger than above by about 1.0×107 [N/m2]
(about 200 atmospheres), and the vicinity of the structure is not a
fluid attractor.

Test Example: Anticline Structure with
High Slope Angles

We treat now an application of the modified boundary inte-
gral equation method as described by Sibiryakov (2006) for the
case of pressure prediction for arbitrary structural forms. In the
development of the theory, it is established continuity of the
displacement vector u, and of the force vector P across the
boundary surface.

The method corresponds to the solution of the inhomoge-
neous elastic static equation, considering a model formed by
homogeneous layers (the λ, μ, and ρ parameters are constant
in every layer), which is given by:

μΔui + (λ+ μ)gradidivu = −ρgez , (26)

where the ez is the unit vector for the z-axis.

We consider a boundary S surface, as shown in Figure 11,
represented by the parametrical form:⎧⎪⎪⎨

⎪⎪⎩
x = r cosϕ

y = r sinϕ

z(r) = H + h exp(−αr2),
(27)

that separates two different media, one above and one below. The
distance parameter r changes from 0 to 1 km with a step of 1/200,
ϕ from 0 to 2π with a step of π/100, the rim atH = –0.5 km,
the height of the dome h = 0.25 km, and the dispersion fac-
tor as α = 10. The upper boundary (free surface) is the plane
represented by z = 0. The parameters of the upper layer are sim-
plified to

λ(+) = μ(+) = ρ(+) = g(+) = 1.

The lower medium has also the same parameters, but λ(−) =
0.8.

The problem is devided in two steps; the first deals with
the particular solution, and the second with the complementary
solution of Eq. (26).

Step 1: The particular solution of the inhomogeneous Eq. (26),
without satisfying boundary conditions, are specified by the fol-
lowing simple expressions. For above the S surface by:

u(+) =

(
0, 0,− ρ(+)gz2

2(λ(+) + 2μ(+))

)
at z ∈ (−z0, 0).

(28)
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Figure 10 – This structure is not a fluid attractor. The parameters have the inverse values of the ones for the case of Figure 7: blue for γ = 0.5
below, and red for γ = 0.577 above the S surface.

And for below the S surface by:

u(−) =
(
0, 0,− ρ

(−)g(z − z0)2
2(λ(−) + 2μ(−))

− ρ(+)gzz0

(λ(−) + 2μ(−))
+

ρ(+)gz20
(λ(−) + 2μ(−))

− ρ(+)gz20
2(λ(+) + 2μ(+))

)
at z ∈ (−∞,−z0).

(29)

Step 2: The complementary solution of the homogeneous
Eq. (26) adds to the particular solutions in Eqs. (28) and (29), and
satisfies the boundary conditions on the structure surface and on
the free flat surface. Therefore, the starting form is:

μΔui + (λ+ μ)gradidivu = 0, (30)

with the solution for the displacement component, ui, given by

ui(x) =
1

2π

∫
Mik(x,y)Fk(y)dSy. (31)

The force component operator, Pi(Mik) = Pi, obtained from
solution in Eq. (31), satisfies the Fredholm integral equation of
the second kind:

Pi(x) = Fi(x)− 1
2π

∫
Pik(x,y)Fk(y)dSy. (32)

The algorithm for calculating the tensor kernelsMik(x,y) and
Pik(x,y), from where the vector function Fi(y) is obtained,
was published in Sibiryakov (2006) where, for the possibility of

the tensor calculations, it is necessary to solve a linear algebraic
system, where one part is formed by Fredholm equations of the
first kind, and the other part by Fredholm equations of the sec-
ond kind.

For large slope angles (more than 45 degrees), the tangent
increases fast, and the approximate Eqs. (11) and (12) are no
longer valid.

Figure 11 shows the topography of the anticline structure,
that varies with radial distance from the center of the structure.
The pressure around this structure is calculated using numerical
accurate methods of boundary integral equations, and the details
of this method is discussed in the paper by Sibiryakov (2006).
This method is used to calculate pressure for any surface geo-
metrical form; but, for the present example we used a Gaussian
dome characterized by steep side slopes.

Figure 12 represents further calculations over the case of
Figure 11 to show details of the pressure variation, where the
values outside the dome are approximately as given by Eqs. (11)
and (12). But, here we call attention to fact of the predictive oscil-
lating behavior of pressure around the sides of the structure, that
can be important for the analysis of fluid migration.

CONCLUSIONS

Zones of low pressure exist not only in anticline structures; but,
they can also be present in horizontal layers if the γ ratio is
smaller in the layer above than in the layer below with respect
to the structure surface. The search for such zones requires the
knowledge of both P and S seismic velocity distributions, which
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Figure 11 – Anticline surface topography according to Eq. (27). Case of a structure with steep slope angles. The color scale informs the ordinate z(r) values.

Figure 12 – The vertical left axis gives the structural Gaussian anticline topography. The verti-
cal right axis gives the pressure discontinuity ΔPθ versus radial distance from the dome central
part. The green line shows a special oscillating pressure variation details, and an increase towards
outside the dome. The right vertical axis had the sign changed for simplifying the reading.

can be determined by seismic processing, VSP and laboratory
measurements.

The local decrease of pressure near the dome of an anticline
structure depends on the discontinuity of the physical parameters
across the structural surface, and on the geometrical parameters
(slope angle and curvature). The quantity physically affected is
the stress field, and the constitutive parameters (density, Lame’s,
and if needed the porosity, specific surface area, etc.) are admitted
constant for the volume rock under the static condition. The vol-
ume rocks that form the anticline extend laterally to a horizontal
attitude with the same constitutive parameter values.

The negative discontinuity of pressure causes the decrease
of pressure below the structure surface, which turns it an attractor
for fluid accumulation.

The positive discontinuity of pressure causes an increase of
pressure below the structure surface, and as a result this structure
is not an attractor feature for fluid accumulation.

The role of structural curvature is to increase its effect on the
pressure value as a function of depth of the structure; that means,
as the depth increases the role of the curvature also increases.

Figures 9 and 12 serve also as a numerical sensitivity analy-
sis of the model considering the effect of the anticline dome to
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the pressure discontinuity across the target interface, that may
serve as a natural suction pump for fluids (gas, water and oil)
in the migration process.
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