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CALCULATION OF THE TIDE CORRECTION USED IN GRAVIMETRY

Rogério Rodrigues Amarante and Jorge Luiz Alves Trabanco

ABSTRACT. In gravimetric surveys, the determination of the gravity at a specific point depends on field measurements and on the removal of the influence of the
tide. With the current development of more sensitive gravimeters, a review of the tide correction calculation process applied in gravimetry is necessary because values

that were once considered negligible may represent noise above the resolution of the new equipment. Much used until the present, the formulas shown in the study by
Longman (1959) were elaborated with constants (distances, masses, ellipsoidal parameters, and orbital values) that can now be calculated more accurately, as well as

conveniently rounded values for the time. The deformation of the crust caused by the terrestrial tide is another important factor that significantly affects the tide correction
calculation results, and the Earth’s heterogeneity causes this deformation to differ between regions. Much effort has been made to map different regions with the objective

of regionalizing the gravimetric factor; however, computer programs and even modern automated equipment still use fixed values. Therefore this paper aims to present

a review that quantifies the impacts on the calculation of the tide correction considering parameters not yet used.

Keywords: earth tide correction, gravimetric factor, gravimetry, gravimetric surveys.

RESUMO. Em levantamentos gravimétricos a determinação da gravidade de um ponto depende de medições em campo, bem como da remoção da influência
da maré. Com o desenvolvimento atual de gravı́metros mais sensı́veis, torna-se necessário uma revisão do processo de cálculo da correção da maré aplicado na

gravimetria, pois valores antes considerados despreźıveis podem representar ruı́dos acima da resolução dos novos equipamentos. Muito utilizada até o presente, às
fórmulas apresentadas no trabalho de Longman (1959), foram elaboradas com constantes (distâncias, massas, parâmetros elipsoidais, valores orbitais) hoje atualmente

reformuladas, bem como valores convenientemente arredondados para época. Outro ponto importante é a deformação causada na crosta pela maré terrestre que afeta
significativamente o resultado do cálculo da correção da maré, e que a heterogeneidade da Terra faz esta deformação ser diferente entre as regiões. Muito esforço tem

sido realizado no sentido de mapear diferentes regiões objetivando uma regionalização do fator gravimétrico, contudo softwares usados para redução gravimétrica e até

mesmos equipamentos automatizados ainda utilizam valores fixos. Portanto este trabalho se propõe apresentar uma revisão, quantificando o impacto no resultado de
fatores e influências ainda não considerados no cálculo da correção da Maré.

Palavras-chave: correção da maré terrestre, fator gravimétrico, gravimetria, levantamento gravimétrico.

Universidade Estadual de Campinas, Department of Transport, School of Civil Engineering, Architecture and Urban Design, Av. Albert Einstein 951, C.P. 6021, 13083-970

Campinas, São Paulo, Brazil. E-mails: rogerio.amarante@gmail.com; trabanco@fec.unicamp.br



�

�

“main” — 2018/3/27 — 10:29 — page 194 — #2
�

�

�

�

�

�

194 CALCULATION OF THE TIDE CORRECTION USED IN GRAVIMETRY

INTRODUCTION

The vector of the gravitational force −→g at a specific point P on
the Earth’s surface is the result of the forces of attraction of the
terrestrial mass

−→
F and the centrifugal force

−→
C applied to the

mass of the body stationed at that point. This gravitational accel-
eration is expressed in m/s2 or Newton1 by the SI (International
System of Units). For gravimetrics, however, the Gal (Si, 2006) is
used in homage to Galileo Galilei2 (Gemael, 1985).

The law of gravity proposed by Newton in 1687 states that any
particle of massm1 in the universe attracts another massm2 with
a force that depends on the product of the two masses and the in-
verse of the square of the distance d between them, as shown by
function 1: −→

F = G
m1m2

d2
(1)

where G is gravitational constant.
It is noteworthy that Newton’s Law is theoretical and refers to

particles. Its elucidation is still unknown, despite the fact that this
law can be observed and proven (Gemael, 2002).

Given that the Earth spins around its axis with an angular ve-
locity ω, there is a centrifugal force

−→
C that has a maximum value

of approximately 0.3% of gravity at the equator and that is zero at
the poles. Gravity−→g is the resultant vector between the attractive
and centrifugal forces, according to Eq. (2) (Fig. 1).

Figure 1 – Vector components of gravity. Figure adapted from Gemael (2002).

−→g = −→F +−→C (2)

where, without considering flattening of the ellipsoid (Gemael,
2002): −→

C = ω2r (3)

adopting the values:
ω = 7.292115×10−5 rad s−1 (Petit & Luzum, 2010);
r = R cosϕ;
R = (a2b)1/3;
ϕ latitude of a point P on the surface of the Earth;
r is the distance P to the center of the Earth;
a equatorial radius of the Earth;
b polar radius of the Earth;
ω angular velocity of the Earth.

Considering an ellipsoidal model, the theoretical gravity,
which is the normal gravity at the level of the ellipsoid derived in
numerical form from the Somigliana formula, would be (Moritz,
1980):

γ = γe
1 + k sin2 ϕ√
1− e2 sin2 ϕ

(4)

adopting the values:

γe = 978,032.67715 mGal (Torge, 2001);

γp = 983,218.63685 mGal (Torge, 2001);

f = 1/298.257222101 SIRGAS 2000 reference system, GRS80
ellipsoid (IBGE, 2005);

where:

k =
bγp

aγe
− 1 (5)

b = a(1− f) (6)

e2 =
a2 − b2
a2

(7)

with:
γ normal acceleration of gravity (theoretical gravity);
γe normal acceleration of gravity at the equator line;
γp normal acceleration of gravity at the poles;
f ellipsoidal flattening;
b minor semiaxis;
e2 square of the primary eccentricity.

The true gravimetric potential at points on the Earth cannot
be determined with a simple mathematical equation because the
heterogeneity and density variation of the terrestrial body make
the integration impossible, thereby necessitating the measure-
ment of values for−→g to create models (Gemael, 1985).

1Issac Newton (1642-1727): English physicist, mathematician, astronomer, and natural philosopher
2Galileo Galilei (1564-1642): Italian physicist, mathematician, astronomer, and philosopher

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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Gravimetry and equipment

Gravimetry is an area of physical geodesy that has the objective of
measuring the gravitational intensity and/or the gradient of grav-
ity with terrestrial methods or methods near the Earth’s surface.
Gravimetric measurements can be performed using “absolute” or
“relative” techniques (Torge, 2001).

Determining the value of gravity −→g is important because, by
calculating its anomalies and it is possible to determine the un-
dulations N of the geoid using the Stokes’ integral, the terrestrial
flattening with the Clairaut3 theorem, and the deviation from the
vertical with the Vening-Meinesz4 formulas (Gemael, 1985).

Gravimetrics can be applied in geophysical investigations to
estimate the density of rocks and to determine geoidal undula-
tions; furthermore, gravimetrics can be employed in geodynamic
studies, in which temporal changes of the terrestrial gravitational
field are monitored.

Absolute methods for measuring gravity

Absolute gravity measurements determine −→g using the funda-
mentals of gravitational acceleration, measurement of time, and
displacement. The measurement can be performed using the pen-
dulum method, introduced by Galileo Galilei, which is currently
not used, or by the free fall method (Torge, 2001; Gemael, 2002),
which became viable with the technological advance of chronome-
ters, sensors, and electronics.

The pendulum method presented in Figure 2 can be easily
calculated using Eq. (8).

Figure 2 – Pendulum determination. Figure adapted from Gemael (2002).

t = 2π

√
l

g

(
1 +
sinα2

16

)
(8)

with:

t is the period in seconds necessary for the movement
performed by the pendulum to repeat itself;

l is the length of the pendulum in meters;
α is the angle formed between the vertical and the initial

position of the pendulum;
g is gravitational acceleration.

The free fall method for determining gravity (Fig. 3) is based
on the principle of accelerating movement shown in Eq. (9),
which can be simplified according to formula 10 (Gemael, 2002).

x = x0 + v0t+
1

2
gt2 (9)

g = 2

(
(x3 − x1) (t2 − t1) − (x2 − x1) (t3 − t1)

(t3 − t1) (t3 − t2) (t2 − t1)
)

(10)

where:

– t1; t2; t3 are time intervals counted from t = 0;

– x1; x2; x3 are the distances moved in the intervals
t1; t2; t3 respectively.

Modern instruments for absolute measurement by the free fall
method are accurate; however, these machines are costly, com-
plex, difficult to transport, and difficult to set up on irregular or
unstable ground. The basic function of this type of equipment is
to measure the position at several instants in time for a body in
free fall in a vacuum chamber.

Figure 3 – Determination with the free fall method. Figure adapted from Gemael
(2002).

3Alexis Claude de Clairaut (1713-1765): French mathematician
4Felix Andries Vening Meinesz (1887-1966): Dutch geophysicist and geodesist
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196 CALCULATION OF THE TIDE CORRECTION USED IN GRAVIMETRY

Relative methods for measuring gravity

Relative methods use equipment to measure the difference be-
tween the readings at one station versus another. The determina-
tion of −→g at a given point depends on the existence of a gravi-
metric station with a previously known acceleration value, from
which the result can be calculated by summing the difference de-
termined between the stations. The functioning principle is based
on the weight of a body equilibrated by a normally elastic inverse
force, provided by a spring in an environment with a constant tem-
perature, to maintain the same coefficient of elasticity between
the measurements. The differences in mGal are measured on a
graduated scale, and the results are parameterized according to a
calibration table provided by the manufacturer. One functioning
scheme of the LaCoste and Romberg (L&R) model G gravimeter
can be observed in Figure 4.

Figure 4 – Schematic section of the LaCoste and Romberg model G&D gravime-
ter (LaCoste & Romberg, 2004).

The emergence of relative measuring equipment revolution-
ized gravimetry, as it permitted the rapid densification of gravi-
metric networks due to the reduced size, ease of use, possibil-
ity of installation in diverse environments, and high productivity
(Gemael, 2002).

In contrast with the absolute equipment, a common charac-
teristic of mechanical elastic equipment and one of its primary in-
conveniences is the existence of a phenomenon known as drift,
which should be considered in gravimetric calculations. To il-
lustrate, a comparison between a piece of equipment based on
free fall and another machine with an elastic system is shown
in Figure 5. There are two different types of drift: statistical and

dynamic. The first occurs when the elastic system is altered in a
state of rest; during brief periods, the variation is normally small.
However, surveying one circuit often takes days; therefore, it is
inevitable that the team will break for meals and rest. Dynamic
drift results from deformation of the elastic system, which occurs
over time and from movements that occur during its displacement
in the circuit in which the work is performed. The time limit is a
characteristic that varies as a function of the model and brand of
the equipment and is determined from the period necessary for
the drift to be treated as linear.

Figure 5 – Drift of the relative ET18 and absolute SG gravimeters (Hegewald et
al., 2010).

Some devices (e.g., the L&R gravimeter) depend on more ex-
tensive work to derive the results. Other more modern devices
that have onboard electronics are more precise and handle the
data better, further facilitating their use – as in the CG-5 Scintrex
Autograv gravimeter, which is displayed in Figure 6.

Figure 6 – CG-5 Scintrex Autograv gravimeter.

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016



�

�

“main” — 2018/3/27 — 10:29 — page 197 — #5
�

�

�

�

�

�

AMARANTE RR & TRABANCO JLA 197

Figure 7 – OSG superconductor gravimeter (GRW, 2011).

The CG-5 is part of a new generation of relative gravimeters
with microprocessors, which function in the range of 8000 mGals
with a resolution of 1μGal, without the need to be reinitiated. Un-
like mechanical equipment such as the model G from L&R, the
CG-5 does not record isolated measurements made by one op-
erator but rather samples in pre-defined intervals or in a con-
tinuous manner at a frequency of 6 Hz. That is, a machine that
is configured to make three measurements of 1 minute each will
store in its memory (6 Hz) (60 s) (3) = 1080 readings in a series of
measurements of one station. The fact that this gravimeter makes
multiple measurements per second permits the incorporation of
a seismic filter. The possibility of storing the collected data in its
12 Megabyte memory, in addition to saving work, avoids many
possible errors, such as performing an inaccurate reading of the
graduation from the dial, dictating the wrong value to the recorder,
writing incorrectly in the field notebook, reading incorrectly from
the field notebook when transcribing the data to a computer pro-
gram, or even typing incorrectly. To facilitate its use, the equip-
ment has a graphic screen, a keyboard, and a user-friendly in-
terface. The machine also has protection against temperature
changes, pressure variations, and variations caused by magnetic
fields. Another important characteristic of the CG-5 is a small
drift, which results from the operational environment of the elas-
tic quartz system in conjunction with the correction by the soft-
ware that provides results in real time with long-term drift and
0.02 mGals per day (Scintrex, 2008).

Another type of gravimeter is the superconducting gravime-
ter, shown in Figure 7. Its functioning principle involves the
levitation of a spherical specimen by a magnetic field generated
by coils. The sphere moves up and down in response to changes
in gravity; therefore, the voltage is altered automatically, with the
objective of maintaining it in equilibrium and moving the spec-
imen to the correct position. This applied voltage is parameter-
ized on a scale to provide the gravity changes. Superconductor
gravimeters can achieve sensitivities of 1 nGal (nanogal) in their
measurements (GRW, 2011).

TIDE

The value of −→g must be determined from the attractive
−→
F and

centrifugal
−→
C forces, and the other perturbations must be elimi-

nated, including the tide correction Cg , which is also called the
gravimetric correction. The essential elements of physics for un-
derstanding tides are contained in Newton’s laws of dynamics and
conservation of mass (Pugh, 1987).

The total gravitational attraction between two large masses
such as the Earth and the Moon, as well as their proximity, makes
this set a system. All other bodies in space also attract each other;
however, because the distances are so large, the forces are ex-
tremely small, with the exception of the Sun. Despite the distance,
the Sun has a significantly large mass that makes the Sun-Earth-
Moon network a system of large influence between the parts. The

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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198 CALCULATION OF THE TIDE CORRECTION USED IN GRAVIMETRY

Figure 8 – Tide. Figure adapted from MacMillan (1966).

Earth-Moon system spins around a common center of mass near
the Earth because the mass of the Moon is smaller (approximately
1/81 times the Earth’s mass). Because the Earth-Moon system
spins around a common center of mass between the heavenly bod-
ies, the centrifugal force is small on the terrestrial face closest to
the Moon, and it is added to the attractive force; on the opposite
side of the Earth, the centrifugal force opposes the force of attrac-
tion and is equilibrated, also creating a high tide on the opposite
side of the planet, as observed in Figure 8 (Pugh, 1987).

The center of mass, also known as the centroid, is between the
heavenly bodies at approximately 1,710 km beneath the terrestrial
surface (Xie & Kopeikin, 2010).

Tides oscillate on a period of approximately 12 hours and 24
minutes. The “12 hours” are due to the rotation of the Earth, and
the “24 minutes” are due to the daily delay caused by the lunar
orbit, which has a cycle of 29.5 days. The phenomenon known as
the syzygy tide occurs when the Earth, Sun, and Moon are in the
same alignment (Full Moon and New Moon). During this period,
the variation between the high tide and the low tide is the largest.
The quadrature tide occurs when the Moon is waxing or waning,
phases in which the variations are smoother. The differences in
the tide that occur at the syzygy tide and the quadrature tide are
presented in Figure 9.

CALCULATION OF THE TIDE CORRECTION

In this section, the schematization of the operations necessary for
calculating the tide correction, also known as the gravimetric cor-

rection (Gemael, 1985), will be presented to permit the codifica-
tion of a program to calculate the lunar-solar attraction at a spe-
cific point P on the surface of the Earth at time t with the use of
the formulas presented by Longman (1959) and adjusted using
the gravimetric factor. According to Dehlinger (1978), the formu-
las presented by Longman (1959) are essentially identical to those
proposed by Bartels (1957), Schureman (1940), and Pettit (1954).

The calculation of the tide correction Cg of a point P on the
surface of the Earth is given by (Gemael, 2002):

Cg = (g� + gL)δ (11)

where:
gL is the lunar component of the tide defined by Eq. (14);
g� is the solar component of the tide defined by Eq. (37);
δ is the gravimetric factor.

The gravimetric factor is used to adjust the gravimetric cor-
rection value as a function of the displacement of the point P that
occurs due to deformation of the crust, which is not solid and has
a certain deformation as a function of the lunar-solar attraction.
The commonly used programs in Brazil do not allow a user to
insert the value of the gravimetric factor and adopt fixed factors,
as is the case of REDGRAV5, which always uses δ = 1.20, and
GRAVSYS6, which uses δ = 1.16.

Technological advancements, the creation of more precise in-
struments, automated data storage, and the regionalization of the
gravimetric factor necessitates the construction of a new software
technology to meet the current reality of gravimetric surveys. It is

5REDGRAV: Software for processing raw gravity data developed by the Universidade de São Paulo, Brazil.
6GRAVSYS: Computer program for processing and adjustment of gravimetric data developed at the GSC (Geological Survey of Canada) in Ottawa.

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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Figure 9 – Variation of the tide amplitude. Figure adapted from Pugh (1987).

easy to find studies that seek to better determine the gravimetric
factor in various regions of the world, such as the study by Has-
san et al. (2010). For a long time, gravimetric campaigns used the
value of δ = 1.2 for the gravimetric factor throughout Brazil. How-
ever, in a study presented in 1991, regionalization of the gravimet-
ric factor was performed as presented in Table 1. In the present
study, tests were conducted with the tide, which are available in
section “EVALUATION OF RELEVANCE”.

Table 1 – Regionalization of the gravimetric factor (Gemael, 2002).

Station δ

Belém 1.19
Manaus 1.19
Teresina 1.22
Caicó 1.23
Salvador 1.19
Goiânia 1.16
Cuiabá 1.16
Campo Grande 1.17
Viçosa 1.20
Vassouras 1.19
Presidente Prudente 1.17
Curitiba 1.17
Santa Maria 1.20

For codification in the computer, the sequence shown in the
mathematical form was altered so that it was possible to imple-
ment it in a programming language because the execution se-
quence of the commands is essential for code functioning. For

the trigonometric calculations, angular values were transformed
into radians to make them compatible with the most commonly
used programming languages. The final version tested is used to
develop the software GravSur7 (Amarante, 2012).

During the development of this study, some values suggested
by Longman (1959) were exchanged for constants defined in more
recent investigations, such as the mass of the Sun reported by the
documentation of IERS Conventions (International Earth Rotation
and Reference Systems Service Central Bureau) (Petit & Luzum,
2010). Some of these constants, despite having their values re-
configured, do not significantly alter the result; however, with the
advance of equipment that can determine differences in the mea-
surements with more precision, it is also necessary to review val-
ues that may have been calculated with a slide rule.

The time zone is critical for calculating the tide, and much
confusion can occur when determining the time, which can sig-
nificantly alter the result for the tide correction. This confusion of-
ten occurs when the difference that is used for UTC (Coordinated
Universal Time) is not recorded or when the team that makes the
field measurements is not the same as the one that performs the
calculations.

Another important problem is that the official time, which
changes as a function of legislation, as is the case of Law
No. 11,662 (Brasil, 2008) presented in Figure 10, which modi-
fied the boundaries of the regions and the number of time zones
in Brazil, as well as the data from the beginning and end of day-
light savings time. These changes in the rules for calculating the

7GravSur: Computer program for processing and adjustment of gravimetric data developed at the Universidade Estadual de Campinas and Universidade de São Paulo.

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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Figure 10 – Change in the time zones in Brazil in 2008 (Worldtimezone, 2011).

official time can cause an incorrect choice when the calculation
is performed at some time after the fieldwork. To avoid problems
of this type, a protocol can be adopted, as was adopted in civil
aviation, which determines the use of the UTC times.

The influence of the Sun can reach approximately 0.063 mGal,
while that of the Moon can reach up to 0.168 mGal (Gemael,
2002); these values must be considered because they are far
above the 0.01 mGal resolution of gravimeters such as the L&R
model G, which are frequently used in campaigns in Brazil and
Latin America. Currently, these machines are being replaced by
more advanced models, such as the CG-5 Autograv gravime-
ter from the Scintrex brand with a resolution of 0.001 mGal or
1μGal, which is even more precise. Venus, with a mass of ap-
proximately 4.8685×1024 kg, can reach a minimum distance of
38,200,000 km (Williams, 2010) and thus affects the tide by up to
0.00862 μGal. Jupiter, with its large mass of 1.8987× 1030 kg,
reaches a nearest distance of 588,500,000 km (Williams, 2012),
which has an influence of up to 0.00092 μGal. Mars, with its ap-
proximate mass of 6.419 × 1023 kg (Beatty et al., 1999), can
reach a minimum distance of 55,760,000 km (McKim, 2003) and
can thus cause an influence of up to 0.00037 μGal, as demon-
strated in Eqs. (12) and (13). Therefore, it is still not necessary to
consider the most significant close heavenly bodies such as the
planets Venus, Jupiter, and Mars when calculating the tide be-
cause these planets’ influences can achieve values well below the
resolutions of the (relative) pieces of equipment, as CG-5, cur-
rently in use.

The influence on the tidal correction due to a heavenly body

is given by (Gemael, 2002):

gi =
GMiri

ς3
(
3 cos2 θi − 1

)
δ (12)

adopting the values:
G = 6.67428 × 10−8m3g−1s−2 (Petit &

Luzum, 2010);
gi = influence of the heavenly body on the tide de-

fined by Eq. (12);
M♀ = 4.8685× 1027 g (Venus mass);
M� = 1.8987× 1030 g (Jupiter mass);
M♂ = 6.4190× 1026 g (Mars mass);
ri = 6.378137× 108 cm;
ς♀ = 3.82× 1012 m (Venus);
ς� = 5.8850× 1013 m (Jupiter);
ς♂ = 5.5760× 1012 m (Mars);
θi = 0◦ to simulate the largest influence;
δ = 1.17 for the region of Presidente Prudente

(Gemael, 2002);
with:
G is Newton’s gravitational constant;
Mi is the mass of the perturbing heavenly body in grams

(M♀ orM� orM♂);
ri is the distance P in cm to the center of the Earth;
ς is the maximum approximation of the perturbing

heavenly body (ς♀ or ς� or ς♂);
θi is the zenith angle of the perturbing heavenly body;
δ is the gravimetric factor.

Considering the example of the perihelion opposition of Mars

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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in August 2003, when it is very close to the Earth, the influence of
the planet in the tide can reach 0.37 nGal. Applying similar con-
ditions to Jupiter and Venus has respectively values of 0.92 nGal
and 8.62 nGal.

The calculation of the tide correction Cg of a point P on the
surface of the Earth, considering next most significant planets is
given by:

Cg = (g� + gL + g♀ + g� + g♂ + · · · )δ (13)

with:
g♀ is the Venus component of the tide Eq. (12);
g� is the Jupiter component of the tide Eq. (12);
g♂ is the Mars component of the tide Eq. (12).

Lunar Component

The lunar component gL is giving by:

gL =
GMLr

d3L
(3 cos2 θL − 1)

+
3

2

GMLr
2

d4L
(5 cos3 θL − 3 cos θL)

(14)

adopting the values:
ML = 7.34581119761× 1025 g, source: IERS

data (Petit & Luzum, 2010).
where:
G is the Newton’s gravitional constant;
ML is the Mass of the Moon in grams;
r is the distance P to the center of the Earth defined

in the Eq. (15);
dL is the distance between the centers of the Earth and

the Moon, as defined by the Eq. (19);
θL is the zenith angle of the Moon, shown in Eq. (24).

The distance P to the center of the Earth is given by:

r = Ca+ 100H (15)

adopting the value:
a = 6.378137×108 cm SIRGAS 2000 reference sys-

tem GRS80 ellipsoid (IBGE, 2005);
where:
C is the value defined in Eq. (16);
a is the equatorial radius of the Earth;
H is the orthometric height (multiplication by 100 is for

the transformation into cm).

The Earth’s equatorial radius of a = 6, 378, 270, shown
in Longman (1959) and used by REDGRAV, refers to the 1906

Hough ellipsoid, while GRAVSYS uses a = 6, 378, 388 from
Hayforf (1924). Only updating this value for the GRS80 ellipsoid
in a future program is not interesting because the same applica-
tion can be used in other seasons and regions of the world, where
these values can be different. Equation 16 for the calculation ofC ,
Longman (1959), uses the constant 0.006738 default in place of
e′2e , which is only appropriate for the Hough Datum (1906).

C =

√
1/(1 + e′2e sin

2 ϕ) (16)

where:

e′2e =
a2 − b2
b2

(17)

b = a− (af) (18)

adopting the value:
f = 1/298.257222101 SIRGAS 2000 reference system

GRS80 ellipsoid (IBGE, 2005);
with:
ϕ is the latitude from point P in decimal degrees;
e′2e is the square of the second eccentricity of the ellipsoid;
b is the minor semiaxis;
f is the flattening of the ellipsoid.

Calculation of the distance dL between the centers of the
Earth and the Moon is obtained with:

d−1L = 1/c+ a′e cos(s− p) + a′e2 cos 2(s− p)
+ (15/8)a′me cos(s− 2h1 + p)
+ a′m2 cos 2(s − h1)

(19)

adopting the values:
c = 3.844031× 1010 cm;
e = 0.05490 (Schureman, 1940);
m = 0.074804 (Schureman, 1940);

with:
c is the average distance between the centers of the

Earth and the Moon;
e the eccentricity of the orbit of the Moon;
a′ is defined by Eq. (20);
s is the average longitude of the Moon referring to the

equinox (Bartels, 1957);
p is the average longitude of the perigee of the Moon

defined by Eq. (23);
m is the average rate of movement of the Sun to the Moon

where:
a′ = 1/

[
c(1− e2)] (20)
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To determine s and p, it is first necessary to know the num-
ber of Julian “centuries” Tj since December 31, 1899, which is
calculated with:

Tj = t/52, 596, 000 (21)

with:
t is the instant of determination of the tide in the Julian

calendar;
Tj adopting a Julian century as (100 years · 365.25 days

· 24 hr · 60 min)= 52,596,000 minutes.

The average longitude of the Moon referring to the equinox
is given by:

s = 270◦26′11.72′′

+ (1336rev.+ 1, 108, 406.05′′)Tj

+ 7.128′′T 2j + 0.0072
′′T 3j

(22)

For the calculation of the average longitude of lunar perigee,
the following equation is used:

p = 334◦19′46.42

+ (11rev. + 392, 522.51′′)Tj

− 37.15′′T 2j − 0.036′′T 3j
(23)

The REDGRAV program uses the eccentricity of the lunar orbit
suggested by Shureman (1924); however, this study uses a new
value given by the 1940 revision of the book (Schureman, 1940).
Despite this difference, the calculation does not yield significant
results. One purpose of this paper is to help in the implementa-
tion of algorithms in future gravimetric data processing programs.
Therefore, the values of s, p, h� and all other variables that rep-
resent angles from equations suggested in Longman (1959) must
be transformed into radians to permit the use of the computational
functions. The abbreviation rev., shown in Eqs. (22) and (23),
refers to revolutions; that is, each unit must be multiplied by 360◦ .

The zenith angle of the Moon θL is determined by:

cos θL = sinϕ sin I sin l

+cosϕ

[
cos2

I

2
cos(l− χ) + sin2 I

2
cos(l + χ)

] (24)

with:
I is the angle between the orbit of the Moon and the
celestial equator according to (Fig. 11) defined by Eq. (25);

l is the longitude of the Moon in its orbit counted from
the crossing of the ascension with the equator line de-
fined by Eq. (31);

ϕ is the latitude of point P ;
A is the ascending intersection of the lunar orbit with the

equator;
χ is the ascension to the right of the meridian of observa-

tion counted fromA (Fig. 11), obtained using Eq. (27);
i is the constant given by Schureman (1940) used in

Eq. (28) referring to the angle between the lunar orbit
and the plane of the ecliptic (Fig. 11).

Determination of the angle I between the lunar orbit and
the celestial equator is given by:

cos I = cosωt cos i− sinωt sin i cosNλ (25)

adopting the value:

i = 5◦08′43.3546′′

The longitude Nλ from the ascending node to the orbit of
the Moon is defined by:

Nλ = 259
◦10′57.12′′

− (5rev. + 482, 912.63′′)Tj
+ 7.58′′T 2j + 0.008

′′T 3j

(26)

and χ is given by:

χ = ta + h� − v (27)

where:
v = arcsin (sin i sinN/ sin I) (28)

The angular time ta of the average measurement of the Sun
to the west of the location of observation is defined by:

ta = 15 (t0 − 12)− λ (29)

Average longitude h� from the Sun is given by:

h� = 279◦41′48.05′′

+ 129, 602, 768.11′′Tj + 1.080′′T 2j
(30)

where:
t0 is UTC time in whole Julian hours;
λ is longitude from the point P ;
ta is the angular time of the average measurement of

the Sun to the west of the location of observation.
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Figure 11 – Orbital parameters (Schureman, 1940).

The longitude of the Moon l is given by:

l = σ + 2e sin(s− p) + 5
4
e2 sin 2(s− p)

+
15

4
me sin(s− 2h1 + p)

+ 1.375m2 sin 2 (s− h1)

(31)

with:
Υ is the vernal equinox (Fig. 11);
Υ′ is the related equinox (Fig. 11);
Ω is the node from the beginning of the rising of the

Moon (Fig. 11);

The average longitude of the Moon σ given by the relation-
ship:

σ = s− ξ (32)

and the longitude ξ in the intersection of the orbit with the celes-
tial equator is defined by:

ξ = Nλ − α (33)

where:

α = 2 arctan [sinα/ (1 + cosα)] (34)

sinα = sinωt sinNλ sin I (35)

cosα = cosNλ cos v + sinNλ sin v cosωt (36)

Solar component
The influence of the solar component g� on the measurement of
the acceleration of a point is determined by Longman (1959):

g� =
GM�r
d3�

(
3 cos2 θ� − 1

)
(37)

adopting the values:

M� = 1.9884158×1033g, source: IERS data (Petit &
Luzum, 2010);

with:
M� is the mass of the Sun in grams;
d� is the distance between the centers of the Earth and

the Sun, as defined by Eq. (38);
θ� is the zenith angle of the Sun, as defined by Eq. (40).

Calculation of the distance d� between the centers of the
Earth and the Sun is given by:

d� =
1

c� + a′1e1 cos (h� − p�)
(38)

a′1 = 1/
[
c�
(
1− e21

)]
(39)

adopting the value:

c� = 1.49597870691 × 1013 cm] (Seidelmann,
1992);

with:
c� is the average distance between the centers of the

Earth and the Sun;
a′1 is defined by Eq. (39);
e1 is the eccentricity of the orbit of the Earth;
h� is the average longitude of the Sun;
p� is the average longitude of solar perigee8.

8perigee: point in the orbit of an object in which it is closest to the Earth.
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The zenith angle of the Sun θ� is defined by Equation:

cos θ� = sinϕ sinωt sin l�

+ cosλ

[
cos2

ωt

2
cos (l� − χ�)

+ sin2
ωt
2
cos (l� − χ�)

] (40)

adopting the value:

ωt = 23◦27’08.26” (Schureman, 1940);

where:
ωt is the obliqueness of the ecliptic on January 1, 1900;
l� is the longitude of the Sun in the elliptic counted from

the Vernal Equinox;
χ� is the ascension to the right of the meridian of obser-

vation counted from the Vernal Equinox;
ta is the angular time of the average measurement of the

Sun to the west of the location of observation.

The longitude l� of the Sun in the elliptic counted from the
Vernal Equinox is given by:

l� = h� + 2e1 sin (h� − p�) (41)

The ascension χ� to the right of the meridian of observation
counted from the Vernal Equinox is obtained by:

χ� = ta + h� (42)

The eccentricity of the Earth’s orbit is calculated by:

e1 = 1.675104× 10−2
− 4.180× 10−5Tj
− 1.26× 10−7T 2j

(43)

The average longitude of solar perigee p� is defined by:

p� = 281◦13′15

+ 6, 189.03′′Tj

+ 1.63′′T 2j + 0.012
′′T 3j

(44)

METHOD FOR EVALUATION OF RELEVANCE
(GRAVIMETRIC FACTOR)
This study aimed to evaluate the extent to which the calculation of
the tide correction with different gravimetric factors is representa-
tive. For the gravimetric factor, from a geographical position, the
differences between the corrections values of the tide calculated
were determined by various programs/machines using the most
recommended value for the region, as indicated in (Table 1).

The differences were compared to the resolution of modern
devices such as the Scintrex CG-5 and the OSG superconductor
gravimeters to calculate the significance of the above-calculated
factors.

By comparing the results from the tide calculations gener-
ated by the GRAVSYS and REDGRAV with the approach suggested
in this study implemented in the GravSur computer program
(Amarante, 2012), it was possible to note differences. The RED-
GRAV program is important because it is used in Brazil and in
certain Latin American countries by the EPUSP (Escola Politéc-
nica, Universidade de São Paulo) and IBGE (Instituto Brasileiro
de Geografia e Estat́ıstica) to calculate the gravimetric reductions.

Table 2 contains some points distributed in the four quadrants
of the globe in UCT time; some observations merit consideration.
First, GRAVSYS does not allow the input of the year with four dig-
its, which does not permit its use after 1999. A difference is also
noted that apparently is not large but becomes evident when the
amplitudes of the tides are larger. Notably, GravSur has a con-
figurable gravimetric factor, and the calculation was performed
with δ = 1.17; by contrast, REDGRAV and GRAVSYS have fixed
values of 1.20 and 1.16, respectively. Another important point
is that the CG-5 can perform the tide correction automatically;
however, it always uses a gravimetric factor of 1.16, because this
value cannot be altered (Scintrex, 2008).

To best illustrate the difference, the example below was cal-
culated at the amplitude peak in a spring (syzygy) tide day:

Location: Santos SP, Brazil

• Position: 23◦57’S 046◦18’W

• Date: FEB/18/2011 – 15:20 UCT

• GravSur: 0.188 mGals

• REDGRAV: 0.193 mGals

• GRAVSYS: 0.186 mGals

A difference of up to 0.007 mGals was calculated, which is a
significant value because currently used equipment, such as the
CG-5, has a resolution of 0.001 mGals. This difference tends to
zero when the same gravimetric factor is used; it is emphasized
that the value of δ = 1.17, referring to the region of Presidente
Prudente, is the most appropriate for the city of Santos accord-
ing to a publication about regionalization of the gravimetric factor
from Gemael (2002).

Another important fact related to REDGRAV and GRAVSYS
is that neither system considers seconds when recording the time
of the reading. Differences of up to 0.001 mGals are observed in
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Table 2 – Comparison of the tide calculation by different programs and local time (mGals).

Date/Time Location GravSur REDGRAV GRAVSYS
2010/10/31 8:10 22◦44’S 90◦30’W –0.055 –0.056 –
2010/10/31 8:10 22◦44’S 90◦30’E –0.003 –0.003 –
2010/10/31 8:10 22◦44’N 90◦30’W –0.007 –0.007 –
2010/10/31 8:10 22◦44’N 90◦30’E –0.052 –0.053 –
1996/10/31 8:10 22◦44’S 90◦30’W 0.028 0.029 0.028
1996/10/31 8:10 22◦44’S 90◦30’E 0.120 0.123 0.119
1996/10/31 8:10 22◦44’N 90◦30’W 0.123 0.126 0.122
1996/10/31 8:10 22◦44’N 90◦30’E 0.029 0.030 –0.029

20-second cycles, which was not very important when using me-
chanical equipment. Presently, the new types of equipment per-
mit the storage of the time with the assistance of a GPS receiver,
which guarantees good quality. Finally, the CG-5 gravimeter also
has a fixed gravimetric factor and, as long as the firmware is
not updated to permit configuration of this parameter, in studies
where accurate data are sought, the correct approach would be to
import data into programs that permit the treatment of the data, as
is the case for GravSur.

CONCLUSIONS
Gravimetry adopts the formulas suggested in the study by Long-
man (1959) for the gravimetric correction, which was calculated
with convenient and known orbital and ellipsoidal parameters for
the time. Despite this fact, some computer programs adopt equiv-
alent values, which do not yield significant results where, for ex-
ample, the ellipsoidal parameters are slightly different.

Superconducting gravimeters can reach sensitivities of 1 nGal
(nanogal). The gravimetric correction applied to the processing of
data generated from equipment like this should consider the in-
fluence of the bodies with significant attractive force. When Venus
is in opposition with the Earth can modify the result of gravimetric
correction until 8.62 nGal.

The gravimetric factor, which can vary according to the re-
gion, can represent differences of approximately 0.01 mGal and
even so, computer programs such as REDGRAV, GRAVSYS, and
current equipment maintain this value as a constant and does not
allow set a different factor.
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GRW. 2011. GWR Observatory Superconducting Gravimeter. Available
on:<http://www.gwrinstruments.com>.

HASSAN RM, ABDELRAHMAN EM, TEALEB A, ZAHRAN K & JENTZSCH
G. 2010. Gravimetric Tide observation at Lake Nasser Region, Aswan,
Egypt. Marees Terrestres Bulletin d’informations, 146: 11797–11805.

HEGEWALD A, JENTZSCH G & JAHR T. 2010. Comparison of the La-
Coste & Romberg gravimeter ET18 with the superconducting gravimeter
CD-034 at the Geodynamic Observatory Moxa (Germany). Marees Ter-
restres Bulletin d’informations, 146: 11781–11788.

IBGE – Instituto Brasileiro de Geografia e Estat́ıstica. 2005. Resolução
1/2005. Altera a caracterização do Sistema Geodésico Brasileiro, Brazil.

LACOSTE & ROMBERG. 2004. Instruction Manual Model G&D Gravity
Meters, Austin, 127 pp.

LONGMAN IM. 1959. Formulas for computing the tidal accelerations
due to the Moon and the Sun. Journal of Geophysical Research, 64(12):
2351–2355.

MacMILLAN DH. 1966. Tides. C R Books Limited, London, UK.

McKIM R. 2003. The great perihelic opposition of mars, 2003: Part 1.
Journal of the British Astronomical Association, 120: 280–295.

MORITZ H. 1980. Geodetic reference system 1980. Bulletin Géodésique,
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