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MODAL INVERSION BY USING PARAMETERIZATION WITH CHEBYSHEV POLYNOMIALS
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Luiz Gallisa Guimarães3 and Carlos Eduardo Parente Ribeiro3

ABSTRACT. This paper discusses the estimation of sound speed perturbations in a shallow water waveguide, from measurements of modal travel times. The formu-

lation of the Inverse Problem is reduced to a least squares solution, being highlighted that the choice of discretization of the set of model parameters is of fundamental

importance. In the Parameterization here discussed Chebyshev polynomials are considered, allowing to obtain satisfactory results. Finally, the original formulation is
adapted to the case of unsynchronized arrivals.
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RESUMO. Este trabalho aborda a estimativa de perturbações de velocidade do som em um ambiente de águas rasas, a partir de medições de tempo de percurso

modal. A formulação do Problema Inverso é reduzida a uma solução por mı́nimos quadrados, sendo destacado que a escolha da discretização do conjunto de parâ-
metros do modelo é de fundamental importância. Na parametrização aqui discutida são considerados polinômios de Chebyshev, os quais permitem obter resultados

satisfatórios. Adicionalmente, a formulação original é adaptada ao caso de chegadas não sincronizadas.
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INTRODUCTION

The lack of synoptic data (temperature, salinity, etc.) in coastal re-
gions is an old problem. Indeed, the swiftness of the phenomena
associated with shallow water, in combination with their respective
small spatial scales, hinders proper sampling of the coastal ocean
structure using conventional instruments. Such phenomena can
have a major impact on regional oceanography, also affecting the
performance of SONAR systems (Chiu et al., 1996). In this con-
text, the Ocean Acoustic Tomography (OAT) arises as an important
tool for monitoring environmental variabilities in shallow water
regions. The OAT was originally designed for deep water regions,
based on Ray Theory. However, tomographic methods based on
Ray Theory are sometimes insufficient to shallow water regions,
and alternatives have been found in the use of Matched Field Tech-
niques and Modal Tomography (Taroudakis, 1994). This paper
discusses the estimation of sound speed perturbation in a shal-
low water environment, from modal travel time measurements.

THEORY
Modal Inversion
The Normal Mode Theory is one of many methods used for the
calculation of acoustic field in shallow water. The modal travel
time tomography is based on the dispersive characteristics of the
acoustic signal propagated. The effect of dispersion, very pro-
nounced at low frequency, allows to obtain, from the modal group
velocities, the corresponding travel times, which are different for
each frequency. The Inverse Problem (from now on, IP) consid-
ered in the present work provides the sound speed perturbations
(Δc) from modal travel time perturbations (Δt). The starting
point is the he homogeneous Helmholtz equation in cylindrical
coordinates (r, φ, z), with cylindrical symmetry (∂/∂φ = 0),
expressed by

∇2P (r, z) + 1

ρ(z)
∇ρ(z) · ∇P (r, z)

+ k2(r, z)P (r, z) = 0 ,

(1)

where P (r, z) is the acoustic pressure in the frequency do-
main, ρ(z) the density (considered constant in each layer) and
k(r, z), the wavenumber. We can represent the solution of
Eq. (1) at any range r as a sum ofM local modes

P (r, z) =

M∑
m=1

|Hm|eiφmum , (2)

where Hm is the modal amplitude, φm, the modal phase and
um, the modal eigenfunction. The Modal Phase, at range R, can

be obtained by (Taroudakis, 1994)

φm =

R∫
0

km(r)dr , (3)

where km(r) is the eigenvalue of orderm, determined for each
distance r, being associated with the depth equation (ordinary
differential equation defined in z). The acoustic pressure, in the
time domain, can be expressed as a linear combination of modes

p(r, z, t) =

∞∑
m=1

pm(r, z, t) , (4)

where each term, by the Fourier transform, can be expressed as

pm(r, z, t) =

+∞∫
−∞
|Hm|ei(φm−ωt)um dω . (5)

From the condition of stationary phase (φm − ωt = 0),
and by the definition of Modal Phase (Eq. 3), one can get the ex-
pression that relates the modal travel time to the modal phase

tm =
∂φm
∂ω
. (6)

The modal phase perturbation can be related to the wavenum-
ber perturbation by the expression

δφm(r) =

∫
δkm(r)dr , (7)

with the wavenumber perturbation expressed by (Taroudakis,
1994)

δkm =

∞∫
0

Qmδc dz , (8)

where Qm is a function that depends on “reference” (unper-
turbed) environmental parameters

Qm = − ω
2

km

1

ρc3
u2m . (9)

The modal travel time perturbation, at range R, can be ex-
pressed as

δtm =

R∫
0

∞∫
0

∂Qm

∂ω
δc(r, z) dz dr . (10)

In a first approximation, for the Range-Independent (RI) case
and depth of water column D, the Eq. (10) can be written as

δtm = R

D∫
0

∂Qm
∂ω
δc(z) dz . (11)
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Discretization

We frequently seek to discretize the set of model parameters (δc),
so that the IP can be solved by using the linear algebra meth-
ods. Discretizing the water column into a system with L layers,
i.e., L + 1 depths, zl = [0, z2, . . . , zL+1], as shown in the
Figure 1, with Δcl corresponding to an average of δc in the lth
layer, we can consider a matrix Δc with L elements Δcl
(Rodŕıguez & Jesus, 2000, 2002).

Figure 1 – Discretization of the water column in L layers. Each Δcl corre-
sponds to an average of δc in the lth layer.

Then, the Eq. (11) can be written as

δtm =

L∑
l=1

(I)︷ ︸︸ ︷
R

zl+1∫
zl

(
∂Qm

∂ω

)
δc dz . (12)

Making an approximation for the expression (I) of Eq. (12)

R

zl+1∫
zl

(
∂Qm
∂ω

)
δc dz ≈ Δcl

Gml︷ ︸︸ ︷
R

zl+1∫
zl

(
∂Qm
∂ω

)
dz ,

(13)

the Eq. (12) can be reduced to a linear system

δtm ≈
L∑
l=1

GmlΔcl , m = 1, 2, 3, . . .,M , (14)

that leads to the matrix equation of the IP

GΔc = δt , (15)

relating a set ofM modal travel time perturbations (δt) to a set
ofL average sound speed perturbations (Δc), through the oper-
ator G. Then,Δc is what we wish to determine. If L < M (less
layers than perturbations), the least squares solution is (Rodŕıguez
& Jesus, 2000, 2002)

Δc = (GTG)−1GT(δt) . (16)

Parameterization

The goal of the parameterization is, as a general rule, reduce the
degrees of freedom of the IP solution, in a controlled way. The
formal expression of the parameterization is a linear combination
of orthogonal basis functions. In general, sound speed perturba-
tion can be expressed as an expansion in terms of orthogonal
functions (Rodŕıguez et al., 1998; Rodŕıguez & Jesus, 2002):

δc =

I∑
i=1

αiFi(z) , (17)

where αi is the expansion coefficient, and Fi(z), the orthogonal
function. The reason of the orthogonality condition is to guarantee
α to be unique. Then, by the Eq. (17), the Eq. (12) can be written
as

δtm =

I∑
i=1

αi

⎡
⎣R

D∫
0

(
∂Qm

∂ω

)
Fi(z)dz

⎤
⎦

︸ ︷︷ ︸
Γmi

=

I∑
i=1

αiΓmi ,

(18)

where Γ is a new matrix, whose elements Γmi relate the modal
travel time perturbations to the amplitudes of the orthonormal
functions. Then, by the Eq. (18) one can get the matrix equation

Γα = δt , (19)

whose least squares solution (L < M ) is

α = (ΓTΓ)−1ΓT(δt) . (20)

Several families of polynomials have the orthogonality prop-
erty such as Legendre, Laguerre, Hermite e Chebyshev, among
others. For the present work, we have chosen the Chebyshev
polynomials of first kind, for its efficiency well reported in the
literature, particularly due to the fast convergence of the result-
ing series.

Parameterization with Chebyshev Polynomials
Chebyshev polynomials are orthogonal functions which can be
obtained recursively. As significant advantages of the represen-
tation of a function in terms of Chebyshev polynomials, we can
highlight (Schultz & Strayer, 2005, p. 137): “(i) the expansion
rapidly converges; (ii) the polynomials have a simple form; and
(iii) the polynomial approximates very closely the solution”. In the
present work, we have calculated seven Chebyshev polynomials
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of first kind (T0 to T6), and the Eq. (17) was rewritten in the form

δc =

I∑
i=1

αiTi−1(x) , −1 ≤ x ≤ 1 . (21)

Then, the elements of the matrix Γ of Eq. (19) can be written
as

Γmi = R

D∫
0

(
∂Qm
∂ω

)
Ti−1(z)dz . (22)

Changing the limits of integration, from [0, D] to [−1, 1]
(the interval over which the set of Chebyshev polynomials is
orthogonal), by change of variables

x =
2z

D
−1 ⇒ dx =

2

D
dz ⇒ dz =

D

2
dx , (23)

the Eq. (22) can be written in the form

Γmi =
1

2
RD

1∫
−1

(
∂Qm
∂ω

)
Ti−1(x)dx . (24)

Inversion with Unsynchronized Arrivals

The concept of OAT was developed to monitor the changes in the
marine environment by using acoustic inverse techniques. The
original idea was based on measuring perturbations in travel time
between acoustic sources and receivers. This assumes very ac-
curate source-to-receiver clock synchronization (Aulanier et al.,
2013). In the ideal case, as illustrated in Figure 2, δt can be
obtained by

δt = treal − tmodel , (25)

where vector treal represents the set of times related to the max-
ima of the arrival pattern (recorded data), and vector tmodel,
the set of arrival times calculated by Ray Tracing Model.

For the case of unsynchronized arrivals, the inversion should
be performed based on relative arrival times (Rodŕıguez, 2000,
p. 54), being necessary to rewrite Eqs. (19) and (20), and express
Γ and δt with a reduced number of lines (Rodŕıguez & Jesus,
2004). Then, we must define the vector

Δt = Δtreal −Δtmodel , (26)

where the vectorsΔtreal andΔtmodel, as illustrated in Fig-

ures 3 and 4, corresponds, respectively, to

Δtreal =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δtreal2 = treal2 − treal1

Δtreal3 = treal3 − treal1

...

(27)

and

Δtmodel =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δtmodel2 = tmodel2 − tmodel1

Δtmodel3 = tmodel3 − tmodel1

...

. (28)

Figure 2 – Ideal Case: travel time differences between times related to the max-
ima of the arrival pattern (blue line) and times calculated by model (black stems).

Figure 3 – Time differences (arrival pattern).

Then, considering the matrixΓ expressed as a new matrixΨ,
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and based on the definition ofΔt, we can show that

Δt1 = Δt
real
2 −Δtmodel2

= (treal2 − treal1 ) − (tmodel2 − tmodel1 )

= (treal2 − tmodel2 )− (treal1 − tmodel1 )

= Γ2α − Γ1α
= (Γ2 − Γ1)α = Ψ1α

=

I∑
i=1

(Γ2i − Γ1i)αi , (29)

with vectors Γ1 and Γ2 corresponding, respectively, to the first
and the second row of matrix Γ, and vector Ψ1, to the first row
of matrixΨ. So, the Eq. (19) should be rewritten in the form

Ψα = Δt , (30)

with least squares solution (L < M ) given by

α = (ΨTΨ)−1ΨTΔt . (31)

Figure 4 – Time differences (model).

Array Processing

In contrast with Matched Field Techniques, which deal in a natural
way with array processing, the methods of Travel Time Tomogra-
phy deal with the information acquired on a single hydrophone
(Rodŕıguez, 2000, p. 87). The Eq. (30) results from the considera-
tion of a single hydrophone. Considering N sensors, we can get
a set of matrix equations of the form

Ψ1α = Δt1, Ψ2α = Δt2, . . . ,ΨNα = ΔtN , (32)

sharing the same vectorα. Then, these equations can be reduced
to a single set, identical to Eq. (30), as a concatenated system

Ψ =

⎡
⎢⎢⎢⎢⎣
Ψ1
Ψ2

...
ΨN

⎤
⎥⎥⎥⎥⎦ ; Δt =

⎡
⎢⎢⎢⎢⎣
Δt1
Δt2

...
ΔtN

⎤
⎥⎥⎥⎥⎦ . (33)

SIMULATION

The discretization sometimes becomes inappropriate to solve the
IP. To illustrate this point, it was performed a modal inversion sim-
ulation, using sound speed based on CTD data, collected in the
ITIMATE96 experiment. This experiment was carried out in June
1996, in the Nazaré site, on the continental shelf, 50 nautical miles
north of Lisbon (Rodŕıguez et al., 2000, p. 6). It was considered a
RI shallow water environment with depth of 135 m, a source with
frequency of 550 Hz and a receiver located at a distance of 5600
m from the source, according to Figure 5. Also, it was consid-
ered the propagation of normal modes only in the water column
(trapped modes).

The reference Sound Speed Profile (SSP), c0(z), was the
mean SSP, i.e., the average of 20 profiles collected on 14 June,
1996, as shown in the Figure 6. The perturbed profile c(z) was
the first of these 20 profiles.

Fifty trapped normal modes were calculated for each profile,
and the same number of modes becomes possible relate them
one to one. The modes for c0(z) are not too different from the
modes for c(z). Then, it was possible to expect the simulation
work properly. The Figure 7 shows the result obtained by modal
inversion with discretization, but without parameterization. This
result is bad, with very low accuracy, indicating that the approach
used is very weak, by reason of discretization error. This fact
shows that the set of sound speed perturbations must be dis-
cretized as a linear combination of basis functions, like is done
in the parameterization.

Adopting the parameterization to fix the problem of accuracy,
we got the result of Figure 8. As we can see, the inverted sound
speed perturbation is close to the expected, showing a much better
result. The parameterization of sound speed perturbations, using
the Chebyshev polynomials, allowed to obtain a high accuracy re-
sult, showing the importance of parameterization and properties
of polynomials.

CONCLUSION

The decision of how to discretize the set of model parameters
is essential for an accurate inversion of the sound speed per-

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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Figure 5 – RI shallow water environment, indicating some parameters that have been used in the modal inversion simulation.

Figure 6 – INTIMATE96 (14 June): mean sound speed profile (m/s).

turbation. The representation of the set of unknowns by a linear
combination of orthogonal functions reduces the degrees of free-
dom of the PI solution in a controlled way, with the advantage
of ‖α‖2 = ‖δc‖2. The choice of basis functions requires an
adequate knowledge of the problem as well as the behavior of the
basis. It was verified the efficiency of Chebyshev polynomials as
orthogonal basis functions, to represent the sound speed pertur-
bation. The formulation presented, after due adjustment matrix,
could be used in the case of unsynchronized arrival. The resulting
equation also can be used in the case of sensor array.
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