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A STUDY OF THE ELECTROMAGNETIC FIELD
FROM THE MCSEM DIPOLE SOURCE IN AN ANISOTROPIC LAYERED EARTH

Walleson Gomes dos Santos1,2 and Cı́cero Roberto Teixeira Régis1,2

ABSTRACT. This paper studies the electromagnetic field from a horizontal electrical dipole inside a layered earth model with TIV anisotropy, including a visualization
of the geometric patterns of the field through the medium. The objective here is to present a detailed formulation of the problem, as an aid to those who have an interest

in modeling data from the Marine Controlled-Source ElectroMagnetic method – mCSEM, but find it hard to follow the usually abridged, often incomplete, descriptions
found in the technical literature. We present a detailed vector potential formulation, with a semi-analytical solution, that allows the calculation of the fields with the

source located in a finite thickness ocean layer over N-layered earth models. As an application, we use the implemented solution to study the geometrical distribution
of the electric field generated by the dipole source in anisotropic layered media.

Keywords: mCSEM, TIV electrical anisotropy, 1D electromagnetic modeling.

RESUMO. Este artigo estuda o campo eletromagnético de um dipolo elétrico horizontal no interior de um modelo estratificado com anisotropia TIV, incluindo uma

visualização da geometria das linhas de campo através do meio. O objetivo é apresentar a formulação detalhada do problema, para aqueles que têm interesse na

modelagem de dados do método eletromagnético de fonte controlada marinho – mCSEM, mas encontram dificuldades em seguir as descrições geralmente muito
resumidas, diversas vezes incompletas, na literatura técnica. Apresentamos uma formulação detalhada em termos do potencial vetorial, com uma solução semi-anaĺıtica

que permite o cálculo dos campos com a fonte localizada em um oceano de espessura finita sobre uma terra estratificada com N camadas. Como aplicações, usamos a
solução implementada para estudar a distribuição geométrica do campo elétrico gerado pelo dipolo fonte em meios estratificados anisotrópicos.
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INTRODUCTION

The electromagnetic field from the marine CSEM dipolar antenna
is generated by an electric current on the order of 1000 A, or
higher (Constable & Srnka, 2007). The current flows through the
water and the sediments below, and its variations generate elec-
tromagnetic induction that helps the signal to be measured at dis-
tances several kilometers away from the source. Both galvanic
and inductive effects contribute to the diffusion of the EM field.

In the interpretation of marine CSEM data the environment
under the sea floor can be considered as electrically isotropic
in many cases. However, it is well documented that sequences
of sediment layers frequently found in oil and gas exploration
are perceived as a homogeneous medium with effective electri-
cal anisotropy (Tompkins, 2005). The effects of anisotropy must
be considered in the interpretation, especially the fact that the
vertical component of the conductivity has a stronger influence
on the electric field measured by the inline receivers than it has
on that measured by the crossline receivers (Lu & Xia, 2007).

In order to build a clear understanding of these phenomena,
it is important to know how the geometry of the electric field and
the current density field lines are affected by the geoelectric struc-
tures of the sea plus sediments environment, because galvanic
effects have a dominant role in the field diffusion in this highly
conductive medium. In the mathematically simplest possible
case, the electric dipole source would be in an infinite homo-
geneous conductive medium, and the electric field would simply
follow the pattern of a dipole field, with its characteristic sym-
metry. In more complex environments, the fields and the electric
current flow are altered by the geometry, as well as by the phys-
ical properties of the different conductivity zones in the media.
All these effects, in turn, have an impact on the components that
are measured in the mCSEM method.

The problem of calculating the fields from an electric dipole in
layered anisotropic models has been treated by several authors.
Xiong (1989) presents a vector potential solution following the
traditional recursive algorithm in terms of reflection coefficients
(Wait, 1981, chapter 11), much like the method followed here.
However, the presentation in his short note is indeed extremely
short, and does not give many details of the calculation. The work
is not helped by the fact that the plots with the results for the half-
space model are not correct, and do not correspond to the true
solution for that model.

Løseth & Ursin (2007) presented a general formulation for
electric and magnetic dipole sources, based on propagation
matrices. Their method has applications to a number of different
geophysical sources, but it demands the evaluation of the double
inverse Fourier transform, which is a heavy numerical task.

A classical procedure in finite element solutions of 2D or 3D
problems is to build models formed by a layered background
inside which are placed target bodies. The fields inside the 1D
layered media are used in the source term in the differential
equations, which avoids the trouble of representing the point
sources in the discretized media represented by the finite-element
meshes. Several applications of finite-elements to the mCSEM
problem in anisotropic environments can be found. Kong et al.
(2008) presented one application, using a secondary field formu-
lation, which they claim to be inventing (in 2008!). These authors
do not show a detailed development of the primary field calcula-
tions. They present a solution using non-standard reflection co-
efficients associated with the air/water interface and they do not
present the expressions for the coefficients associated with the
sea bed interface, citing Kong (1990) as the reference for the
method to calculate those expressions. The extremely short pre-
sentation of part of the solution makes this reference particularly
hard to follow, if one is to reproduce the results.

Another 2.5D finite-element solution to the anisotropic prob-
lem, using primary and secondary fields is given by Ramanan-
jaona & MacGregor (2010), however their primary field are calcu-
lated in isotropic half-space models, the anisotropy being intro-
duced only in the 2D part of the complete models. Li & Dai (2011)
have modeled the more general case of dipping anisotropy in yet
another 2.5D formulation using an isotropic layered background
to generate their primary fields. This use of isotropic 1D models
is sufficient to generate the primary fields, leaving the anisotropy
to be included in the 2D parts of the models. However, this also
implies a need for a greater number of nodes in the meshes if an
anisotropic layer is to be modeled as a long 2D body. Therefore,
it is preferable that the primary fields be calculated in anisotropic
layered models.

In this paper we study a detailed and complete formulation of
the problem of calculating the frequency domain fields from an
electric dipole in layered earth models, to simulate mCSEM data.
The method uses the vector potential associated with the mag-
netic field, and the problem is solved in the Fourier domain. The
use of the vector potential allows the separation of the fields in
TE and TM contributions, and the symmetry of the 1D problem
allows the inverse double Fourier transforms to be changed into
single integral Hankel transforms, which can be efficiently solved
numerically using digital filters.

The main objective of this paper is to offer a solution that can
be followed and implemented by anyone who’s interested in this
problem, particularly if they intend to use the 1D solution as pri-
mary fields in a more general formulation.
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As an application of the method, we also present a study of
how the variations in conductivity in a layered earth affect and
deform the electric field lines away from the dipole field configu-
ration, and how the presence of anisotropic layers impose further
changes in that geometry. The visualization of the electric field
allows us to analyse the effect of the anisotropy inside the layers,
and its influence on the mCSEM data.

MATHEMATICAL FORMULATION OF THE PROBLEM
We follow the classical procedure of first calculating the fields
from the source in an unbounded homogeneous medium, and
then using these as incident fields on the layered medium. The
formulation builds the differential equations in terms of the vector
potential associated with the magnetic field through the rotational
operator. When the fields in the unbounded medium are calcu-
lated in the domain of the Fourier transform, with respect to the
horizontal x and y coordinates, the result is a spectral decompo-
sition in terms of plane wave solutions. From these, a plane wave
field inside the layered medium is calculated. The final steps are
the operations to return to the electromagnetic field from the po-
tential’s solution and to perform the inverse transform to generate
the solutions in the spatial coordinates.

Unbounded medium
As always, start with Maxwell’s equations. At the frequency do-
main, in conductive media, and in the quasi-static regime (σ �
ωε0):

∇ ·E = 0, (1)

∇ ·H = 0, (2)

∇× E + iωμH = 0, (3)

∇×H − σE = I(ω) ds δ(x)δ(y)δ(z − zt). (4)

The term I(ω) ds δ(x)δ(y)δ(z − zt) represents the cur-
rent density function of the dipole source transmitter located
at (0, 0, zt). For an x oriented dipole, ds = (dsx, 0, 0).
I(ω)dsx represents the dipole moment.

For transversely isotropic layered media with vertical simme-
try axis (TIV), the conductivity tensor is

σ =

⎛
⎜⎝ σh 0 0

0 σh 0

0 0 σv

⎞
⎟⎠ . (5)

Define the vector potential A so that

H = ∇×A (6)

Then, from Faraday law (equation 3):

∇× (E + iωμA) = 0; (7)

E = −iωμA −∇U, (8)

where U is a scalar field.
Now write Ampère’s law (4) in terms of the vector potential by

using its relations with the fields (equations 6 and 8):

∇×∇×A + σ(iωμA +∇U)
= I(w)ds δ(x)δ(y)δ(z − zt).

(9)

The vector identity ∇ ×∇ × A = −∇2A + ∇(∇ · A)
makes

−∇2A +∇(∇ · A) + σ∇U + iωμσA
= I(w)ds δ(x)δ(y)δ(z − zt).

(10)

This is a system of three equations:

−∇2Ax + ∂
∂x
(∇ · A) + σh∂U

∂x

+ iωμσhAx = I(w)dsx δ(x)δ(y)δ(z − zt), (11)

−∇2Ay + ∂
∂y
(∇ · A) + σh∂U

∂y

+ iωμσhAy = 0, (12)

−∇2Az + ∂
∂z
(∇ ·A) + σv ∂U

∂z

+ iωμσvAz = 0. (13)

Following the procedure described in (Kaufman & Dashevsky,
2003), a convenient configuration for the vector potential is
A = (Ax, 0, Az), which reduces the number of components
while still generating the complete magnetic field. A good gauge
condition is, then

∇ · A = −σh U. (14)

These choices lead to the system of two coupled differential
equations on the components of A:

∇2Ax + k2hAx = −I(ω) dsxδ(x)δ(y)δ(z − zt), (15)

∇2Az + k2v Az =
(
1− σv
σh

)
∂

∂z
∇ · A. (16)

where two wave numbers are defined: one associated with the
horizontal conductivity kh, and the other associated with the ver-
tical conductivity kv . In order to simplify notation we also define

Brazilian Journal of Geophysics, Vol. 33(2), 2015
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two more functions u and v as follows:

k2h = −iωμσh, (17)

k2v = −iωμσv, (18)

u2 = k2x + k
2
y − k2h, (19)

v2 = k2x + k
2
y − k2v. (20)

Here we also follow the usual definition for the coefficient of
anisotropy λ (Spies & Frischknecht, 1987, page 350, eq. 47):

λ2 =
σh

σv
(21)

The gauge condition also allows us to write the electric field
as

E = −iωμA + 1
σh
∇(∇ ·A). (22)

The solutions to these equations in the Fourier domain
(kx, ky, z) allow for a representation in terms of a plane wave
spectral decomposition. The equation with the source term (15)
yields

ˆ̂
Ax(kx, ky, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

I(ω) dsx
e−u(z−zt)

2u
,

(z − zt) ≥ 0,

I(ω) dsx
eu(z−zt)

2u
,

(z − zt) ≤ 0,

(23)

From the equation for Az (16) we get

∂2Az

∂x2
+
∂2Az

∂y2
+
1

λ2
∂2Az

∂z2
+ k2v Az

=

(
1− 1
λ2

)
∂2Ax

∂x∂z
,

(24)

which leads to the spectral domain (kx, ky, z) representation:

∂2
ˆ̂
Az

∂z2
− λ2v2 ˆ̂Az =

(
λ2 − 1) ikx∂ ˆ̂Ax

∂z
. (25)

By applying the expression for Ax (23) to the equation for
Az (25), taking the derivative ∂ ˆ̂Ax/∂z, and making k2r =
k2x + k

2
y, the solution is the sum of the general solution for

the homogeneous equation with a particular solution for the non
homogeneous equation:

ˆ̂
Az(kx, ky, z) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ikx I(ω) dsx
2k2r

(
e−u(z−zt) − e−λv(z−zt)

)
,

(z − zt) ≥ 0,

− ikx I(ω) dsx
2k2r

(
eu(z−zt) − eλv(z−zt)

)
,

(z − zt) ≤ 0,

(26)

Layered medium

The expressions for ˆ̂Ax and ˆ̂Az (equations 23 and 26) have the
form of the z dependent part of plane wave solutions with inci-
dence angles that are a function of kr (Ward & Hohmann, 1987).
Therefore, it is possible to write the solution inside the layers as
combinations of downgoing and upgoing plane wave fields (of
the vector potential field ˆ̂A), in terms of transmission and reflec-
tion coefficients. There is one more term in the equations for the
ˆ̂
Az component in the unbounded medium, as compared to the
isotropic case, because now there are two wave numbers to be
considered.

Figure 1 – Anisotropic layered model.

The general model for the layered medium is illustrated in
Figure 1. In mCSEM problems, the top infinite half-space, with
index 0, is the air. Each layer i has thickness hi. Its physical
properties are used in the definition of its intrinsic impedance Zi
and intrinsic admittance Yi, in the (kx, ky, z) domain:

Zi = λivi
σhi

(27)

Yi = ui
iωμi

(28)

In this general solution, it is admitted that there are layers
above the source, which is located in layer j. Now we write the
solutions for the vector potential inside this layer, in the next layer
beneath it (j + 1), in every arbitrary layer below it (j + k),
and in the infinite half-space at the bottom (n):

Revista Brasileira de Geof́ısica, Vol. 33(2), 2015
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ˆ̂
A(j)x(−) = Axj

⎡
⎣ euj(z−zj) +R(j)x e−uj(z−zj)

+R
(j+1)
x euj(z−zj−2s2)

⎤
⎦ ,

ˆ̂
A(j)x(+) = Axj

⎡
⎣ e−uj(z−zj−2s1) +R(j)x e−uj(z−zj)

+R
(j+1)
x euj(z−zj−2s2)

⎤
⎦ ,

ˆ̂
A(j+1)x = Ax(j+1)

⎡
⎣ e−uj+1(z−zj+1)

+R
(j+2)
x euj+1(z−zj+1−2hj+1)

⎤
⎦ ,

ˆ̂
A(j+k)x = Ax(j+k)

⎡
⎣ e−uj+k(z−zj+k)

+R
(j+k+1)
x euj+k(z−zj+k−2hj+k)

⎤
⎦ ,

ˆ̂
A(n)x = Axn e

−un(z−zn).

(29)

where

Axj =
I(ω) dsx e

−ujs1

2uj
.

The (−) and (+) subscripts mean that the layer j is, respectively, above or below the one with the dipole source.

The component ˆ̂Az is determined by using the expressions for ˆ̂Ax (29) in the differential equation relating both components
(25). Again, the solution is the sum of the general solution for the homogeneous equation (terms in A, in the following expres-
sions) with a particular solution for the non homogeneous equation; for a somewhat more compact expression, these solutions
can be written in terms of the same derivatives ∂ ˆ̂A(i)x /∂z, as they appear in the final form, which is composed of the exponential
functions:

ˆ̂
A(j)z(−) =

−ikx
k2r

∂
ˆ̂
A
(j)
x(−)

∂z
+A(j)v(−) ,

ˆ̂
A(j)z(+) =

−ikx
k2r

∂
ˆ̂
A
(j)
x(+)

∂z
+A(j)v(+) ,

ˆ̂
A(j+1)z =

−ikx
k2r

∂
ˆ̂
A
(j+1)
x

∂z
+A(j+1)v ,

ˆ̂
A(j+k)z =

−ikx
k2r

∂
ˆ̂
A
(j+k)
x

∂z
+A(j+k)v ,

ˆ̂
A(n)z =

−ikx
k2r

∂
ˆ̂
A
(n)
x

∂z
+A(n)v ,

(30)

Brazilian Journal of Geophysics, Vol. 33(2), 2015
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with,

A(j)v(−) = Azj
[
eλjvj(z−zj) +R(j)z e−λjvj(z−zj)

−R(j+1)z eλjvj(z−zj−2s2)

]
,

A(j)v(+) = −Azj
[
e−λjvj(z−zj−2s1) −R(j)z e−λjvj(z−zj)

+R
(j+1)
z eλjvj(z−zj−2s2)

]
,

A(j+1)v = Az(j+1)

[ − e−λj+1vj+1(z−zj+1)
−R(j+2)z eλj+1vj+1(z−zj+1−2hj+1)

]
,

A(j+k)v = Az(j+k)

[ − e−λj+kvj+k(z−zj+k)
−R(j+k+1)z eλj+kvj+1(z−zj+k−2hj+k)

]
,

A(n)z = −Azn e−λnvn(z−zn).

(31)

where

Azj =
I(ω) dsx ikx e

−λjvjs1

2k2r
.

The continuity conditions for the tangential components of the EM field lead to (Kaufman & Dashevsky, 2003, page 620)

ˆ̂
A(i)x =

ˆ̂
A(i+1)x

∣∣∣
z=z(i+1)

and
∂
ˆ̂
A
(i)
x

∂z
=
∂
ˆ̂
A
(i+1)
x

∂z

∣∣∣∣∣
z=z(i+1)

, (32)

A(i)v = A(i+1)v

∣∣∣
z=z(i+1)

and
1

σhi

∂A(i)v
∂z

=
1

σhi+1

∂A(i+1)v

∂z

∣∣∣∣∣
z=z(i+1)

. (33)

The transmission coefficients Ax(j+1), Ax(j+k), and Axn, at the interfaces j + 1, j + k, and n, are determined using the

continuity condition expressions for ˆ̂Ax (32):

Ax(j+1) =
2Axj ujR

(j+1)
x euj(s1−s2)

(uj − uj+1) + (uj + uj+1)R(j+2)x e−2uj+1hj+1
,

Ax(i+2) =
Ax(i+1)(1 + R

(i+2)
x )e−ui+1hi+1

1 +R
(i−3)
x e−2ui+2hi+2

i = j, j + 1, . . . , j + k − 2,
Axn = Ax(n−1)(1 + R(n)x ) e

−un−1hn−1 .

The transmission coefficients Az(j+1), Az(j+k) and Azn, at the interfaces j + 1, j + k, and n, are determined using the

continuity condition expressions for ˆ̂Av (33):

Az(j+1) =
2AzjZjR(j+1)z eλjvj(s1−s2)

(Zj −Zj+1) + (Zj +Zj+1)R(j+2)z e−2λj+1vj+1hj+1
,

Az(i+2) =
Az(i+1)(1 + R

(i+2)
z )e−λi+1vi+1hi+1

1 + R
(i−3)
z e−2λi+2vi+2hi+2

i = j, j + 1, . . . , j + k − 2,
Azn = Az(n−1)(1 + R(n)z ) e

−λn−1vn−1hn−1 .

Revista Brasileira de Geof́ısica, Vol. 33(2), 2015
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The link between the solutions inside each homogeneous layer is given by the condition that the tangential components are
continuous in the interfaces between the layers. This condition is enough to determine the reflection coefficients in equations 29 and
30. In order to write the coefficients R(j)x ,R(j+k)x , R(j)z and R(j+k)z , we define the surface impedance Ẑ and surface admittance
Ŷ , associated with the interfaces, in the (kx, ky, z) domain as (Santos, 2007, in Portuguese):

Ẑj−1 = −
ˆ̂
E
(j)
x,TM

ˆ̂
H
(j)
y,TM

∣∣∣∣∣
z=zj

; Ẑj+k =
ˆ̂
E
(j+k−1)
x,TM

ˆ̂
H
(j+k−1)
y,TM

∣∣∣∣∣
z=zj+k

k = 1, 2, . . . , n− j.

and

Ŷj−1 = −
ˆ̂
H
(j)
y,TE

ˆ̂
E
(j)
x,TE

∣∣∣∣∣
z=zj

; Ŷj+k =
ˆ̂
H
(j+k−1)
y,TE

ˆ̂
E
(j+k−1)
x,TE

∣∣∣∣∣
z=zj+k

k = 1, 2, . . . , n− j.

Then the relations of the vector potential with the EM field (equations 6 and 22) give

Ŷj−1 =
∂
ˆ̂
A(j)x(−)
∂z

iωμj
ˆ̂
A
(j)
x(−)

∣∣∣∣∣∣∣
z=zj

and Ŷj+k = −
∂
ˆ̂
A(j+k−1)x

∂z

iωμj
ˆ̂
A
(j+k−1)
x

∣∣∣∣∣∣
z=zj+k

k = 1, 2, . . . , n− j.

Ẑj−1 =
1
σhj

∂A(j)v(−)
∂z

A(j)v(−)

∣∣∣∣∣∣∣
z=zj

and Ẑj+k = −
1

σh(j+k−1)
∂A(j+k−1)v

∂z

A(j+k−1)v

∣∣∣∣∣∣
z=zj+k

k = 1, 2, . . . , n − j.

By these definitions, the surface impedance and admittance at the last interface are simply the intrinsic impedance and admittance
in the half-space. Then, starting from this last interface, the remaining surface parameters are given by the recurrence relations

Ẑn = Zn,

Ẑi = Zi Ẑi+1 + Zi tanh[λivihi]Zi + Ẑi+1 tanh[λivihi]
, i = n − 1, . . . , j + 1,

Ŷn = Yn,

Ŷi = Yi Ŷi+1 + Yi tanh[uihi]Yi + Ŷi+1 tanh[uihi]
, i = n− 1, . . . , j + 1.

Using these parameters, and applying the continuity condition to the solutions at the interfaces of layers j and j + k result in

R(j)x =
(Yj − Ŷj−1)(Yj + Ŷj+1) + (Yj − Ŷj−1)(Yj − Ŷj+1)e−2ujs2
(Yj + Ŷj−1)(Yj + Ŷj+1) − (Yj − Ŷj−1)(Yj − Ŷj+1)e−2ujhj

, (34)

R(j+1)x =
(Yj + Ŷj−1)(Yj − Ŷj+1) + (Yj − Ŷj−1)(Yj − Ŷj+1)e−2ujs1
(Yj + Ŷj−1)(Yj + Ŷj+1) − (Yj − Ŷj−1)(Yj − Ŷj+1)e−2ujhj

, (35)

R(j+k)x =
Yj+k−1 − Ŷj+k
Yj+k−1 + Ŷj+k

k = 2, 3, . . . , n− j, (36)

R(j)z =
(Zj − Ẑj−1)(Zj + Ẑj+1) − (Zj − Ẑj−1)(Zj − Ẑj+1)e−2ujs2
(Zj + Ẑj−1)(Zj + Ẑj+1)− (Zj − Ẑj−1)(Zj − Ẑj+1)e−2ujhj

, (37)

R(j+1)z =
(Zj + Ẑj−1)(Zj − Ẑj+1) − (Zj − Ẑj−1)(Zj − Ẑj+1)e−2ujs1
(Zj + Ẑj−1)(Zj + Ẑj+1)− (Zj − Ẑj−1)(Zj − Ẑj+1)e−2ujhj

, (38)

R(j+k)z =
Zj+k−1 − Ẑj+k
Zj+k−1 + Ẑj+k

k = 2, 3, . . . , n− j. (39)
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With the reflection coefficients in hand, the solutions for the vector potential in the (kx, ky, z) domain is complete. Now the
two final steps are: apply the double inverse Fourier transform to bring back the solution to the (x, y, z) space, and calculate the
electromagnetic field components from those of the vector potential using equations (6) and (22). The expressions are given in terms
of double integrals in kx and ky . Those are written in a more compact form if we apply the identity that relates the double Fourier
transform with the Hankel transform, for problems of cylindrical symmetry, defining k2r = k2x + k2y (Arfken, 1985, page 796):

1

2π

∫ ∞
−∞

∫ ∞
−∞
f(k2x + k

2
y)e
i(kxx+kyy)dkxdky =

∫ ∞
0

f(kr)J0(krr)krdkr. (40)

For example, to find the solution for the electric field components in the layer with the source, at positions below it, we use the
expressions for the ˆ̂A(j)x(+) and ˆ̂A(j)z(+) found in the equations (29) and (30). To write the integrals, use the kernel functions defined as

Ehxy(kr) =
1

Y
(
e−uj(z−zj−s1) +R(j)x e

−uj(z−zj+s1) +R(j+1)x euj(z−zj−s1−2s2)
)
,

Evxy(kr) = λjvj
[
e−λjvj(z−zj−s1) −R(j)z e−λjvj(z−zj+s1) − R(j+1)z eλjvj(z−zj−s1−2s2)

]
,

Evz (kr) =
1

σvj

[
e−λjvj(z−zj−s1) − R(j)z e−λjvj(z−zj+s1) +R(j+1)z eλjvj(z−zj−s1−2s2)

]
.

Then the final expressions are

E(j)x (x, y, z) =
I(ω) dsx
4π σhj

(
2x2

r3
− 1
r

)∫ ∞
0

Evxy(kr)J1(krr)dkr

− I(ω) dsx
4π σhj

x2

r2

∫ ∞
0

Evxy(kr)J0(krr)kr dkr

+
I(ω) dsx
4π

(
2y2

r3
− 1
r

)∫ ∞
0

Ehxy(kr)J1(krr)dkr

− I(ω) dsx
4π

y2

r2

∫ ∞
0

Ehxy(kr)J0(krr)kr dkr,

(41)

E(j)y (x, y, z) =
I(ω) dsx
2π σhj

x y

r3

∫ ∞
0

Evxy(kr)J1(krr)dkr

− I(ω) dsx
4π σhj

x y

r2

∫ ∞
0

Evxy(kr)J0(krr)kr dkr

− I(ω) dsx
2π

x y

r3

∫ ∞
0

Ehxy(kr)J1(krr)dkr

+
I(ω) dsx
4π

x y

r2

∫ ∞
0

Ehxy(kr)J0(krr)kr dkr,

(42)

E(j)z (x, y, z) =
I(ω) dsx
4π

x

r

∫ ∞
0

Evz (kr)J1(krr)k2r dkr. (43)

In the same way, define the kernel functions for the expressions of the magnetic field:

Hhxy(kr) =
[
e−uj(z−zj−s1) + R(j)x e

−uj(z−zj+s1) − R(j+1)x euj(z−zj−s1−2s2)
]
,

Hvxy(kr) =
[
e−λjvj(z−zj−s1) − R(j)z e−λjvj(z−zj+s1) + R(j+1)z eλjvj(z−zj−s1−2s2)

]
,

Hhz (kr) =
1

uj

[
e−uj(z−zj−s1) + R(j)x e

−uj(z−zj+s1) + R(j+1)x euj(z−zj−s1−2s2)
]
.
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Then, the magnetic components are:

H(j)x (x, y, z) = −
I(ω) dsx
2π

x y

r3

∫ ∞
0

Hvxy(kr)J1(krr)dkr

+
I(ω) dsx
4π

x y

r2

∫ ∞
0

Hvxy(kr)J0(krr)kr dkr

+
I(ω) dsx
2π

x y

r3

∫ ∞
0

Hhxy(kr)J1(krr)dkr

− I(ω) dsx
4π

x y

r2

∫ ∞
0

Hhxy(kr)J0(krr)kr dkr,

(44)

H(j)y (x, y, z) =
I(ω) dsx
4π

(
2x2

r3
− 1
r

)∫ ∞
0

Hvxy(kr)J1(krr)dkr

− I(ω) dsx
4π

x2

r2

∫ ∞
0

Hvxy(kr)J0(krr)kr dkr

+
I(ω) dsx
4π

(
2y2

r3
− 1
r

)∫ ∞
0

Hhxy(kr)J1(krr)dkr

− I(ω) dsx
4π

y2

r2

∫ ∞
0

Hhxy(kr)J0(krr)kr dkr,

(45)

H(j)z (x, y, z) =
I(ω) dsx
4π

y

r

∫ ∞
0

Hhz (kr)J1(krr)k2r dkr (46)

The solutions in equations (41) through (46) are valid for
points located between the horizontal plane of the source and the
sea-bed beneath it. To simulate mCSEM data, one simply has to
make z = 0 in the expressions.

All these integrals have to be evaluated numerically. To gen-
erate the results shown here, we have used the Fast Hankel Trans-
form digital filter (Anderson, 1979).

To calculate the fields at any other position in the layers below
or above the layer with the source, repeat the same steps, now us-
ing the appropriate equations for the vector potential as expressed
in equations (29) and (30).

APPLICATION

Here we will investigate the effects of the anisotropy on the fields
as they are measured in the marine CSEM method, considering
the inline and broadside (or crossline) transmitter-receiver con-
figurations. In all examples, the transmitter is at 30 m from the
sea bottom, and the frequency is 0.25 Hz.

First, we present results for the fields on the sea floor, to rep-
resent the measured data of the CSEM method, and analyse the
influence of the anisotropy. Then the real and imaginary parts of
the fields are viewed as vector plots, which allow for a geometrical
analysis of the distribution of the field lines.

CSEM data
First let us consider a model of a homogeneous anisotropic half-
space under a 1500 m thick ocean layer (Fig. 2). In order to ob-
serve the effect of the anisotropy on CSEM data we calculate the
fields in this model with different resistivity configurations for the
half-space. In each case we compare the results obtained from
the isotropic half-space with those obtained from the anisotropic
case in two situations, with the vertical resistivity being two and
then three times the value of the horizontal resistivity. In all cases,
we take the isotropic case with 1.0Ω·m as a reference model in
the comparisons.

Figure 2 – Background model, without the resistive reservoir layer.
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Figure 3 – Inline and broadside responses forEx, from the model of Figure 2.

Figure 3 shows that, for the measured inline Ex component,
the models with the same vertical resistivity present, approxi-
mately, the same response, even when the horizontal resistivity
varies considerably. On the other hand, an increase in the value
of the vertical resistivity implies a higher amplitude for the in-
line Ex component. The broadside measurements indicate that
the models with the same horizontal resistivity present the same
approximate response for offsets up to 7 km. At locations far-
ther from the source, the responses begin to suffer influence from
the vertical resistivity. The conclusions from these observations
are that the inline Ex component is more sensitive to the verti-
cal resistivity, while the broadside Ex component is considerably
more sensitive to the horizontal resistivity at shorter offsets and
shows an influence of both resistivity components at longer off-
sets. The analysis of the curves in Figure 4 shows that the same
conclusions can be drawn for theHy component.

Figure 5 shows that the Ez component is more sensitive to
the vertical resistivity, while the Hz component is affected only

by the horizontal resistivity, as it is clear from the fact that the
equation for this component (46), does not include σv .

Now, let us consider models in which there is included a
resistive layer to represent a reservoir, as shown in Figure 6. In
order to access the influence of the anisotropy on the “reservoir
response”, we analyse two studies: first, the reservoir layer is
isotropic, with 100 Ω·m, and the host medium is anisotropic;
second, both the reservoir and the host medium are anisotropic.
In the first case, the anisotropic resistivity of the host medium
varies to generate different responses (Fig. 6a), and in the second
case, the resistivity of the host medium remains fixed, while the
resistivity of the reservoir layer varies (Fig. 6b).

The responses from the model of Figure 6a, for varying the
host’s anisotropic resistivity, are shown in Figure 7. Figures 7a
and 7c show that a medium without a reservoir layer can gener-
ate an anomaly that’s similar to the one from a medium with the
reservoir layer, if the anisotropy of the host medium is underes-
timated. Therefore, a medium without a resistive layer could be

Revista Brasileira de Geof́ısica, Vol. 33(2), 2015
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Figure 4 – Inline and broadside responses forHy , from the model of Figure 2.

interpreted as containing a reservoir.
On the other hand, Figures 7b and 7d show that an over-

estimation of the anisotropy in the host medium minimizes the
anomaly generated by the resistive reservoir layer. In this case,
the incorrect interpretation might lead to an underestimation of
the reservoir.

Figure 8 shows the response from the second simulation,
with the fixed host resistivity and varying reservoir resistivity. In
this situation, an increase in the vertical resistivity of the reservoir
results in an increase in the amplitude of the Ex component.

Fields inside the layers

This section presents an analysis of the distribution of the elec-
tric field and of the current density field, on the xz plane, which
contains the dipole source. The representation of the in phase
and out of phase field components follows the style presented by

Um & Alumbaugh (2007). Sections of the real and the imaginary
parts of the frequency domain electric field and current density
are shown as vector plots over a color representation of their re-
spective amplitudes.

The study of these sections reinforces the conclusion that the
inline data is most strongly influenced by the vertical resistivity.
This fact is observed in Figures 9 to 12. Variations in the verti-
cal resistivity produce considerable changes in the distribution of
the electric field and the current density field, while the sections
change very little when the vertical resistivity is kept the same
while the horizontal resistivity varies.

The geometry of the field lines change when a resistive layer
is added to the model, to represent a zone with a hydrocarbon
accumulation. The comparison between the field distribution in
the medium with and without the reservoir layer is made in Fig-
ures 13 and 14. Notice that the difference between the two situ-
ations is greater in the isotropic models. In the anisotropic en-
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Figure 5 – Inline Ez and broadsideHz , from the model of Figure 2.

Figure 6 – Model with the resistive layer to represent the reservoir.

vironment, the geometry of the field lines is less changed by the
presence of the resistive layer, particularly in the positions closer
to the sea bed interface. The relatively small variation in the verti-
cal resistivity of the background model (3Ω·m, as compared with

100Ω·m in the reservoir layer) is enough to produce a significant
change in the measured fields, which supports the conclusion that
the anisotropy can in fact mask the presence of the reservoir, or at
least make the data more difficult to be interpreted to identify it.
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Figure 7 – Inline Ex for the models of Figure 6a. In (c) the field is normalized by the values generated with (ρh, ρv) = (1,1)Ω ·m –
noHC (blue line). In (d) the field is normalized by the values generated with (ρh, ρv) = (1,4)Ω ·m – noHC (black line).

Figure 8 – Inline Ex from the models of Figure 6b.

CONCLUSIONS
The calculation shown here follows a traditional approach to
problems of dipole sources. The use of the vector potential and
of the Fourier and Hankel transforms yield a semi-analytical solu-
tion, in terms of Bessel integrals, which are easily evaluated with
digital filters, or other techniques.

In our view, the detailed step-by-step presentation is partic-
ularly useful for the student or for the beginner in this kind of
problem, first because it helps clarify the solutions and allows a
better grasp of the problem, but also because of the general as-
pects of such a method, which can be implemented to different
sources of interest in geophysical problems.
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Figure 9 – Real component of the electric field in the xz plane for the model without the reservoir.

Figure 10 – Imaginary component of the electric field in the xz plane for the model without the reservoir.
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Figure 11 – Real component of the current density vector field in the xz plane for the model without the reservoir.

Figure 12 – Imaginary component of the current density vector field in the xz plane for the model without the reservoir.
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Figure 13 – Comparison of the real component of the electric field in the xz plane in the models with and without the reservoir.

ACKNOWLEDGEMENTS
The authors thank the support given by the National Institute of
Science and Technology of Petroleum Geophysics – INCT/GP
and by the National Council for the Scientific and Technological
Development – CNPq. Régis is recipient of the CNPq research
scholarship.

REFERENCES

ANDERSON WL. 1979. Numerical integration of related Hankel trans-
forms of orders 0 and 1 by adaptive digital filtering. Geophysics, 44:
1287–1305.

ARFKEN G. 1985. Mathematical methods for physicists. 3rd ed., Aca-
demic Press. 985 pp.

CONSTABLE S & SRNKA L. 2007. An introduction to marine controlled-
source electromagnetic methods for hydrocarbon exploration. Geo-
physics, 72: WA3–WA12.

KAUFMAN A & DASHEVSKY YA. 2003. Principles of Induction Logging.
Elsevier, volume 38 of “Methods in Geochemistry and Geophysics”, 11:
605–625.

KONG FN, JOHNSTAD SE, RØSTEN T & WESTERDAHL H. 2008. A 2.5D
finite-element-modeling difference method for marine CSEM modeling
in stratified anisotropic media. Geophysics, 73: F9–F19.

Revista Brasileira de Geof́ısica, Vol. 33(2), 2015



�

�

“main” — 2016/6/6 — 15:39 — page 293 — #17
�

�

�

�

�

�

SANTOS WG & RÉGIS CRT 293
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