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ADAPTIVE SIGNAL DECOMPOSITION AND FILTERING USING BINOMIAL FILTERS
APPLIED TO THE GROUND-ROLL ATTENUATION

Cristian D. Ariza A.1 and Milton J. Porsani2

ABSTRACT. The ground-roll is a type of noise normally present in land seismic data. It strongly harms the signal-to-noise ratio, and interferes in several stages of the
seismic data processing, strongly affecting the final quality of the obtained seismic images. For the attenuation of the ground-roll we propose an adaptive filtering method

that uses binomials filters obtained from the convolution of pairs of dipoles (1, c) and (c,−1). The coefficient c corresponds to the first coefficient of the prediction
error operator, obtained through the Burg algorithm. This filtering method allows for the decomposition of signals in frequency bands, from the lowest frequency band

to the highest band. The method is applied in adaptive form, in sliding windows of time, adapting themselves to the variations in the frequency content of the data. Its
implementation and use in seismic data processing is relatively simple and computationally efficient.
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RESUMO. O ground-roll é um tipo de ruı́do normalmente presente nos dados sı́smicos terrestres. Ele prejudica muito a razão sinal-ruı́do e interfere em vários

estágios do processamento de dados sı́smicos, afetando fortemente a qualidade final das imagens sı́smicas obtidas. Para atenuação desse ruı́do, propomos um método

de filtragem adaptativa que utiliza filtros binomiais construı́dos a partir da convolução de pares de dipolos (1, c) e (c,−1). O coeficiente c corresponde ao primeiro
coeficiente do operador de erro de predição e é obtido através do algoritmo de Burg. Este método de filtragem adaptativa permite a decomposição de sinais em bandas de

frequência, desde a banda de mais baixa frequência até a de mais alta. O método é aplicado na forma adaptativa, utilizando janelas deslizantes de tempo, adaptando-se às
variações do conteúdo de frequência dos dados ao longo do registro sı́smico. Sua implementação e uso, no processamento de dados sı́smicos, é relativamente simples

e computacionalmente eficiente.
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INTRODUCTION

One of the most significant challenges in processing of seismic
data is to filter different types of noises. Ground-roll is one of the
main types of coherent noise in land seismic data. It has the sig-
nificant characteristics of relatively low velocity, low frequency,
high amplitude and strong energy (Sheriff, 2002). Because of its
dispersive nature and low velocity, ground-roll masks the shal-
low reflections at near offsets and deep reflections at far offsets
(Saatcilar & Canitez, 1988; McMechan & Sun, 1991; Saatcilar &
Canitez, 1994; Henley, 2003) and also distorts reflection events
by interfering with them.

Ground-roll is one of the main coherent noises in petroleum
seismic exploration, many methods have been introduced to at-
tenuate this type of noise. Although the right choice of attenu-
ation techniques is a matter of trial and error (Sheriff & Geldart,
1995). The conventional methods can be divided into two groups.
The first one can be summarized to filter method which is based
on suppression of undesired parts of recorded data in the spec-
tral domain, including high-pass and band-pass filtering, f − k
filtering (Embree et al., 1963; Treitel et al., 1967; Yilmaz, 2001)
and the adaptive ground-roll attenuation method (Wang et al.,
2012; Hosseini et al., 2015). These methods have their limita-
tions. High-pass and band-pass filter may eliminate the low fre-
quency component of effective waves since the frequency bands
of ground-roll noise and reflections are often overlapped (Sirgue,
2006). The conventional f − k filter would cause serious dis-
tortion of effective waves when the energy of ground-roll noise is
much stronger than that of reflections (McMechan & Sun, 1991;
Liu, 1999; Tokeshi et al., 2006). The other one is wave field sep-
aration method based on ground-roll noise extraction and arith-
metical subtraction of it from the raw shot gather in the t − x
domain, including Wiener-Levinson algorithm (Karsli & Bayrak,
2004), Karhunen-Loève (K-L) transform (Gómez Londoño et al.,
2005), wavelet transform (Deighan & Watts, 1997) and Radon
transform (Russell et al., 1990a,b).

There are different methods of decomposing a seismic signal
used for suppressing the ground-roll: Empirical Mode Decom-
position (EMD), developed by Huang et al. (1998) and used by
Ferreira et al. (2013); singular value decomposition, SVD used
by Porsani et al. (2010), Wavelet decomposition used by Deighan
& Watts (1997), decomposition by filtering frequency bands with
binomial operators justified by Akansu & Haddad (2001) and
Vetterli & Herley (1992) used by Ariza & Porsani (2015) for at-
tenuation ground-roll.

Filtering with binomial operators (Haddad, 1971; Vetterli &
Herley, 1992; Akansu & Haddad, 2001), enable decomposition

and perfect reconstruction of the signal through the linear combi-
nation of its components. The decomposition of a signal is made
into frequency bands by means of a matrix operators X̃, which is
obtained by weighting each column of the matrix Xjn (obtained
through the dipoles (1, 1) and (1, −1)). This procedure allows
for the original signal shifted to the position S̃n = Sn∗δn−a. To
recover the signal in the initial position just delay it for a samples.

It can be shown that the construction of the matrixX, through
the dipoles (1, 1) and (1, −1), is just a special case of a general
breakdown binomial with dipoles (α, β) and (β, −α) where α
and β can be real or complex (in this work we will only consider
the case real), where the values of α and β beta can be arbitrarily
chosen or may be obtained by the features given itself, creating
infinite possibilities of decomposition. In the present paper we
compute the dipoles adaptively, with (1, c) and (c,−1), where c
is the coefficient of the prediction error operator obtained by using
the Burg algorithm.

THEORY
Following is presented a form of general binomial decomposi-
tion with dipoles (α, β) and (β, −α), where α and β can be
real or complex (in this text we will only consider the real case).
The dipoles (1, 1) and (1, −1) are a special case of this gen-
eral representation (Boyd et al., 2001; Severo, 2008; Severo &
Schillo, 2009).

In the case of a binary decomposition of order 1 (N = 1),
the operators matrixX is written as follows:

X =

[
α β

β −α

]
=

[
yT0
yT1

]
=
[
x0 x1

]
(1)

You can verify that X2 = λI. For the case where N = 1,
λ = α2 + β2 , so the matrixX−1 is:

X−1 =
1

α2 + β2

[
α β

β −α

]
(2)

The operator matrix X̃ is obtained, for example, selecting the
first column ofX−1(a = 0). This results in

X̃0 =

⎡⎢⎢⎢⎣
α2

α2 + β2
β2

α2 + β2

αβ

α2 + β2
−αβ
α2 + β2

⎤⎥⎥⎥⎦ (3)

It should be noted that if the columns of the matrix X̃ are stacked,
the result is (1, 0)T .
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Applying binary decomposition of order 1 (N = 1) to a
discrete signal {Sn} = {s0, . . . , sM−1} is equivalent to
performing the convolution of the original signal with each of the
columns of the operator matrix X̃0. The signal recovery is ob-
tained by a simple stacking of the signal components.

{Rn} = {Sn} ∗ {X̃00}+ {Sn} ∗ {X̃01}
= {Sn} ∗ {X̃00 + X̃01}
= {Sn} ∗ (1, 0)T = {Sn} ∗ {δn}
= {Sn}

(4)

The operators matrix X for any order N (where X have
N + 1 columns) is calculated as follows:

Xrn = (α, β)
∗(N−r) ∗ (β, −α)∗r (5)

for 0 ≤ r ≤ N . Remember that

x∗n = x ∗ x ∗ x ∗ · · · ∗ x ∗ x︸ ︷︷ ︸
n

(6)

denotes n-times convolution, where x∗0 = δ0, x∗1 = x
and δ0 is the Kronecker delta.

The matrix generated, as shown previously, keeps the prop-
erty of orthogonality between rows and columns, i.e., yTi xj = 0
for i �= j and yTi xj = λ

N for i = j. That is

X2 = λNI (7)

where
λ = α2 + β2 (8)

calculating the inverse matrix as

X−1 =
1

λN
X (9)

The property X2 = λN I is particularly important in sig-
nal decomposition and filtering. We note that, despite of a scale
factor, λN , X matrix is its own inverse. This property provides
N + 1 possibilities to decompose the original signal, each re-
lated to a particular column of the matrix X̃a (a = 0, 1, . . . , N ).
The signal can be decomposed or restored as a linear combi-
nation of components, obtained by convolution of the original
signal with the columns of the matrix X̃a . Each component,
{S̃rn} = {X̃rn} ∗ {Sn}, will have a different frequency con-
tent depending on the values α and β selected.

The values of α and β can be arbitrary or can be calcu-
lated adaptively, using local characteristics of the data {Sn} =
{s0, . . . , sM−1}. Consequently, the method is versatile and
relatively simple to implement. It may be used for signal analysis
or filtering, and there are many ways to perform the decomposi-
tion of a signal.

RESULT
In order to get local information from the data, the recursive Burg
algorithm was used to obtain the first coefficient of the prediction
error for a specified window’s length (Burg, 1967). It is possible
to generate dipoles (1, c) and (, −1), where c is the first pre-
diction error coefficient, for a given window. Taking into account
the minimum phase property of the linear unit error prediction
filters when they are calculated using the least squares method
(Appendix A of Chu, 2004), the first coefficient is always negative
less than one, then the first dipole (1, c) is a differentiation oper-
ator allowing the capture of high frequency information (depend-
ing on the window width) and the second dipole (c,−1) (both
negative) would be an operator of integration which allows cap-
turing low frequency information.

We use a 96 channel common-shot-point gather (Fig. 6A)
acquired in the North-west Brazil (Tacutu Basin) to demonstrate
the feasibility and applicability of the proposed method. The geo-
phone interval is 50 m. The length of the record is 4000 ms with
a 4 ms sample interval.

There were tested different window sizes (from 20 ms to
2000 ms), achieving the best contrast between areas with and
without ground-roll with a 200 ms window. Figure 1 shown the
values of the coefficient c, for the shot gather shown in Figure
6A. The presence of the ground-roll, corresponding to the low
frequency areas, is marked by the lower amplitude values of the
c coefficients. More information about how was construct this
graph, see appendix.

Figure 1 – Map of the prediction error coefficients, used to generate the bino-
mials filters, corresponding to the shot gather in Figure 6A.
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The algorithms used to trace decomposition are shown
below (Algorithm 1 and Algorithm 2).

Signal decomposition and reconstruction

To test the decomposition and perfect reconstruction of the signal
it was used a level of decomposition N = 7 weighted by the first
column of the inverse matrix (a = 0). So the seismic traces in
Figure 6A is decomposed into 8 panels with different frequency
content, from highest to lowest frequency. Figure 2 shows the
corresponding average amplitude spectra. We note that gener-
ally the decomposed panels have lower amplitude spectra than
the original.

Figure 3 shows four (S̃1, S̃3, S̃5 and S̃7) of the eight
decomposed panels. It can be seen that each decomposed shot
gather has different frequency content. Air wave (or sound wave)
noise, with an apparent velocity of about 340 m/s, can be iden-
tified in S̃1 (Fig. 3A). It is clear that air wave is a type of non-

dispersive coherent noise, as same as body wave. As seen in
panel S̃7 , (Fig. 3D), reflections are heavily contaminated by
largely dispersed ground-roll noise. The differences between the
firsts panels, corresponding to higher frequencies, are minimal.
The stack of all decomposed panels reconstruct the original shot
gather. The error of the reconstruction is due to the numerical
computational artifacts (Fig. 4).

Ground-roll attenuation

The weak reflections are invisible due to the interference of the
strong ground-roll noise (Fig. 6A). Furthermore, the reflected
events in the shot gather are even truncated due to the high-
amplitude of the ground-roll. The blue line in Figure 2 shows
the average amplitude spectra of the ground-roll. We can see that
mostly of its energy is concentrate between frequencies 1 Hz to
10 Hz, overlapping with the frequencies content of the reflections,
with occur dominantly between 10 Hz to 50 Hz. Figure 3D shown

Algorithm 1 – Trace decomposition.
Require: S(ns): Input trace (number of samples); Lw: long window; N : level of decomposition;

1: initialDS(ns,N + 1) = 0.0; x(Lw) = 0.0;Y(Lw,N + 1) = 0.0; z(ns) = 0.0
2: for i = 1, ns− Lw + 1 do
3: x← S(i : i+ Lw − 1);
4: Y ← Compute window decomposition of x ;
5: DS(i : i+ Lw − 1, :)← DS(i : i+ Lw − 1, :) +Y;
6: z(i : i+ Lw − 1)← z(i : i+ Lw − 1) + 1;
7: end for
8: DS← DS(j, :) ← DS(j, :)/z(j); j = 1, . . . , ns

9: return Decomposed traceDS(ns,N + 1)

Algorithm 2 – Window decomposition.
Require: x(Lw): Input (number of samples);N : level of decomposition; a = 0: Weighting column.

1: initialX(N + 1, N + 1) = 0; X̃(N + 1, N + 1) = 0;Y(Lw +N,N + 1) = 0;
2: if
∑ |x| > 0 then

3: Compute c with Burg algorithm
4: X← Xrn = (1, c)∗(N−r) ∗ (c,−1)∗r r = 0, 1, . . . , N

5: λ← α2 + β2 ; α = 1 ; β = c
6: X−1 ← X/λN
7: X̃← X̃(:, j)← X(:, j) ·X−1(j, a); j = 0, 1, . . . , N

8: Y ← Y (:, j)← x ∗ X̃(:, j); j = 0, 1, . . . , N

9: else
10: Y = 0.0

11: end if
12: return Decomposed window Y(Lw,N + 1)

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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Figure 2 – Average amplitude spectra of the shot gather decomposition by using dipoles (1, c) and (c,−1) forN = 7.

that the ground-roll may be successfully separated out from the
original shot gather. Observing the amplitude spectra of the orig-
inal and decomposed shot gathers (Fig. 2), we note that the dom-
inant low frequency content may be formed by adding panels
S̃6 and S̃7. Hence, a good option to mitigate the ground-roll
is to reconstruct the signal by adding panels from S̃0 to S̃5,
which we nominate as DB1c result. That is equivalent to subtract
S̃6 and S̃7 from the original shot gather.

To validate the DB1c result we applied two others commonly
used methods to filter the shot gather data: trapezoidal frequency
band-pass filter (f1 = 10 Hz, f2 = 20 Hz, f3 = 60 Hz,
and f4 = 70 Hz) and f − k filtering. Figure 5 show the av-
erage amplitude spectra of the filtered shot gathers. Since the
frequencies bands of ground-roll and reflections are overlapped,
the band-pass filter attenuate both, the low frequency component
of the ground-roll and the signal. The f − k filtering still retains
strong ground-roll noise in the frequency band from 0 Hz to 20 Hz,
whereas the proposed method (DB1c) removed most part of the
ground-roll.

Figure 6 shows comparisons between the original shot gather
and results obtained by using frequency domain methods. All
three methods provide ways to attenuate ground-roll, but band-
pass filter has significant decrease amplitude drawback. f − k
filtering causes serious distortion of the reflection and the adap-
tive binomial filtering is more effective to the ground-roll attenu-
ation, preserving better the reflections.

CONCLUSIONS

We presented an adaptive binomial filtering method where the fil-
ters are obtained by convolving dipoles. These dipole coefficients

are associated with the prediction error operator and are computed
by using the Burg algorithm. We show that the matrix associated
with the binomial filter may be used to perform signal decompo-
sition and/or filtering the data. We applied the method to filter the
ground-roll in a shot gather. The obtained results showed the new
approach is more effective when compared with the commonly
used filtering methods working in the frequency domain. Below
we summarize the main general characteristics of the proposed
adaptive binomial filter:

• The implementation of the bank of binomial filters, at any
level, allows for the decomposition and also for a perfect
reconstruction of seismograms;

• Any additional processing may be performed in any of
the decomposed signal or panel, which makes the method
very versatile;

• The generation of adaptive binomial operator (filter) only
involves dipoles convolution and their use in filtering of
seismic data is considerably simple and computationally
efficient;

• The signal decomposition/filtering is performed trace by
trace. That property may be explored by using paralleliza-
tion computing for processing of very large data volumes;

• The filtering method is robust, easy to implement, com-
putationally efficient and requires few parameter setting by
the user.

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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Figure 3 – Four of the eight decomposed shot gathers using the adaptive binomial decomposition method. ˜S1 in (A), ˜S3 in (B),
˜S5 in (C) and ˜S7 in (D).
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Figure 4 – Average amplitude spectra (in decibel scale) of the shot gather and perfect reconstruction results. The red
line, the blue line, and the black line denote spectra of original data, perfect reconstruction and error, respectively. (Red
and blue lines are coincident).

Figure 5 – Comparisons of the average amplitude spectra, in linear scale (A) and decibel scale (B), of the original and
filtered shot gathers shown in Figure 6. The red, blue, green and black lines denote spectra of original data and results
after filtering using band-pass, f − k, proposed (DB1c) methods, respectively.
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Figure 6 – Comparisons between the original shot gather and filtered results. The original shot gather in (A), results after band-pass
in (B), results of the f − k in (C), and the proposed method (DB1c) in (D).
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Algorithm 3 – Prediction error coefficients map.
Require: S(ns): Entry trace (number of samples); Lw: Window’s length;

1: InitializeMp(ns) = 0.0; x(Lw) = 0.0; y(Lw) = 0.0; z(ns) = 0.0;
2: for i = 1, ns− Lw + 1 do
3: x(1 : Lw)← S(i : i+ Lw − 1);
4: Compute c for x(Lw); Burg algorithms
5: y(1 : Lw)← c;
6: Mp(i : i+ Lw − 1)← Mp(i : i+ Lw − 1) + y(Lw);
7: z(i : i+ Lw − 1)← z(i : i+ Lw − 1) + 1;
8: end for
9: Mp(j)←Mp(j)/z(j); j = 1, . . . , ns

10: return map errorMp(ns)

APPENDIX
For the obtaining of the data presented in Figure 1, the following
procedure was followed for each seismic trace:

• The coefficient map begins with a value of 0.0;

• The value of the first coefficient error for the window’s
length is calculated using the Burg algorithm;

• The coefficient value is added to all the positions of the
window’s length in the coefficient map;

• The window is then moved one sample, and the previous
two steps are repeated until the end of the trace.

At the end, an average is calculated as a function of the number of
values added at each position of the coefficient map. This proce-
dure is presented in the Algorithm 3.
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YILMAZ Ö. 2001. Seismic data analysis: Processing, inversion, and
interpretation of seismic data. Society of Exploration Geophysicists.

Recebido em 13 maio, 2016 / Aceito em 21 maio, 2017

Received on May 13, 2016 / Accepted on March 21, 2017

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016


