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SEISMIC TRAVELTIME TOMOGRAPHY APPLIED TO DATA FROM MIRANGA FIELD,
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ABSTRACT. The growing global demand for hydrocarbons has tested the limits of oil exploration and exploitation technologies. Among the seismic methods,
tomography is an alternative means for high-resolution characterization of reservoirs, and it enables a more efficient recovery of both new and mature fields. In this

work we apply the traveltime inversion to crosswell data from Miranga Field, in the Recôncavo Basin, State of Bahia. The objective is to estimate the two-dimensional
velocity distribution in the region between the wells. We use linearized inversion through the Levenberg-Marquardt scheme. The linear system during the iteration is

solved by the Conjugate Gradient method. Because the inverse problem is ill-posed we apply regularization by derivative matrices of first and second orders, and the
optimal regularization parameter is chosen using the L-curve and theΘ-curve.

Keywords: reservoir characterization, traveltime tomography, seismic inversion, regularization, Recôncavo Basin.

RESUMO. A crescente demanda mundial por hidrocarbonetos tem testado os limites das tecnologias de exploração e explotação de petróleo. Dentro dos métodos

sı́smicos, a tomografia surge como alternativa de caracterização de alta resolução dos reservatórios, viabilizando uma recuperação mais eficiente de campos novos

e maduros. Este trabalho é o resultado de um estudo da inversão de dados de tempos de trânsito entre dois poços do Campo de Miranga, na Bacia do Recôncavo.
O objetivo é estimar a distribuição de velocidades na região entre os dois poços. Para tanto, será usada a inversão linearizada, também conhecida como inversão de

Levenberg-Marquardt, combinada com o método Gradiente Conjugado. Ambos os métodos foram testados com regularização por matrizes de derivadas de primeira e
segunda ordens. O parâmetro de regularização ótimo foi escolhido por meio da curva L e da curvaΘ.
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INTRODUCTION
After nearly a century since of the beginning of petroleum industry
in Brazil, many early prolific basins are now in the declining stage
of hydrocarbon production. The Recôncavo Basin, which is the
oldest Brazilian basin in activity, faces the challenge of maintain-
ing economic levels of oil production decades after reaching its
peak in the 1970s. At its current level of maturity, the Recôncavo
Basin Fields require sophisticated techniques of secondary and
tertiary oil hydrocarbon recovery. Such techniques demand a
more detailed understanding of the geological substratum that
goes beyond those offered by traditional exploration seismology.

As part of the geophysical imaging tools, seismic tomogra-
phy utilizes higher frequency sources than are used by standard
seismic methods to obtain a characterization result with better
resolution. In an ideal situation, sources and receivers should
be placed all around the object to be imaged. In geophysics,
however, two acquisition geometries are mainly used: Vertical
Seismic Profile (VSP), where the sources are arranged on the sur-
face and receivers along the well, and Cross Well Profile (XWP),
with sources and receivers distributed along different wells.
XWP is the geometry used in this work.

The tomographic technique can be divided into two classes:
traveltime tomography, which considers only the P wave travel-
time between each source-receiver pair, and dynamic tomography,
which uses the shape of the wave that arrives at the receiver.

Having the traveltimes for various source-receiver pairs, one
must choose the most suitable inversion procedure, to obtain a
model that represents the subsurface velocity distribution. Inver-
sion is one of the most studied topics in geophysics, with many
schemes and algorithms presented in the literature. For this work
the Levenberg-Marquardt inversion was chosen. In this method,
each iteration requires the solution of a linear system, so the
Conjugate Gradient method optimized for operations with sparse
matrix was selected as the algorithm for solving the linearized
inverse problem.

To minimize the problems with stability and ambiguity of the
solution, we used regularization by derivative matrices. Regular-
ization transforms the original problem into another one with a
more stable solution. This process requires special care to choose
the regularization parameter, which defines the balance between
the smallest error in the data and the amount of regularization in
the inversion. As a result, strategies based on L-curve and Θ-
curve are evaluated as criteria for choosing the optimal regular-
ization factor.

INVERSE PROBLEMS, CONJUGATE GRADIENT AND
LEVENBERG-MARQUARDT

One of goals in geophysics is to reconstitute the subsurface phys-
ical parameters by using data from surface, well or aerial surveys.

However, the equations that dictate the physical laws allow us to
only know the response data from a defined model, in a process
known as forward modeling (Snieder & Trampert, 1999). The in-
verse problem arises as a tool, with its limitations, to work around
this issue; that is, it attempts to estimate a model that fits the
measured data.

In general, geophysical data are obtained in discrete form,
which allows for a matrix formulation of the inverse problem.
Let d = [d1d2, . . . , dM ]T be the data parameters vector and
m = [m1m2, . . . , mN ]

T be the model parameters vector; in
this case, for a linear geophysical problem, d = Gm. If the
matrixGM×N is known and invertible, then the system solution
is easily obtained asm = G−1d. However, geophysical prob-
lems tend to be more complex. Most of the problems are nonlin-
ear, and even when they are linear,G is not easily invertible and
requires special treatment for various reasons.

Inverse problems in geophysics are usually ill-posed, mainly
because of the instability and non-uniqueness of its solutions. In
addition to the use of a priori information, such as geological or
other geophysical data, it is common to use a numerical treatment
that stabilizes the solution, such as regularization.

Because it is a fast and effective method, the Conjugate Gra-
dient method is one of the most used methods for solving linear
systems in the presence of symmetric and positive definite ma-
trices. Consider the linear system Gm = d. Conjugate Gra-
dient is an iterative method that converges to a solution in fewer
than N iterations, where N is the order of the matrix G of the
system. Because of rounding errors during computational oper-
ations, the estimation after the number of iterations mN will be
not an exact solution but a good approximation of it (Hestenes
& Stiefel, 1952).

The solution of the system will converge to the minimum of
the quadratic form associated with a minimum of the objective
function

S(m) =
1

2
mTGm−mTd+ c. (1)

Given an initial solution m0, the Conjugate Gradient steps
for this system are shown below:

r0 = d−Gm0
p0 = r0

Do i = 0, N

αi =
rTi ri

pTi Gpi
,

mi+1 =mi + αipi,
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ri+1 = ri − αiGpi,

βi = −
rTi+1Gpi
pTi Gpi

,

pi+1 = ri+1 + βipi

Enddo

In the above scheme pi and ri are auxiliary vectors and αi
and βi are auxiliary scalars used for the solution update. To better
manage the computing resources in the specific case of sparse
matrices found in tomography, the storage scheme proposed in
the YALE sparse matrix package is used in this paper (Eisenstat
et al., 1982). This format allows us to reduce operations with
zero elements, which are massively present in a sparse matrix,
thereby significantly improving the computational efficiency of the
algorithm.

Let d be the data vector, and m be the model parameters;
in this case, the forward modeling is given by

d = g(m), (2)

where g is the forward modeling operator (Sen & Stoffa, 2013).
In most geophysical problems, g is a nonlinear operator. There-
fore, the objective function that minimizes the square error is no
longer a paraboloid with a single minimum point. Instead, the
objective function of nonlinear problems is formed by a rough
“sheet” with many local minima. Thus, one can classify the non-
linear inversion methods into two main groups: global scope and
local scope.

Classified as a local scope method, the linearized inversion
or Levenberg-Marquardt inversion relies on the basic assump-

tion that data vary linearly with the model parameters in the region
close to the model mk. Expanding the error vector in a Taylor
series and considering only its linear components, we obtain

Δdk = GkΔmk, (3)

where k indicates the iteration number,Gk is known as the sen-
sibility matrix (which is composed of forward modeling opera-
tor derivatives), Δdk represents the data error and Δmk is the
model update, where

mk+1 =mk +Δmk. (4)

Thus, it is possible to reduce the nonlinear problem to an it-
erative process that consists of successive linear problems given
by Eq. (3). The linear system can still be numerically restructured
to meet the demands of regularization.

REGULARIZATION, L-CURVE ANDΘ-CURVE

In the numerical solution of discrete ill-posed problems, regu-
larization techniques are used to make inversion a more stable
problem. These techniques solve a similar problem that is more
robust with respect to variations in the input data (Oliveira, 2013).
In this work, the regularization by derivative matrices proposed by
Twomey (1963) was used.

The solution for regularization by derivative matrices is ob-
tained minimizing the objective function S(m), defined as
(Bassrei & Rodi, 1993)

S(m) = eTe+ λLn . (5)

In Eq. (5), λ is a positive constant known as the regularization parameter and dictates the regularization intensity added to the
original problem. The term Ln represents the following matrix operations:

Ln = ||ln||2 = (Dnm)TDnm, (6)

whereDn indicates the derivative matrix used, and n denotes the regularization order. In the case that n = 0, D0 is equal to the
identity matrix and the problem reduces to a damped solution. When n = 1, the product l1 = D1m represents the first differential
and is known as flatness, with

D1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0

0 1 −1 · · · 0 0 0

0 0 0
...

. . .
...

0 0 0

0 0 0
· · · 1 −1 0

0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (7)
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For the second-order regularization (n = 2), or roughness, the product l2 =D2m represents the second differential:

D2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −2
0 1

1 0

−2 1
· · · 0 0

0 0

0 0

0 0
...

. . .
...

0 0

0 0

0 0

0 0
· · · 1 −2

0 1

1 0

−2 1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (8)

Replacing Ln = (Dnm)TDnm in Eq. (5) leads to

S(m) = (d−Gm)T (d−Gm) + λ(Dnm)TDnm. (9)

When λ = 0, the inversion is reduced to the Least Squares Method. Minimizing S(m) gives us

∂S(m)

∂m
= 2GTGm− 2GTd+ 2λDTnDnm = 0. (10)

With some algebra, Eq. (10) leads us to(
GTG+ λDTnDn

)
mest =GTd, (11)

or
mest =

(
GTG+ λDTnDn

)−1
GTd (12)

Applying the Levenberg-Marquardt inversion with regulariza-
tion, the linear system of Eq. (3) becomes

(GT )kΔdk = (GTG+ λDTnDn)
kΔmk. (13)

Properly choosing the regularization parameter is crucial to
the success of regularization. The purpose is to find a balance be-
tween smoothing and minimum error in a linear system solution;
the smoother the solution is, the more distant it will be from the
original problem. There are many criteria for choosing the best
value of λ; here, the L-curve and an extension of it, the Θ-curve,
are discussed.

The optimum λ chosen by the L-curve is a compromise be-
tween a good fit to the data and the model smoothness. Reintro-
duced in the literature by Hansen (1992), the L-curve is drawn
as a parametric graph of λ; that is, each point of the curve is
associated with a model estimated by λ. On the x-axis are the
magnitudes of the error vector ||e||2, and on the y-axis are the
values of ||Dnm||2. Because the graph is shown in a log-log
scale, the curve resembles the shape of the letter “L”, as observed
in Figure 1.

According to Hansen (1992), the L-curve “knee” (Fig. 1) is
related to the value of λ that represents the best match between
the error of the solution and the smoothness imposed by regular-
ization.

Finding the tipping point, or “knee”, of the L-curve visually
can sometimes be an ambiguous and laborious task, especially
in the case of inversion with a high number of iterations. There

are several known criteria for estimating the “knee” of the L-curve.
Santos (2006) proposed a criterion based on a curve that repre-
sents the cosine of the angle between adjacent segments of the
discrete representation of the L-curve (Fig. 2).

Figure 1 – Representation of the L-curve and its tipping point. Modified from
Santos (2006).

Figure 2 – Construction of the Θ-curve from the L-curve. Modified from
Santos (2006).
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This scheme takes advantage of the pronounced curvature at
the tipping point in the L-curve; as a result, theΘ-curve minimum
is associated with the “knee” of the L-curve, or the optimum value
for λ. However, other than the local minimum will appear. To en-
sure that this minimum point is in fact the ”knee” of the L-curve,
one can require the second derivative to be positive at this point.

TRAVELTIME TOMOGRAPHY, RAY TRACING
AND RAY LINKING
Traveltime seismic tomography, unlike waveform tomography,
measures only the propagation time of the P wave between
the source and the receiver. More specifically, in this study,
given special attention is given to the XWP (Cross Well Profile)
geometry.

The traveltime of the i-th ray can be given by the following
line integral:

ti =

∫
Ri

s(x, z)dl, i = 1, . . .M, (14)

whereM is the number of source-receiver pairs, Ri is the path
of i-th ray and s(x, z) = 1/v(x, z) is the slowness at the
point (x, z). It is possible to transform the medium in a grid with
N constant velocity rectangles. In that case, the above equation
becomes

ti =

N∑
j=1

gijsj , i = 1, . . . ,M, (15)

where gij represents i-th ray length inside the j-th rectangle.
Equation (15) can be rewritten as

t = Gs. (16)

Fermat’s Principle states that the traveltime is stationary with
respect to first-order changes in the ray-path. That is, for small
changes in slowness s, the matrix G remains approximately
the same. Let the first-order deviation in slowness be Δs =
sk+1 − sk and the tomographic matrix generated by sk be
Gk. According to Fermat’s Principle, the traveltime deviation
will be given by

Δtk = tk+1 − tk = GkΔsk, (17)

which brings us back to Eq. (3).
To properly choose a ray tracing algorithm, one must con-

sider the singularities of the field in which the ray is intended to
propagate. In this work, the algorithm of Andersen & Kak (1982)
is used, which was inspired by the algorithm of Johnson et
al. (1975). Knowing that the Euler equation is a necessary con-
dition for the existence of extreme values in variation integral, we

can apply it to Fermat’s principle and obtain the ray differential
equation for a homogeneous medium:

d

ds

(
n
dr

ds

)
= ∇n, (18)

where r is the position vector of the points of the path. The above
equation develops to(

∇n · dr
ds

)
dr

ds
+ n
d2r

ds2
= ∇n. (19)

The function r(s) can be expanded in second-order Taylor
Series:

r(s+Δs) = r(s) +
dr

ds
Δs+

1

2

d2r

ds2
Δs2. (20)

Next, the term d2r
ds2

is isolated in Eq. (19) and substituted into
Eq. (20):

r(s+Δs) = r(s) +
dr

ds
Δs

+
1

2n

[
∇n−

(
∇n · dr

ds

)
dr

ds

]
Δ

(21)

The consecutive points P1(xk, zk) and P2(xk+1, zk+1)
of the ray path are connected by the equations:

xk+1 = xk + cosαkΔs

+
1

2nk
(nk,x − dk cosαk)Δs2,

(22)

yk+1 = yk + sinαkΔs

+
1

2nk
(nk,z − dk sinαk)Δs2,

(23)

where nk is the refraction index, nk,x and nk,z are the refrac-
tion index derivative at the directions x and z, respectively, αk is
the angle between the tangent line to the path and the horizontal
line and dk = sk,x cosαk + sk,z sinαk.

Equations (22) and (23) build the ray path given a velocity
model and a start angle α0. In most cases where ray tracing is
applied, e.g., tomographic survey simulations, the problem to be
solved is to find the traveltime for a given source-receiver pair.
Ray linking is a technique that searches for a start angle in which
the ray path links a given source to a given receiver.

The iterative Newton-Raphson method is used for the Ray
linking. Starting with an angle θ2, which could be the angle
formed by the straight line that links a source to a receiver, and
a deviation Δθ, two more angles are defined:

θ1 = θ2 −Δθ, (24)

θ3 = θ2 +Δθ. (25)

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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The updated angle θ′2 is given by

θ′2 = θ2 ±
2d2r(Δθ)

d13
, (26)

where d2r is the distance between the final coordinates of ray
2 with angle θ2 and the receiver and d13 is the distance be-
tween the final coordinates of rays 1 and 3 with angles θ1 and θ3,
respectively. The sign of the equation depends on the direction of
angular growth and the relative positions of the final coordinates
of ray 2 and the receiver.

RECÔNCAVO BASIN
The Recôncavo Basin plays a central role in the Brazilian oil
industry history. Home to early production wells, its fields have
already reached the peak of the production curve, which classify
them as mature fields. Therefore, efficient hydrocarbon recovery is
deeply dependent on good subsurface imaging, which can provide
new strategies for well drillings and fluid injection for secondary
recovery.

As the southernmost compartment of the Recôncavo-Tucano-
Jatobá Rift system, the Recôncavo Basin is a series of elongated
asymmetric grabens with direction NE-SO, which composes a in-
tracontinental rift of direction N-S (Santos et al., 1990). Its ori-
gin is related to the Gondwana rifting during the Eocretaceous.
This continental splitting created some aborted rifts in the Brazil-
ian continental margin.

The sedimentary package of the Brazilian continental mar-
gin is typically subdivided into four supersequences: Paleozoic,
Pre-Rift, Sin-Rift, Post-Rift, with only the last three actually be-
longs to the Recôncavo Basin. The Pre-Rift stage is associated
with the crust flexure caused by the initial extensional efforts.
This megasequence is characterized by fluvial and fluvial-deltaic
siliciclastic rocks that were deposited under oxidative conditions.
As the subsidence rate accelerates, the sediments of the Sin-Rift

stage are deposited: lake sediments (siliciclastic and carbonate)
and fluvial-deltaic packages.

The most important petroleum system is formed by the Can-
deias Formation lacustrine shales (source rock) and sandstones
from the Sergi Formation (reservoir), both of which are from the
Sin-Rift stage. Normal faults cause source and reservoir rocks to
be positioned side by side. Shales from Candeias Formation play
an important role as seal rocks.

Miranga, illustrated in Figure 3 (from Milani & Araújo, 2003),
was one of the first fields found with the support of seismic ex-
ploration in Brazil and has oil reserves of approximately 119 mil-
lion barrels. The shale diapirism was a key factor in the structural
configuration of this field. Shale domes from Candeias Forma-
tion surround the producer region and control the normal faults
of the region. The reservoir is composed of sandstones of the
Ilhas Group, Marfim and Pojuca Formations, structured as a
faulted anticlinal.

The goal of the tomographic survey was to obtain prior infor-
mation regarding the Member Catu, Marfim Formation, to develop
a strategy for secondary recovery by CO2 injection.

TESTS WITH SYNTHETIC DATA

Before the inversion with real data from the Miranga Field, some
tests using synthetic data were performed such that the inver-
sion tools and the selection criteria for λ could be evaluated. The
model simulates some geological features found in the Miranga
Field, especially the Catu Member from the Marfim Formation,
which is an important petroleum reservoir. The acquisition pa-
rameters simulate, those used in the field to the greatest extent
possible, thus showing the relative complexity in the inversion of
real data.

Two wells restrict an area of 280×532 m. This area is repre-
sented as a grid formed by homogenous velocity cells. Each cell is

 
Figure 3 – Geological section from the central portion of the Recôncavo Basin showing the structural-stratigraphical situation
of the Miranga Field. From Milani & Araújo (2003).

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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7 by 7 m. In total, 134 sources and 134 receivers were simulated,
each with 4 m of spacing, thus providing 17,956 rays. Figure 4
shows the traveltime for every source-receiver pair.

Figure 4 – Map of traveltimes between the source and the receivers of the syn-
thetic model based on the Miranga Field.

Figure 5 shows the results for first-order regularization with
synthetic data. In three iterations, even with noise added to the
data, it was possible to reach some reasonable results.

Figure 5 – Tests with the synthetic model based on the Miranga Field using
first-order regularization. Left: true velocities. Right: estimated tomogram using
noisy data. The color bar indicates the P-wave velocity in m/s.

The Θ-curve indications (Fig. 6) were always close to the
minimum of the slowness error, which reinforces the power of
the method to indicate the optimal λ. However, in some cases,
these indications led to nonsensical results and had to be dis-
carded. Figures 7 and 8 present the non-correlation between the
traveltime error minimum and the slowness error minimum. This
difference is explained by the fact that the goal with regularization
is to minimize the slowness error, not the traveltime error.

Figure 6 – Tests with the synthetic model based on the Miranga Field using
first-order regularization. Θ-curve from noisy data.

Figure 7 – Tests with the synthetic model based on the Miranga Field using first-
order regularization. RMS error between the true and the estimated slownesses
for different regularization parameters.

Figure 8 – Tests with the synthetic model based on the Miranga Field using
first-order regularization. RMS error between the observed and the calculated
traveltimes for different regularization parameters.

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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INVERSION WITH REAL DATA FROM
THE MIRANGA FIELD
This seismic tomography acquisition is part of a joint venture be-
tween UFBA and PETROBRAS and was performed by Schlum-
berger in the Miranga Field, Recôncavo Basin. The source and
receivers have a measured depth interval of 3 m and are config-
ured in a XWP acquisition geometry.

The source well, red color in Figure 9, shows a significant
deviation from vertical, so the source coordinates must be pro-
jected into a vertical line. Schlumberger pre-processing included
band pass filtering, tubewave removal and traveltime picking. In
total, 16,512 traveltimes were qualified to be used in inversion.

Figure 9 – 3-D representation of the wells. The well with sources is in red, and
the well with receivers is in blue.

Figure 10 shows the traveltime map. Clearly, considerable
areas are not covered by a ray, due to the acquisition routine,
equipment failure and picking error.

The region of interest is composed of a grid with 3,780 con-
stant velocity cells that are 6×6 m in dimension, with 42 hori-
zontal cells and 90 vertical cells. The inversion started with a ho-
mogenous field with a velocity of 3,600 m/s.

The L-curve, Θ-curve and geologic plausibility formed the
set of tools for defining the regularization parameters. However,
in some cases, L and Θ indications led to impossible geological
settings; in this case, parameters close to these indications could
be an effective choice.

Figures 11 and 12 show theΘ-curve for the first- and second-
order regularizations, respectively. In both Figures, the tipping
point related toΘ-curve minimum changes for different iterations,

with the major first-order values being λ = 106 and the second-
order values pointing to λ = 1010. However, at the correspon-
dent L-curve, these parameter values are not associated with the
curve “knee”, as would be expected, but with a second inflection
point. These divergent results from the theory could be caused by
the strong noisy conditions in data.

It was possible to achieve convergence in six iterations for
first-order regularization and seven iterations for second-order
regularization. The first and sixth iterations of the first-order are
presented in Figure 13. Note that the resolution improves in ad-
vanced iterations, with refined geological features and better layer
identification.

The same pattern of improved resolution with iterations can be
observed in second-order regularization (Fig. 14). Second-order
regularization appears to deliver a product with better resolution
and more geological details, although such a qualitative compari-
son lacks objective parameters. In both regularizations, traveltime
error had the same behavior.

Note that the optimal λ does not match the minimum in trav-
eltime error (Figs. 15 and 16). This finding differs from the results
predicted in theory, because λ optimally represents a balance be-
tween the minimum error and the regularization smoothness.

Table 1 – Inversion results using the real data from the Miranga Field, Recôncavo
Basin. λΘ is the regularization parameter value indicated by theΘ-curve, λ is
the chosen regularization parameter and Et,rms is the relative RMS error be-
tween the observed and the calculated traveltimes.

Order Iteration λΘ λ Et,rms(%)

1

1 105 107 4.6675

2 105 107 1.2345

3 105 107 1.0692

4 106 107 0.5985

5 106 107 0.4595
6 106 107 0.4390

2

1 109 1011 4.6138

2 108 1010 1.2469
3 109 1010 0.8193

4 109 109 0.7001

5 109 109 0.5901

6 109 109 0.5144

7 109 109 0.4687

CONCLUSIONS
Traveltime seismic tomography is a powerful tool for high-
resolution imaging. Nevertheless, two issues must be overcome:
the nonlinearity of the problem and the non-uniqueness of its
solution. Levenberg-Marquardt linearizes the problem at certain
limits, and regularization constrains the solution space so the re-
sults become geologically realistic.
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Figure 10 – Map of the traveltimes between the source and receivers of the real data from the Miranga Field.

Figure 11 – Inversion with the real data from Miranga Field using first-order
regularization. Θ-curve for different regularization parameters.

Figure 12 – Inversion with the real data from the Miranga Field using second-order
regularization. Θ-curve for different regularization parameters.
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Figure 13 – Inversion with the real data from the Miranga Field using first-order regular-
ization. Estimated tomograms from the first (left) and the sixth (right) iterations.

Figure 14 – Inversion with the real data from the Miranga Field using second-order regu-
larization. Estimated tomograms from the first (left) and the seventh (right) iterations.

Some difference was perceived between the expected behav-
ior of the L-curve and the Θ-curve from theory and the results
obtained in numerical simulations. The optimum regularization
parameter should be associated with the L-curve “knee”; how-
ever, in some cases these values led to unrealistic geological
configurations. The selected λ values were close to the second
tipping point of L-curve. This divergence is credited to strong
noisy conditions.

The final result from both regularization orders appears to
match the geological setting of the Miranga Field, although lack-
ing a priori information makes this analysis difficult. Second-
order regularization was remarkable regarding the strata resolu-
tion.

As mentioned earlier, there is a significant lack of ray cover-
age in the region of interest, which adds uncertainty to the inver-
sion results. In addition, no other source of geologic information
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Figure 15 – Inversion with the real data from Miranga Field using first-order
regularization. RMS error between the observed and the calculated traveltimes
for different regularization parameters.

Figure 16 – Inversion with the real data from the Miranga Field using second-
order regularization. RMS error between the observed and the calculated travel-
times for different regularization parameters.

or geophysical data was used in the workflow. Such information
could help restrict the model space and reduces the ambiguity re-
lated to non-uniqueness. Moreover, the well log is a valuable data
that could answer some questions about the inversion reliability.
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