
�

�

“main” — 2018/2/7 — 17:16 — page 175 — #1
�

�

�

�

�

�

Revista Brasileira de Geof́ısica (2016) 34(2): 175-192
© 2016 Sociedade Brasileira de Geof́ısica
ISSN 0102-261X
www.scielo.br/rbg

SINGULAR VALUE SELECTION AND GENERALIZED CROSS VALIDATION IN MULTI-FREQUENCY
SEISMIC DIFFRACTION TOMOGRAPHY FOR CO2 INJECTION MONITORING

Caio Jean Matto Grosso da Silva1 and Amin Bassrei2

ABSTRACT. Regardless of whether the cause of the greenhouse effect is anthropogenic, carbon dioxide (CO2 ) exacerbates global warming because it contributes
directly to the increased temperature of the planet. In a geologic context, CO2 can occur in conjunction with porous oil reservoirs. Thus, what should be done with CO2?

Two techniques have shown great potential. The first is carbon capture and storage (CCS), which involves injecting gas into saline aquifers, depleted reservoirs and coal
seams. The second technique is enhanced oil recovery (EOR), which involves injecting CO2 into heavy oil reservoirs to reduce the oil’s viscosity and to increase the

amount recovered. Once initiated, the injection of carbon dioxide requires periodic monitoring. In this paper, we propose the use of well-to-well diffraction tomography
with a multi-frequency approach for mapping the velocity changes associated with CO2 injection in a reservoir. Diffraction tomography is considered to be an ill-posed

inverse problem. To avoid this situation, we separately applied two techniques. The first uses an optimal number of singular values and discards the smallest singular

values to increase the stability of the inverse problem. The second method is based on regularization by derivative matrices, and we used generalized cross validation
to select the optimal parameter. The results obtained for the multi-frequency approaches have proven reliable based on the applied synthetic models. Moreover, the

selection of singular values and regularization by matrices methods were demonstrated to be valid for seismic diffraction tomography.

Keywords: seismic diffraction tomography, reservoir monitoring, Gassmann’s equation, CO2 injection.

RESUMO. Independentemente se a causa do efeito de estufa é antropogênico, o dióxido de carbono (CO2 ) agrava o aquecimento global porque contribui diretamente
para o aumento da temperatura do planeta. Em um contexto geológico, o CO2 pode ocorrer em conjunto com reservatórios de petróleo porosos. Assim, o que deve ser

feito com CO2? Duas técnicas têm mostrado grande potencial. A primeira é a captura e armazenamento de carbono (CCS), que envolve a injeção de gás em aquı́feros
salinos, reservatórios esgotados e camadas de carvão. A segunda técnica é a recuperação avançada de petróleo (EOR), que envolve a injeção de CO2 em reservatórios

de óleo pesado para reduzir a viscosidade do óleo e para aumentar a quantidade recuperada. Uma vez iniciada, a injeção de dióxido de carbono exige um acompanha-

mento periódico. Neste trabalho, propomos o uso da tomografia de difração, na geometria de aquisição poço a poço, com uma abordagem multifrequência para mapear
as mudanças de velocidade associadas à injeção de CO2 em um reservatório. A tomografia de difração é considerada como um problema inverso mal posto. Para

atenuar essa situação, duas técnicas foram aplicadas separadamente. A primeira usa um número ótimo de valores singulares e descarta os menores valores singulares
para aumentar a estabilidade do problema inverso. A segunda técnica é baseada na regularização por matrizes de derivadas, onde foi utilizada a validação cruzada

generalizada para selecionar o parâmetro ótimo de regularização. Os resultados obtidos para a abordagem multifrequência apresentam-se confiáveis com base nos

modelos sintéticos estudados. Além disso, a seleção de valores singulares e a regularização por matrizes de derivadas mostraram-se válidas em tomografia sı́smica
de difração.

Palavras-chave: tomografia sı́smica de difração, monitoramento de reservatórios, equação de Gassmann, injeção de CO2 .
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INTRODUCTION

The injection of CO2 into porous reservoirs is a recent technique
that reduces the emission of this gas into the atmosphere. Two
types of CO2 injection exist: carbon capture and storage (CCS),
which consists of CO2 storage in saline aquifers, and enhanced
oil recovery (EOR), which involves gas injection to increase the
recovery rate in reservoirs with heavy oil. In this context, diffrac-
tion tomography can estimate variations in the velocity field. We
intend to validate its use as an aid in the monitoring of injection
fluid in a reservoir.

Diffraction tomography is an inversion technique that allows
the estimation of the velocity distribution in the subsurface. The
input data are the amplitudes of seismic signals recorded in the re-
ceivers. Diffraction tomography is a nonlinear problem that can be
solved, for example, by the Born approximation, although this is
only valid when there is little variation in the speed of the medium.
In addition, diffraction tomography is an ill-posed inverse prob-
lem, requiring the use of certain types of adjustment or regulariza-
tion to reduce the ill-conditioned nature of the problem. Moreover,
for the study of substitution fluids within a reservoir, we must use
Gassmann’s equation, which is an important tool for estimating
velocity changes in a reservoir due to the substitution of a given
fluid for another. The image, resulted from the subtraction be-
tween two stages, shows the CO2 migration, that is, to what phys-
ical extent and to what saturation level the CO2 front is evolving
within the layer or layers of interest. This procedure categorizes
geophysical tomography as a reservoir monitoring tool, which is,
in general more precise quantitatively and with greater resolution
than the seismic tomography results in a reservoir characterization
application.

A previous work (Santos et al., 2009) used single-frequency
diffraction tomography with trigonal meshes to monitor CO2
leakage, whereas we also desired to estimate the approximate
shape of the layer containing the CO2. In this work, we used a
multi-frequency approach with rectangular blocks without a priori
assumptions, and the velocity change is calculated via the vari-
ation in petrophysical parameters. We chose a selection of sin-
gular values to improve the ill-conditioned nature of the inverse
matrix. The optimum number of singular values was determined
by energy and entropy criteria with respect to the estimated pa-
rameters in the model. The RMS error between the true and esti-
mated model parameters was computed to validate these criteria
for energy and entropy. The second approach to adjust or reg-
ularize the ill-posed inverse problem involved regularization via
derivative matrices (Twomey, 1963; Tikhonov & Arsenin, 1977).
We employed generalized cross validation (GCV) to determine the

optimum regularization parameterλ. Other methodologies can be
used to determine λ such as the L-curve and theΘ-curve (Santos
& Bassrei, 2007).

The objective of this study is to validate the application of
well-to-well diffraction tomography to monitor the injection of
CO2 in sandstone reservoirs and to obtain more representative
results for saturation values, even if the results are qualitative.
Therefore, numerical simulations were performed with data con-
taminated with noise.

This article is divided as follows: First, the theory of inver-
sion and related problems are presented, and the selection of sin-
gular values and regularization by derivative matrices are com-
bined in the GCV method to choose the regularization parame-
ter. Second, Gassmann’s equation is introduced to address the
effects of the substitution of fluids in a reservoir. Then, the theory
of diffraction tomography and its limitations due to the use of the
Born approximation are also introduced. A matrix formulation and
the multi-frequency approach to diffraction tomography are pre-
sented. Then, the results of the numerical simulations, involving
four stages of CO2 saturation and water within the reservoir, are
presented and discussed.

Inverse Problems

Inverse problems are generally ill-posed; that is, either a solution
does not exist or, if a solution does exist, then it is not unique or
is not stable (or both). In the analysis of physical phenomena, we
can classify the relationship between data parameters and model
parameters into two classes: (i) direct modeling, where the data
are predicted from a given model, and (ii) inverse modeling, where
the model parameters are determined from observed data.

Inverse problems, either linear, piecewise linear or linearized,
can be formulated as a linear system of equations (Menke, 1989):

d = Am, (1)

where d is the data parameter vector,m is the model parameter
vector andA is aM ×N matrix that relates theM data param-
eters to theN model parameters.

Assuming that the matrixA is known and invertible, we can
find the solution as follows:

m = A−1d. (2)

The matrixA−1 will exist if the matrixA is square and has full
rank. Because this situation is a very rare in geophysics, the initial
problem must be reformulated to obtain a feasible solution.
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Singular Value Decomposition and Singular Value
Selection
Singular value decomposition (SVD) is a tool for estimating the
inverse of a matrix that is not square and/or does not have full
rank. The SVD technique comprises a decomposition of a given
matrixA in three other matrices, which are given by the following:

A =UΣVT, (3)

whereΣ is a diagonal matrix having the singular values of matrix
A arranged in descending order and the matricesU andV are
orthonormal matrices. Thus, from the properties of the orthonor-
mal matrices andΣ, we can determine a generalized inverse ma-
trix (Penrose, 1955), as follows:

A+ =VΣ+UT, (4)

whereΣ+ is a diagonal matrix containing the reciprocals of the
singular values of the matrixA.

The stability of a matrix can be measured by the ratio between
its largest and its smallest singular values. Clearly, very small sin-
gular values will lead to greater instability in the inverse problem.
In this work, the smallest singular values, which compromise the
quality of the solution, are removed.

The energy of the model shows the stability of a particular
solution (Silva and Bassrei, 2009) and can be written as follows:

E =

N∑
i=1

(mesti )
2, (5)

where mesti is the i-th estimated model parameter and N is
the number of model parameters.

The concept of entropy was developed by the German Rudolf
Clausius, in the context of classical thermodynamics, and later the
Austrian physicist Ludwig Boltzmann gave the statistical interpre-
tation of entropy. It can be defined in several forms. According to
the increase in entropy, the universe and all the closed systems,
tend naturally to deteriorate and lose the clearness, to change from
a state of minimum probability to another of maximum probabil-
ity, from a state of organization and differentiation, in which exist
forms and distinctions, to a state of chaos. In the contingent uni-
verse, the order is less probable. The role of entropy is in such a
way that Jaynes (1957), considers it a primitive physical concept,
even more fundamental than the concept of energy. We make use
of entropy in the framework of information theory (IT) as defined
by Shannon in 1948 (Shannon & Weaver, 1949), and given by the
following equation:

H =

N∑
i=1

mesti log

(
1

mesti

)
, (6)

where, again,mesti is the i-th estimated model parameter.
It is interesting to find the distribution which maximizes the

entropy. Because entropy is a measure of uncertainty, the proba-
bility distribution which generates maximum uncertainty will have
maximum entropy. In the absence of prior information, Jaynes
(1957), stated that the maximum entropy is the less biased esti-
mate from a given information.

The RMS error between the true and estimated model param-
eters is given by the following equation:

Em =
1

N

√√√√ N∑
i=1

(mtruei −mesti )2, (7)

where mtruei is the i-th true model parameter and mesti is the
estimated model parameter. The Em estimator will be used for
quality evaluation of the inversion results. It will not be used for
the choice of the optimal number of singular values because the
parametermtruei is unknown in real situations.

Regularization by Derivative Matrices and Generalized
Cross Validation

One way to improve the stability of the solution is minimally limit-
ing the variation in model parameters. One can use the difference
between physically adjacent model parameters as an approxima-
tion of the first derivative. The sum of these values can be defined
as the flatness l1 of the solution:

l1 =

⎛
⎜⎜⎜⎜⎝

−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0

...
...

...
...

. . .
...

...
0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

m1
m2

...
mN

⎞
⎟⎟⎟⎟⎠

= D1m.

(8)

Alternatively, one can choose to use the roughness l2 of
the model parameters by using an approximation of the second
derivative matrixD2:

l2 =

⎛
⎜⎜⎜⎜⎝

1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...
0 0 0 0 · · · 0 1 −2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

m1
m2

...
mN

⎞
⎟⎟⎟⎟⎠

= D2m.

(9)
The value of Ln, either flatness (n = 1) or roughness

(n = 2), related to the model parameter is as follows:

Ln = ||ln||22 = (Dnm)T (Dnm), (10)
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where n is the order of the derivative matrix. One can then define
an objective function Φ(m) (Bassrei & Rodi, 1993) as follows:

Φ(m) = eTe. (11)

Using the relation e = d−Am and substituting equa-
tion (10) into equation (11), we obtain the following:

Φ(m) =

(d−Am)T (d−Am) + λ(Dnm)T (Dnm),
(12)

where λ is a positive constant known as the regularization param-
eter, which represents the regularization intensity that is applied
to provide a satisfactory solution. When λ = 0, equation (12) is
the least squares method. If λ �= 0 and the regularization order
is zero, i.e., L0 = ||l0||22 = (D0m)T (D0m), the equation
becomes the so-called damped least squares method.

Minimizing the objective function shown in equation (12),
we obtain the following:

∂Φ(m)

∂m
=

2ATAm
est − 2ATd+ 2λDTnDnmest.

(13)

Setting this equation equal to zero, we can find the value of
mest that produces the smallest error:

mest =
(
ATA+ λDTnDn

)−1
ATd. (14)

The generalized cross validation method was proposed by
Craven & Wahba (1979) as a tool for choosing the optimal value
of parameter λ. The GCV estimate comes from ordinary cross
validation (OCV), which is based on the concept of leaving-one-
out, i.e., removing an element of the data vector and calculating
the regularized solution that minimizes the objective function. The
OCV estimate for λ is defined as the value that minimizes the
following function:

V0(λ) =
1

M

M∑
k=1

[
dobsk − dk(mkλ)

]2
, (15)

where the index k corresponds to the k-th element that was re-
moved from the data vector. If the value of λ is optimal, then the
k-th element of the solution (model parameter vector) will predict
the failure; that is, mkλ is the solution that minimizes the error.
Considering the linear relationship, the influence matrix is defined
as follows (Craven & Wahba, 1979):

Amλ = B(λ)d. (16)

One way to evaluate V0 (λ) more efficiently, without the need to
solve the inverse problem for each observation value, is presented
by Wahba (1990) in the form of the following equation:

M∑
k=1

[
dobsk − dk(mkλ)

]
=

M∑
k=1

dobsk − dk(mλ)
1− bkk(λ) , (17)

where

bjj(λ) =
dk(m)− dk(mkλ)
dobsj − dk(mkλ)

, (18)

bjj being the j-th element of the main diagonal of the influence
matrixB(λ). Therefore,

V0(λ) =
1

M

M∑
k=1

[
dobsk − dk(mλ)

]2
[1− bkk(λ)]2

. (19)

The GCV function is obtained based on the following relation-
ship: μ1(λ) = 1/M

∑M
i=1 bii(λ) = (1/M)Tr[B(λ)].

Thus,

V (λ) =
1

M

M∑
k=1

[
dobsk − dk(mλ)

]2
[1− μ1(λ)]2

=
||dobs− d(mλ)||[
1
M Tr(I −B(λ))

]2 ,
(20)

if
mλ =

(
ATA+ λDTnDn

)−1
ATd

obs
, (21)

where the matrixB(λ) is defined as

B(λ) = A
(
ATA+ λDTnDn

)−1
AT. (22)

Seismic Diffraction Tomography

The propagation of a certain scalar perturbation Ψ(r, t) through
a medium with constant density and variable velocity given by
c(r) can be modeled by the wave equation (Devaney, 1984;
Harris, 1987; Wu & Toksöz, 1987):

∇2Ψ(r, t) = 1

c2(r)

∂2Ψ(r, t)

∂t2
, (23)

where r is the position vector within the considered model, t
represents time and ∇2 is the Laplacian operator. We can use
harmonic waves in time represented by exponentials to find a so-
lution to the wave equation (Lo & Inderwiesen, 1994):

Ψ(r, t) = e−jωtP (r, t), (24)

where P (r, t) is the wave amplitude defined as a function of
angular frequency.

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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Substituting equation (24) into equation (23), we have the
Helmholtz equation, which describes the wave scattering and is
given by the following:

∇2P (r, ω) + κ2(r, ω)P (r, ω) = 0. (25)

This equation is also found by the application of Fourier
transform on the wave equation in the time domain. The param-
eter κ(r, ω) is the magnitude of the wavenumber at position r
and is defined by the following:

κ(r, ω) =
ω

c(r)
. (26)

Note that the wavenumber and wave amplitude in equation (25)
depend on the value of the angular frequency ω. However, to sim-
plify the notation, we will write P (r, ω) and κ(r, ω) as P (r)
and κ(r), respectively, but keep in mind that there is a depen-
dence on the angular frequency ω.

The Lippmann-Schwinger equation is a nonlinear equation
which relates the data function PS(r) to the model function
M(r). The former function is called the scattered wavefield. The
scattering problem consists of an incident wave, PI(r), that
propagates from the source within a medium with a constant back-
ground velocity, given by c0. The objective is to image the 2-D
medium A in which the velocity contrast is c(r). Any portion of
the medium where c(r) �= c0 will act as a secondary source and
will scatter the incident wavefield. The scattered wavefield trav-
els from the heterogeneity to the receivers, where it is registered.
Other approaches can also be used in situations where the back-
ground velocity is not constant, including methods such as those
of Dickens (1994) and Harris & Wang (1996), who considered a
layered medium.

The wavefield recorded by a receiver is the total field PT (r),
which is the sum of the incident and the scattered wavefields:

PT (r) = PI(r) + PS(r). (27)

For a constant density model, equation (25) describes the propa-
gation of the total wavefield:[∇2 + κ2(r)]PT (r) = 0. (28)

The wavenumber associated with the medium with constant
background velocity is

κ0 =
ω

c0
. (29)

Thus, we can define κ2(r) as

κ2(r) = κ20 + κ
2
0M(r), (30)

where

M(r) =

[
c20
c2(r)

− 1
]
. (31)

The model function M(r) in equation (31) defines a devia-
tion from the constant wavenumber κ20; that is, if c(r) = c0 in
equation (31), thenM(r) = 0, and there is no scattering. From
equations (27), (28) and (30), we obtain the Helmholtz equation
for PS(r):
[∇2 + κ2(r)]PS(r) = κ20M(r) [PI(r) + PS(r)] . (32)

Solving equation (32) directly for PS(r) is a complicated
task. We can find an approximation to the solution using the prop-
erties of Green’s function (Lo & Inderwiesen, 1994). If G(r) is
Green’s function, i.e., the field registered at the observation point
r and caused by a unitary delta function source at r′, then the
field at r caused by a distribution of delta function sources is the
integral of G(r) over the entire region occupied by the source.
The solution of equation (32) at r for a unitary source generated
in r′ with wavenumber κ0 must first be calculated:[∇2 + κ2(r)]G(r|r′) = −δ(r− r′). (33)

Green’s function G(r|r′) represents the solution at the po-
sition r for an impulse at r′, which corresponds to the scatter
point (Lo & Inderwiesen, 1994). The solution of equation (33) for
a two-dimensional domain is given by the following equation:

G(r|r′) = j
4
H
(1)
0 (κ0|r− r′|) , (34)

where H(1)0 (•) is the Hankel function of the first kind and zero
order. With a known Green’s function in the equation (33), the
solution of equation (32) is found by multiplying Green’s function
by the negative of the source term in equation (33) and integrating
the region in whichM(r) is different from zero:

PS (r) = −κ20
∫
A

G(r|r′)M(r′) [PI (r′) + PS(r′)]dr′ (35)

This solution, based on Green’s function, is known as the
Lippmann-Schwinger integral equation (Lo & Inderwiesen, 1994).
However, this equation presents a nonlinear relationship that is
based on the fact that the scattered wavefield PS(r) is present
within the integral of the Lippmann-Schwinger integral equation.

The Born approximation is one way to linearize the Lippmann-
Schwinger integral equation and involves assuming that the am-
plitude of the scattered wavefield PS(r) is much smaller than the
incident wavefield PI(r):

PS(r)� PI(r). (36)

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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Hence, we can simplify equation (35) by considering the follow-
ing approximation:

PS(r) + PI(r) ≈ PI(r). (37)

Therefore, the Lippmann-Schwinger equation can be approxi-
mated as follows:

PS(r) ≈ −κ20
∫
A

G(r|r′)M(r′)PI(r′)dr′. (38)

The data function PS(r) and the model functionM(r) are now
linearly related. Because the primary source is a negative impulse
located at rs, we can write the incident wavefield using Green’s
function (Lo & Inderwiesen, 1994):

PI(r) = G(r|rs). (39)

Substituting equation (39) into equation (38), we obtain the fol-
lowing:

PS(rs, rr) ≈ −κ20
∫
A

M(r′)G(r′|rs)G(rr |r′)dr′, (40)

where PS(rs, rr) is the scattered wavefield registered at rr.
Equation (40) shows the Lippmann-Schwinger integral equation
linearized through the Born approximation. However, the Born
approximation requires a weak scattering; in other words, there
should be a low velocity contrast.

Diffraction Tomography Matrix Formulation

As observed above, the Born approximation allows us to write
a linear relationship between the scattered field PS(rs, rr)
and the model functionM(r):

PS(κ, rs, rr) ≈ −κ2
∫
A

M(r′)G(r′|rs)G(rr|r′)dr′, (41)

where G(r′|rs) is Green’s function expressed as a Hankel func-
tion of the first kind and zero order. Substituting equation (34)
into equation (41), we obtain the following:

PS(κ, rs, rr) ≈ κ
2

16

∫
A

M(r′)H(1)0

× (κ|r′ − rs|)H(1)0 (κ|rr − r′|)dr′.
(42)

It is necessary to establish a means to characterize the velocity
that is continuous in space and uses a finite number of coefficients
(Rocha Filho et al., 1996). As in traveltime tomography, we pa-
rameterize the area through a finite number of blocks I. Because

the seismic velocity is constant inside each block, the object func-
tionmi will also be constant within each block:

M(r) =

I∑
i=1

miφi(r
′), (43)

where φi(r′) is a basis function. Our basis function is defined as
φi(r

′) = 1 when r′ is within the area i, and φi(r′) = 0 when
it is outside the area. Substituting equation (43) in the equation
(41), we obtain the following:

PS(κ, rs, rr) ≈ κ
2

16

∫
A

I∑
i=1

miφi(r
′)×

H
(1)
0 (κ|r′ − rs|)H(1)0 (κ|rr − r′|)dr′.

(44)

There areM sources located at rsm(1 ≤ m ≤ M) and N
receptors located at rrn(1 ≤ n ≤ N). In our multi-frequency
approach, there are L wavenumbers κ (1 ≤ l ≤ L), which
produces the following equation:

PS(κl, rsm, rrn) ≈ κ
2

16

∫
A

I∑
i=1

miφi(r
′)×

H
(1)
0 (κ|r′ − rsm|)H(1)0 (κ|rrn − r′|)dr′.

(45)

We useW as an auxiliary variable:

Wlmni =

κ2

16

∫
A

φi(r
′)H(1)0 (κl|r′ − rsm|)H(1)0 (κ|rrn − r′|)dr′.

(46)

Therefore, the scattered field is discretized so that the cells are
much smaller than the wavelength of the incident wavefield, and
the continuous integral is substituted by a 2-D sum in space:

Wlmni =
κ2

16

∑
A

φi(x
′, z′)H(1)0 (κl|(x′, z′)

− (xsm, zsm)|)H(1)0 (κl|(x′, z′)− (xrn, zrn)|)ΔxΔz.
(47)

Then, we rewrite the initial problem with a system of linear
equations:

Ps,lmn =
I∑
i=1

Wlmnimi, (48)

which can be written in matrix notation as

P =Wm (49)

For the wavefield propagation in our seismic numerical ex-
periment, we used the finite difference method. The modeling
consists of the use of discrete approximations of the space and
time derivatives of the wave equation. In this study, we used the
second-order approximation for time and the fourth-order approx-
imation for space.
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Gassmann’s Equation, Fluids and Carbon Dioxide

Gassmann’s equation (Gassmann, 1951) is a valuable tool in the
study of reservoirs because it allows the possibility of modeling
several scenarios with different fluid types and fluid saturations.
The equation relates the bulk modulus K of a given rock to the
pore, frame and fluid properties:

Ksat = Kdry +

(
1− KdryKmin

)2
φ

Kfluid
+ (1−φ)
Kmin

− Kdry
K2min

, (50)

where Ksat is the bulk modulus of the saturated rock, Kfluid
is the bulk modulus of the fluid,Kdry is the bulk modulus of the
dry rock, Kmin is the bulk modulus of the mineral and φ is the
rock porosity. The shear modulus is not affected by the presence
of fluids; thus,

μsat = μdry, (51)

where μsat is the shear modulus of the saturated rock and
μdry is the shear modulus of the dry rock. Gassmann’s equa-
tion is based on various assumptions (Wang, 2001): (i) The rock
is uniform and isotropic, and the pore space is completely con-
nected; (ii) the rock is composed of a single type of mineral;
(iii) the equation is valid for low frequencies; and (iv) the fluid
does not interact with the rock. Smith et al. (2003) showed that
the bulk modulus of a rock composed of a single type of mineral
can be calculated from the Hill’s average.

From the bulk modulus of the saturated rock modeled with the
Gassmann’s equation, we can estimate the velocity of the saturated
reservoir with any type of fluid:

Vp =

√
Ksat +

4
3μ

ρ
. (52)

The main purpose of reservoir characterization and monitor-
ing is to map and delineate the distribution of each fluid type
in the porous media. Thus, to succeed, the seismic data should
have high-enough resolution to image different compressibility
values within the reservoir (Wang, 2001). Therefore, a thorough
understanding of the seismic properties of the porous media is
important.

Saline reservoirs are a possible target for CO2 injection, and
this technique, carbon capture and storage, has been applied suc-
cessfully in various parts of the world. However, the CO2 injection
for storage purposes requires planning the operating techniques
and predicting the behavior of the system, which involves both
rock and fluids. Schiitt et al. (2005) presented several questions
that must be answered before the injection process: (i) What is

the long-term fate of the CO2 and how will it mix with the brine?
(ii) Will the CO2 precipitate or will it dissolve the reservoir min-
erals, changing the original properties and interfering with the
geomechanical system? (iii) Can geophysical methods provide
reliable data on the saturation and reservoir pressure estimates?
To safely inject CO2, feasibility studies must address these ques-
tions. In this context, the current work is presented as a study of
the feasibility of diffraction tomography as a tool for monitoring
injected CO2.

Numerical Simulations

The model used in this study corresponds to a situation in which a
reservoir is completely saturated with water. We used the method
of finite differences to model the wavefield recorded at the re-
ceivers. The medium illustrated in Figure 1 was parameterized in
a 30 × 30 grid, resulting in 900 blocks. The acquisition geom-
etry used is well-to-well; 15 sources are located in the left-side
borehole, and 30 receivers are located in the right-side borehole.
This configuration would result in 450 equations, but the values
of the scattered field are complex; thus, we separated the real and
imaginary parts. For each frequency, we have 900 (2 times 450)
data parameters or equations. We employed the multi-frequency
approach to obtain more data. For this set of simulations, we used
four frequencies: 90, 105, 120 and 135 Hz. Thus, in the matrix
A,N = 900, andM = 3600.

Figure 1 – First stage true model parameters with 100% of water saturation,
before the injection of CO2 in the reservoir. The color bar represents the P-wave
velocity in m/s.

As discussed previously, inverse problems are generally ill-
posed, and diffraction tomography is not an exception. The ill-
conditioned nature of the inverse problem is analysed using two
methods: (i) the selection of singular values, where the optimum
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Table 1 – Reservoir properties before injection, whereKdry is the bulk modulus of the dry rock,Kquar is the
bulk modulus of quartz,Kclay is the bulk modulus of clay,Kfeld is the bulk modulus of feldspar, ρquar is the
density of quartz, ρclay is the density of clay, ρfeld is the density of feldspar, φ is the porosity andμ is the shear
modulus. The values of different bulk moduli and the shear modulus are given in GPa and the densities in g/cm3.

Static reservoir properties

Kdry Kquar Kclay Kfeld ρquar ρclay ρfeld φ μ

7.4 10.5 19.8 30.6 2.65 2.58 2.63 0.22 4.2

Table 2 – Reservoir properties during injection, where SH2O is the water saturation, SCO2 is the CO2 saturation,
KCO2 is the bulk modulus of CO2 ,Ksat is the bulk modulus of the saturated rock, ρsat is the density of the satu-
rated rock and Vp is the P-wave velocity. The values of different bulk moduli are given in GPa, the densities in g/cm3

and the P-wave velocity in m/s. The water density is 1 g/cm3 , and the bulk modulus of water is 2.25 GPa.

Reservoir properties during injection

SH2O SCO2 KCO2 Ksat ρCO2 ρsat Vp

100% 0% 0.25 13.60 0.71 2.27 2900

70% 30% 0.25 9.43 0.71 2.25 2584

40% 60% 0.25 8.62 0.71 2.23 2523

number is determined by energy and entropy criteria, and (ii) the
regularization by derivative matrices, where the optimum param-
eter is chosen using generalized cross correlation. To evaluate
the robustness of the algorithm, we added three levels of Gaus-
sian noise to the scattered wavefield: 0.05, 0.10 and 0.15, where
these numbers represent the amplitude of the quasi-random se-
quence. The estimated tomograms shown in this paper were ob-
tained when the scattered field was corrupted with the factor 0.05.

Figure 1 shows the geological model considered in this work.
The model includes six sandstone reservoirs that are fully satu-
rated with water and separated by layers of shale. CO2 was in-
jected into the fifth layer from the top. This layer is considered to
be composed of quartz, feldspar and clay in proportions of 65%,
20% and 15%, respectively. Other minerals have been ignored
for simplicity. Table 1 shows the main parameters of the reservoir.
The first stage is the pre-injection stage, which is very important
in understanding the geological context of the area and, in con-
junction with subsequent stages results, can be used to track the
path of the gas within the layer.

In the subsequent stages, we considered different water and
CO2 saturation levels within the reservoir. Table 2 shows the sat-
uration values considered for these simulations, as well as their
influence on the elastic parameters.

The multi-frequency approach resulted in the following re-
sults for the first stage: Figure 2 shows the energy of the esti-
mated model parameters, and Figure 3 shows the entropy of the
estimated model parameters. Both curves feature a region of max-

imum stability, in which the energy and entropy become unstable.
Figure 4 shows the RMS error between the true and estimated
model parameters, which confirms the existence of a critical point
in these two figures. The optimal quantity was found to be 545
singular values. Figure 5 shows the estimated model parameters.
Figure 6 shows the curve of the GCV, and the optimal regular-
ization parameter that minimizes the GCV curve corresponds to
10−1. Figure 7 presents the estimated model parameters with
regularization by derivative matrices for λ = 10−1.

Figure 2 – First stage energy of the estimated model parameters, as a function
of quantity of singular values used to compute the pseudo-inverse matrix. Each
curve represents a different noise level added to the scattered field.

For the second stage, we assigned the aquifer a distribution
of 0% gas and 100% water. Figure 8 illustrates the ultimate dis-
tribution of water and gas in the reservoir. Notice that there is a

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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Figure 3 – First stage entropy of the estimated model parameters, as a function of quantity of singular values used to
compute the pseudo-inverse matrix. Each curve represents a different noise level added to the scattered field.

Figure 4 – First stage RMS error between true and estimated model parameters, as a function of quantity of singular values
used to compute the pseudo-inverse matrix. Each curve represents a different noise level added to the scattered field.

smaller part of the layer (in red) with 30% gas and 70% water.
The velocity values for the two types of saturations are shown in
Table 2. We chose 650 singular values (figures not shown due to
space limitations). Figure 9 shows the estimated model parame-
ters, and Figure 10 shows the residual model parameters between
stages 1 and 2, which are used to analyze the fluid flow behavior.
The GCV curve for the second stage, not shown, indicates that
the optimal parameter cutoff is again 10−1. Figure 11 shows the
estimated model with the optimal regularization parameter. Fig-
ure 12 shows the residual estimated model parameters between
stages 1 and 2. Figure 12 is smoother that Figure 10, which is

not surprising because this is characteristic of the regularization
method.

For the third stage, besides the two conditions already de-
scribed for Figure 8, a portion of the layer presents a third con-
dition, with 60% gas and 40% water. Figure 13 illustrates the
distribution of water and gas in the reservoir. The velocity val-
ues for the three types of saturations are shown in Table 2. The
curves indicated 580 singular values (figures not shown). Fig-
ure 14 shows the estimated model parameters. Figures 15 and 16
show the residual model parameters between stages 1 and 3 and
between stages 2 and 3, respectively.

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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Figure 5 – First stage estimated model parameters by selection of singular values,
using 545 singular values. The color bar represents the P-wave velocity in m/s.

Figure 6 – First stage GCV curve as a function of the regularization parameter. Each curve represents a different noise level added to the scattered field.

Figure 7 – First stage estimated model parameters via regularization by derivative matrices;
regularization parameter λ = 10−1. The color bar represents the P-wave velocity in m/s.
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Figure 8 – Second stage true model parameters with different levels of water and CO2
saturation in the reservoir. The color bar represents the P-wave velocity in m/s.

Figure 9 – Second stage estimated model parameters by selection of singular values,
using 650 singular values. The color bar represents the P-wave velocity in m/s.

Figure 10 – Residual estimated model parameters between the first and second stages
by selection of singular values. The color bar represents the P-wave velocity in m/s.

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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Figure 11 – Second stage estimated model parameters via regularization by derivative matrices;
regularization parameter λ = 10−1. The color bar represents the P-wave velocity in m/s.

Figure 12 – Residual estimated model parameters between the first and second stages via
regularization by derivative matrices. The color bar represents the P-wave velocity in m/s.

Figure 13 – Third stage true model parameters with different levels of water and CO2
saturation in the reservoir. The color bar represents the P-wave velocity in m/s.
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Figure 14 – Third stage estimated model parameters by selection of singular values,
using 580 singular values. The color bar represents the P-wave velocity in m/s.

Figure 15 – Residual estimated model parameters between the first and third stages by
selection of singular values. The color bar represents the P-wave velocity in m/s.

The GCV curve for the third stage, again not shown, indicates
that the optimal parameter cutoff is also 10−1. Figure 17 shows
the estimated model with the optimal regularization parameter.
Figures 18 and 19 show the residual model parameters between
stages 1 and 3 and between stages 2 and 3, respectively. Figure
18 is very similar to Figure 15, and Figure 19 is very similar to
Figure 16.

Finally, using the matrix multi-frequency approach, we ana-
lyzed the results of the last stage, in which the aquifer was as-
signed a distribution of 60% gas and 40% water (illustrated in
Figure 20). Figure 21 shows the estimated model parameters
obtained by the selection of singular values (620 singular val-
ues). We then compared the last stage to all the others: Figure 22
shows the residual model parameters between stages 1 and 4,

Figure 23 between stages 2 and 4, and Figure 24 between stages 3
and 4. The GCV curve for the fourth and final stage indicates
that the optimal parameter cutoff is also 10−1. Figure 25 shows
the estimated model with the optimal regularization parameter.
Additionally, the last stage was also compared to all the others for
the regularization approach: Figure 26 shows the residual model
parameters between stages 1 and 4, Figure 27 between stages 2
and 4, and Figure 28 between stages 3 and 4. As before, we
compared the images provided by the two methodologies: Fig-
ure 22 was compared to Figure 26, Figure 23 to Figure 27, and
Figure 24 to Figure 28. The results are quite similar, and the
figures from the regularization method are smoother. However,
in the comparison of stages 3 and 4, the selection of singular
values provides a cleaner image.

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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Figure 16 – Residual estimated model parameters between the second and third stages by
selection of singular values. The color bar represents the P-wave velocity in m/s.

Figure 17 – Third stage estimated model parameters via regularization by derivative matrices;
regularization parameter λ = 10−1. The color bar represents the P-wave velocity in m/s.

Figure 18 – Residual estimated model parameters between the first and third stages via
regularization by derivative matrices. The color bar represents the P-wave velocity in m/s.
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Figure 19 – Residual estimated model parameters between the second and third stages via
regularization by derivative matrices. The color bar represents the P-wave velocity in m/s.

Figure 20 – Fourth stage true model parameters with different levels of water and CO2
saturation in the reservoir. The color bar represents the P-wave velocity in m/s.

Figure 21 – Fourth stage estimated model parameters by selection of singular values,
using 620 singular values. The color bar represents the P-wave velocity in m/s.
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Figure 22 – Residual estimated model parameters between the first and fourth stages
by selection of singular values. The color bar represents the P-wave velocity in m/s.

Figure 23 – Residual estimated model parameters between the second and fourth stages
by selection of singular values. The color bar represents the P-wave velocity in m/s.

Figure 24 – Residual estimated model parameters between the third and fourth stages
by selection of singular values. The color bar represents the P-wave velocity in m/s.
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CONCLUSIONS

Gassmann’s equation can be used to model the velocity changes
associated with a substitution fluid inside of a reservoir. In con-
junction with Gassmann’s equation modeling results, we used
a multi-frequency approach to diffraction tomography, which is
an ill-posed inverse problem. To obtain satisfactory results, the
ill-posed nature of the problem was minimized by the selection
of singular values in the construction of the generalized inverse
matrix and by regularization via derivative matrices.

Figure 25 – Fourth stage estimated model parameters via regularization by
derivative matrices; regularization parameter λ = 10−1. The color bar rep-
resents the P-wave velocity in m/s.

Figure 26 – Residual estimated model parameters between the first and fourth
stages via regularization by derivative matrices. The color bar represents the
P-wave velocity in m/s.

Seismic diffraction tomography proved to be a robust tool
for monitoring injected CO2 in sandstone reservoirs; fluid mi-
gration inside of the reservoir was identified and tracked based
on velocity variations detected during several stages of CO2
injection.

Figure 27 – Residual estimated model parameters between the second and
fourth stages via regularization by derivative matrices. The color bar represents
the P-wave velocity in m/s.

Figure 28 – Residual estimated model parameters between the third and fourth
stages via regularization by derivative matrices. The color bar represents the
P-wave velocity in m/s.

Both methods used to address the ill-posed nature of the in-
verse problem were effective, based on the satisfactory results
produced by both the optimal number of singular values and the
regularization via derivative matrices.

The energy and entropy criteria for the model parameters were
adequate for choosing the optimal number of singular values. This
finding was supported by the RMS error between the true and
estimated model parameters. This approach establishes the max-
imum number of singular values to be inserted into the con-
struction of the generalized inverse matrix. For the regulariza-
tion by derivative matrices technique, the GCV method proved to
be an effective approach for choosing the optimal regularization
parameter.
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