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SEISMIC TOMOGRAPHY USING METROPOLIS METHOD OF VELOCITY FIELDS
PARAMETERIZED BY HAAR WAVELET SERIES
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ABSTRACT. The representation of compressional seismic waves velocity fields from geological models through numerical parameters has a strong geophysical
importance, because, it makes possible to quantify such qualitative models, allowing its mathematical manipulation. In this way, the parameterization by Haar wavelet

series may be seen as an attractive alternative. The pyramid algorithm is used to obtain a multi-scale wavelet series representation of such models. It is applied filters
that assure an optimized parameterization of models with important parameter reduction without significative loss in the model representation. It is accomplished the

parameterization of velocity field models in order to verify the capacity of the wavelet series to represent functions, in an acceptable way, with some degree of complexity,
using coefficients provided by the pyramid algorithm. Then, target models are represented by means of linear combination of simpler functions and its coefficients are

estimated by means of the inversion process, using traveltime data, defined by the Metropolis method. In this way, the inversion aims convergence to a target model

previously proposed. In a brief, coefficients of Haar wavelet series are used as parameters of the model to be estimated by tomography inversion.

Keywords: parameterization, Haar wavelet series, pyramid algorithm, seismic tomography, seismic velocity field, traveltime data, Metropolis method.

RESUMO. A representação de campos de velocidades sı́smicas compressionais, através de parâmetros numéricos, é de importância básica na geof́ısica, pois torna
possı́vel a quantificação de modelos, antes qualitativos, permitindo assim que sejam matematicamente manipulados. A parametrização por série ondaleta Haar pode

ser vista como uma alternativa atrativa para quantificar tais modelos. O algoritmo piramidal pode ser utilizado para obtenção da série ondaleta multi-escala e, também,
auxilia na aplicação de filtragens ou técnicas redutoras de coeficientes que garanta uma parametrização otimizada do modelo, com substancial redução de parâmetros

sem prejuı́zos importantes na representação do modelo. Neste trabalho é realizada a parametrização de alguns modelos já conhecidos na geologia para verificar se
a série ondaleta, utilizando os coeficientes fornecidos pelo algoritmo piramidal, cumpre de forma aceitável o seu papel de representar funções, com um certo grau

de complexidade, através de combinações lineares de funções mais simples. Após a certificação da possibilidade de parametrização com um pequeno número de

coeficientes, faz-se a modelagem de dados de tempos de trânsito no modelo corrente parametrizado, utilizando a técnica de traçamento de raios, dentro de um processo
de inversão de tempos de trânsito definido pelo método Metropolis, objetivando convergência para um modelo alvo definido. Para isto são utilizados os coeficientes da

série ondaleta Haar 1D como parâmetros a serem estimados dentro do contexto da inversão tomográfica.

Palavras-chave: parametrização, série ondaleta Haar, inversão sı́smica tomográfica, campo de velocidade sı́smica, dados de tempo de trânsito, método Metropolis.
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INTRODUCTION

A mathematical problem of interest, not only theoretically, but
also with respect to applications, is the one concerned about the
representation (or decomposition) of functions with high degree
of complexity in a linear combination (series) of simpler func-
tions (Cerqueira & Figueiró, 2012), (Santos & Figueiró, 2006)
and (Bastos, 2013). Like the other series already known (polyno-
mial, Santos & Figueiró, 2011; trigonometric, Santos & Figueiró,
2006; and splines, Santana & Figueiró, 2008), the wavelet series
(Morettin, 1999) is defined as a mathematical function capable of
decomposing, represent or describe other functions. Differently
of splines, and other kind of mathematical series, the wavelet
series allows the analysis of such functions at different scales
and it is used to the data compression and to the noise attenu-
ation. It is applied consistently in areas of exact sciences, such
as: physics, electrical engineering, geophysics, and etc (Lee &
Yamamoto, 1994).

The first author to mention the term “wavelet” was Alfréd Haar
(Haar, 1910) and the formal concept of wavelets was firstly pro-
posed by Jean Morlet with the help of Grossman (Polikar, 1999).
The wavelet series is similar to the Fourier series. This last pro-
poses a decomposition of a periodic and continuous function by
a sum of sinusoidal functions weighted by coefficients, and the
first a decomposition of any function, with finite energy, by a sum
of functions belonging to a wavelet basis.

The wavelet series can represent continuous or non-con-
tinuous functions through a linear combination of simpler func-
tions, belonging to a basis, weighted by coefficients (parameters).
In multi-scale version of wavelet series, it is possible to obtain
its coefficients from the pyramid algorithm (Cunha, 2009), also
known as discrete wavelet transform. In this article, it was ac-
complished the parameterization of compressional seismic veloc-
ity fields using the Haar wavelet series coefficients, according to
different levels of scale, in order to have a control over how (and
which) coefficients can be eliminated without significative loss in
the quality of the representation, and to obtain a maximum reduc-
tion of the number of coefficients in each parameterization, using
techniques such as the pyramid algorithm. Such coefficients have
not physical meaning, they are just dimensionless weights.

In a subsequent step, it is made the modeling synthetic data.
The ray tracing technique, proposed by (Červený, 2001), was im-
plemented in order to enable the calculation of traveltime that a
given wave spends to travel from a source to a receiver (Perin
& Figueiró, 2010) and (Santos, 2009) thus, generating a travel-
time profile that simulates, approximately, a seismic acquisition.
Generally, velocity fields are not considered continuous functions,

then it is necessary to implement interpolation and derivative
techniques in Fortran.

The current models, parameterized by Haar wavelet series,
undergo an inversion process that aims to minimize the difference
between the observed and calculated data. A global search inver-
sion method, known as Metropolis, was used to obtain a model
that best fits the problem of minimizing the distance between the
observed and calculated data serving as a stopping criterion. The
goal is to perform the inversion of traveltime data with the coeffi-
cients of the Haar wavelet series representing the velocity fields in
a satisfactory way, using only one global scope algorithm without
combining any other type of inversion method.

THEORETICAL REVISION

Parameterization by Haar Wavelet

The Haar wavelet function (ψ) is defined as:

ψ(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, −∞ < t < 0

1, 0 ≤ t < 1
2

−1, 1
2
≤ t < 1

0, 1 ≤ t <∞.

(1)

The Haar wavelet basis is expressed as follows:

ψj,k(t) = 2
j/2ψ(2jt− k), ∀t : k

2j
≤ t < k + 1

2j
. (2)

The Haar wavelets indicatrix function, φ(t), and the wavelet,
ψ(t), can be written as:

φj,k(t) =

{
2j/2, 2−jk ≤ t < 2−j(k + 1)
0, otherwise

, (3)

and

ψj,k(t) =⎧⎪⎨
⎪⎩
2j/2, 2−jk ≤ t < 2−j(k + 1/2)
−2j/2, 2−j (k + 1/2) ≤ t < 2−j(k + 1)
0, otherwise.

(4)

Making the change j = −l in the scale index, it follows the basis:

φl,k(t) = 2
−l/2φ(2−lt − k) ={

2−l/2, 2lk ≤ t < 2l(k + 1)
0, otherwise,

(5)
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and

ψl,k(t) = 2
−l/2ψ(2−lt− k) =⎧⎪⎨

⎪⎩
2−l/2, 2lk ≤ t < 2l(k + 1/2)
−2−l/2, 2l (k + 1/2) ≤ t < 2l(k + 1)
0, otherwise.

(6)

A function f(t) can be represented as:

f(t) =
∑
k

dlo,kφlo,k(t) +
∑
l≥lo

∑
k

cl,kψl,k(t). (7)

The Equation (7) is called wavelet series and the coefficients are
given by:

cj,k = 〈f, ψj,k〉 =
∫ ∞
−∞

f(t)ψj,k(t)dt, (8)

and

djo,k = 〈f, φjo,k〉 =
∫ ∞
−∞

f(t)φjo,k(t)dt. (9)

Pyramid Algorithm
The Haar pyramid algorithm (also known as discrete wavelet
transform) calculates, recursively, the coefficients of expansion
represented by Equations (8) and (9), using the scaling coeffi-
cients of the φj,k(t) basis, beginning with l = 0, for subsequent
scales by the following equation:

φl,k(t) =
1√
2
[φl−1,2k(t) + φl−1,2k+1(t)] . (10)

As this relation is valid for all l ∈ Z, it can be rewrite by displac-
ing l to l + 1:

φl+1,k(t) =
1√
2
[φl,2k(t) + φl,2k+1(t)] . (11)

Haar wavelet function ψ(t) is written as:

ψ(t) = φ(2t)− φ(2t− 1), (12)

and this allows to write:

ψl+1,k(t) =
1√
2
[φl,2k(t) − φl,2k+1(t)] . (13)

Applying the operator 〈f, ·〉 in all terms of Equations (11) and
(13), we have:

〈f(t), φl+1,k(t)〉 =
1√
2
[〈f(t), φl,2k(t)〉 + 〈f(t), φl,2k+1(t)〉] ,

(14)

and,

〈f(t), ψl+1,k(t)〉 =
1√
2
[〈f(t), φl,2k(t)〉 − 〈f(t), φl,2k+1(t)〉] .

(15)

Equations (8) and (9) allow to rewrite Equations (14) and (15) as:

dl+1,k =
1√
2
(dl,2k + dl,2k+1), (16)

and,

cl+1,k =
1√
2
(dl,2k − dl,2k+1). (17)

Seismic Modeling
Ray tracing, used in seismic modeling of velocity fields, is based
on the seismic ray theory that comes from the study of the prop-
agation of seismic waves in heterogeneous media. The ray theory
results from the assumption of the existence of high frequency so-
lution to elastic-dynamic equation, and thus, it does not provide
an exact solution to the equation of the wave propagation in elastic
media (Martinez, 2012). However, it can reproduce the ray trajec-
tory with good accuracy when it comes to the problems related to
reservoir exploration.

The ray tracing uses a particular solution of the ray system of
equations (Červený, 2001):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dX(u)

du
= (pkpk)

n
2
−1P (u)

dP (u)

du
=
1

n

−→∇
[
1

vn

]
dT

du
= (pkpk)

n
2 = v−n,

(18)

where X(u) is the position vector (x(u), z(u)), P (τ ) =
(p1(u), p2(u)) is the slowness vector (that is perpendicular to
the wavefront in a given isotropic media).

Equations (18) allow to write new equations in terms of dif-
ferent variables u corresponding to different values of n. In this
paper, we use the value n = 2 and the parameter u is replaced
by τ , then: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dX(τ )

dτ
= P (τ )

dP (τ )

dτ
=
1

2

−→∇
[

1

v2(x, z)

]
dT

dτ
=

1

v2(x, z)
,

(19)

where parameter τ =
∫ T
0 v2(x, z)dT , T is the traveltime along

the ray trajectory and dT is the time integration element. There
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is no physical meaning for the τ variable, but it has [L2T−1]
dimension, or [m2s−1] in the International System Units (SI).

Expanding Equations (19) by Taylor’s series to the second
order, we have that:

X(τ + δτ ) =X(τ ) +
dX(τ )

dτ
δτ

=X(τ ) +P (τ )δτ (20)

P (τ + δτ ) = P (τ ) +
dP (τ )

dτ
δτ

= P (τ ) +
1

2

−→∇
[

1

v2(x, z)

]
δτ. (21)

The slowness vector is updated constantly to satisfy the condition
of the iconal equation in each polygonal node that represents the
ray trajectory by:

‖P ‖ =
√
p21 + p

2
2 =

1

v(x, z)
. (22)

The traveltime is calculated iteratively during the ray tracing pro-
cess as the wave travels along the ray path from a point (xN , zN)
to another (xN+1, zN+1) and the time from source S =

(x0, z0) to receiver R = (xL, zL) is calculated as follows:

T (xN+1, zN+1) = T (xN , zN )

+
1

vN

√
(xN+1 − xN )2 + (zN+1 − zN )2.

(23)

Seismic Data Inversion Using Metropolis Algorithm

The Metropolis method is a global search inversion technique. It
is a variant of the Monte Carlo method (Kalos & Whitlock, 2008)
and it is an iterative method that starts from an initial model in
search of a model that is a global minimum of an objective func-
tion (Perin, 2014) that involves the difference between the ob-
served (dobs) and the calculated (g(m)) data. As an example of
objective function, we have:

S(m) = ‖dobs − g(m)‖22 . (24)

According to Press et al. (1997), the Metropolis algorithm is di-
vided into the following steps:

1. A description of a possible system configurations (initial
model);

2. A random generator disturbances of the parameters used
in current models;

3. A probability function P (m), that aims to reach its global
maximum; and

4. The use of a stopping criterion.

The probability function P (m) is given by:

P (m) = exp(−‖dobs − g(m)‖22). (25)

Auxiliary Tools
Compressional velocities fields, considered here, are two-di-
mensional functions, and the parameterization of such fields are
made from Equation (7) to a function of one variable. To avoid this
situation, a strategy is adopted to collect the velocities v(x, z) of
models that could not be parameterized as a function of a single
variable. A grid of nodes is put on the seismic velocity domain,
similar to Figure 1, and it can be arranged as a vector to apply the
pyramid algorithm, and thus obtain the coefficients to represent
the velocity function v(x, z) by wavelet series.

Figure 1 – 2D grid containing the seismic velocities used for the representation
of the numerical model by a parametric one.

It is known that some coefficients have null or a little influ-
ence on the function representation by Haar wavelet series. The
mean value parameter reduction technique supposes that a set
of coefficients with close values can assume a single value that
would be the weighted median of these coefficients. Given a set
of coefficients C = {cj,0, cj,1, cj,2, . . . , cj,2n−1}, it can be
replaced by a single value that is equal to their average value al-
lowing that a full scale is not totally lost.

The ray tracing program requires the solution of a numerical
derivative. A simple way to approximate numerically the derivative
of a function is through the finite difference method, calculating
the slope of a secant line next to the point where is wanted to cal-
culate the value of the derivative. Given a function, f(x), can be
calculated its derivative in the following mode:

f ′(x) ∼= f(x +Δx)− f(x −Δx)
2Δx

, (26)

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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whereΔx is small enough that represents a slight variation. It is
known as centered difference approximation and it is more accu-
rate than other definitions for numerical calculation of derivatives.

Inversion algorithms need some stopping criterion. The crite-
rion adopted in the inversions procedures is the relative difference
between the traveltimes (RDT ) less than a tolerance suggested
by the programmer. The RDT , expressed as a percentage, is
calculated as follows:

RDT =

∑N
i=1 |tobs(i) − tcalc(i)|∑N

i=1 tobs(i)
× 100%, (27)

where N is the number of receivers used in modeling, tobs(i)
and tcal(i) are, respectively, the observed and calculated travel-
times for the receiver Ri.

With the pyramid wavelet series parameterization, the coef-
ficients series (or model parameters) are hierarchized in several
levels. Although, without calculations of parameters correlations,
intuitively, it is possible to say that: the increase of the level differ-
ence between two parameters, increases the parameter correlation
between them. But, as the studied problem is highly nonlinear,
such correlation must not be close to 1 or –1. This subject is not
extended here, because correlation analysis is not the focus of
this work.

In the seismic exploration practical activities, velocity fields
has, usually, a maximum (vmax ∼= 8.0 km/s) and a minimum
(vmin ∼= 1.0 km/s) values. Considering the particularities of the
problem being, here, treated, it is reasonable to propose the fol-
lowing parameters constraints:

dJ,02
−J/2 +

∑
j≤J

∑
k

|cj,k|2−j/2 ≤ vmax, (28)

and

vmin ≤ dJ,02−J/2 −
∑
j≤J

∑
k

|cj,k|2−j/2. (29)

Then,

(vmin − ε)2J/2 ≤ dJ,0 ≤ (vmax − ε)2J/2, (30)

and

∑
j≤J

∑
k

|cj,k|2−j/2 ≤ vmax − vmin
2

+ ε, (31)

where ε > 0 is a small tolerance.

RESULTS

FOUR HOMOGENEOUS LAYERS WITH HORIZONTAL
INTERFACES MODEL (M1N )
Figure 2 shows a numerical seismic velocity field model with four
horizontal layers (M1N ). The physical property considered is the
propagation velocity of compressional waves, that is represented,
in numerical terms, by a matrix and it is used as a reference for
representing the Haar wavelet series.

Figure 2 – Numerical model,M1N , using 128 discretized values of seismic
velocities along the z axis in order to accomplish the parameterization.

Parameterization
The parameterized model, M1P (Fig. 3), is obtained from M1N
with the assistance of the pyramid algorithm. The purpose of such
algorithm is to generate the coefficients required to represent the
seismic velocity field in an organized multi-resolution fashion.
The parameterization of this and the next models are performed
using the wavelet series, Equation (7). The model M1P is rep-
resented by the wavelet series with the following four coefficients
values: d7,0 = 29.4156, c7,0 = −9.0510, c6,0 = −1.6000
and c6,1 = −8.800. Such coefficients are obtained through the
pyramid algorithm, from the v1N(z) representation using only
the zero scale of function φ.

Figure 3 – Model parameterized, M1P , with indices l and k ranging from:
lo = 1 to lf = 7, and ko = 0 to kf = 63, using 4 coefficients. As target
model for inversion, this model is renamed toM1T .

Forward Modeling
The ray tracing in the model parameterized (Fig. 4) is used to col-
lect the traveltime of the first arriving waves. The source, S, is

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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placed on the surface, S = (0, 0), where it is generate ray trajec-
tories to arrive at the receiver positions. The parameterized model
is used as a target model inside an iterative inversion process.

Figure 4 – Ray tracing in the parameterized modelM1P , with 1,500 rays de-
parting from a source position located on the surface in S = (0,0).

Inversion
The relative difference between traveltimes (RDT ) obtained and
calculated, respectively, on the target and initial models, was of
54.30%. This last one, used by the inversion iterative process, is
called M1O and it is shown in the Figure 5.

Figure 5 – Initial model,M1O , used by the Metropolis process of inversion.

The Metropolis iterative process of inversion needed 10 iter-
ations for convergence. The stopping criterion evaluated to ob-
tain the inverted model, M1I , was a current model that made the
RDT less than 10%. For the inverted model (Fig. 6), such dif-
ference was equal to 7.02%.

Figure 6 – Inverted model,M1I , parameterized with 4 coefficients and obtained
by the Metropolis inversion method.

The Figure 7 shows RMD, the relative velocity difference
between the models M1I and M1T , and Table 1 shows the co-

efficients used in the representation of models: initial, inverted
and target.

Figure 7 – Relative model difference (RMD) between seismic velocities of
M1I andM1T .

HIGH-VELOCITY INTRUSION MODEL (M2)

A numerical model representation of a high-velocity intrusion,
M2N , is shown in Figure 8. It is a model with a higher degree
of complexity relatively to M1N . A grid having 32 rows and 64
columns (2,048 samples of seismic velocities) was created ac-
cording to the methodology previously described, with the objec-
tive of using the pyramid algorithm to obtain a set of Haar wavelet
coefficients in the sense of multi-scale representation.

Figure 8 – Numerical model, M2N , with 2,048 discretized values (32 rows
and 64 columns) of seismic velocities in the nodes of a rectangular mesh placed
over the model.

Parameterization
From M2N , we got the parameterized velocity field, M2P ,
shown in Figure 9. The parameterized model, M2P , differs from
M2N , because it is generated by the concatenation of grid lines
as shown in Figure 1. The model was organized as an array with
2,048 values of seismic velocities. The reduction of parameters
was applied in M2P to decrease the number of coefficients used
in the representation ofM2N . Initially, it was necessary 28 coef-
ficients to parameterize M2N . After the reduction of parameters,
this amount falls to 7 coefficients, as shown in Figure 10.

Forward Modeling

The ray tracing technique was applied on the parameterized
model, M2P . To improve the field illumination, three sources

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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Table 1 – Coefficients used (or estimated) in the representation of models:M1O ,M1I andM1T .

Model d7,0 c7,0 c6,0 c6,1

M1O 19.0000 –5.0000 0.0000 0.0000
M1I 22.0789 –2.1858 –0.2858 0.8426
M1T 29.4156 –9.0510 –1.6000 –8.8000

Figure 9 – Parameterized model,M2P , with indices l and k ranging from: lo = 1 to lf = 11, and
ko = 0 to kf = 1,023, using 28 non-zero coefficients.

Figure 10 – Target model,M2T , with indices l and k ranging from: lo = 1 to lf = 11, and ko = 0
to kf = 1, 023, using 7 non-zero coefficients. It was applied the reduction parameters technique.

Figure 11 – Ray tracing in the parameterized model,M2P , with 1,500 rays departing from sources lo-
cated on the surface in the position S3 = (4,0) and two others, in wells, at positions S1 = (0,3) and
S2 = (8,3).

were positioned on the target model. Two on wells at: S1 =
(0, 3) and S2 = (8, 3), and other on the observation surface

at S3 = (4, 0). Ray tracing on the model M2P is presented in
Figure 11.

Brazilian Journal of Geophysics, Vol. 34(2), 2016
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Inversion
The seismic inversion process is applied to the target model
M2T , on which has been used the parameters reduction tech-
nique. In order to accelerate the inversion process, it is neces-
sary to parallelize the ray tracing inversion algorithm to reduce
the processing time.

The relative difference between traveltimes (RDT ) of the
initial model, M2O (Fig. 12), used in the iterative process, and
the target model M2T , was 79.25%. The final product of the
inversion process is an inverted model (M2I) represented by
Figure 13. The Metropolis algorithm used 166 iterations to
achieve its convergence, and it was relatively well succeeded in
retrieving the high-velocity intrusion region of the model. For its

other parts, it is not possible to say that inversion was good, ex-
cept in regions near the deep sources. The RDT between M2I
and M2T was 1.21%.

Figure 14 shows the relative model difference between M2I
andM2T and, the Table 2 shows the coefficients used in the rep-
resentation of models: inverted, initial and target.

See Cerqueira (2015) for details about relations between pa-
rameters cm, presented in Table 2, and the series coefficients
cj,k.

It does not make sense, in this work, to use an initial model
so much close to the target model, because it is used a global
search inversion method and its application is more appropriated
for initial distant models.

Figure 12 – Initial model,M2O , used by the Metropolis inversion process.

Figure 13 – Inverted model,M2I , parameterized with 7 coefficients obtained by the Metropolis inversion method.

Figure 14 – Relative model difference (RMD) between seismic velocitiesM2I andM2T .

Revista Brasileira de Geof́ısica, Vol. 34(2), 2016
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Table 2 – Coefficients used (or estimated) in the representation of models:M2O ,M2I andM2T .

Model d11,0 c1 c2 c3 c4 c5 c6

M2O 144.0000 0.0000 0.0000 0.0000 0.0000 0.0000 –10.0000
M2I 154.4846 –0.0653 –2.6614 –0.3497 –2.4242 –15.9243 –8.2091
M2T 135.2872 1.0231 –3.6499 3.2040 –1.7636 –7.1088 –17.8931

CONCLUSIONS

The global search algorithm, Metropolis, proved to be efficient
for the four layers and high-velocity intrusion model. An impor-
tant point that made possible the development of these two inver-
sions was a small number of coefficients in the parameterization
of these models.

An interesting observation about the velocity field models is
that the initial models are very different from the target models,
demonstrating the applicability of the Metropolis method when it
comes to global search inversion of simple models.

The model M1I failed to recover the last layer because the
algorithm developed only considers the first traveltime at the re-
ceivers, it means that there is not enough information about the
last layer.

In the final product of inversion of the high-velocity intru-
sion model was indentified the high-velocity zone, however, the
inversion process was unable to determine with good accuracy
the parallel plane layers. In general, the relative differences be-
tween seismic velocities were lower than 30% with higher error
values in isolated regions.

The tomographic inversion of seismic velocity fields param-
eterized by Haar wavelet series using the Metropolis method is
not very accurate. Local search methods, such as Gauss-Newton
and others, can be used in connection in future studies to improve
inverted models accuracy.
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