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FULL-WAVEFORM INVERSION USING AN EFFICIENT PRECONDITIONING METHOD
FOR THE GRADIENT VECTOR APPLIED FOR DIFFERENT SOURCE SIGNATURES

Peterson Nogueira Santos1 and Reynam C. Pestana2

ABSTRACT. Full-waveform inversion (FWI) is a efficient method and it has been used successfully to invert subsurface parameters. It consists basically on the
minimization of the difference between the predicted and observed data. However, its application using finite-difference schemes is limited to low frequency content and

the increase of the range of higher frequency will demand a high computational cost of the wavefield propagation procedure and also the whole inversion scheme. To
overcome this problem, we apply the rapid expansion method (REM) for numerical wavefield extrapolation inside the FWI workflow thus increasing the frequency content

of the inversion process. Besides that, an efficient preconditioning method using source-receiver illumination (PSRI) for computing the gradient vector in order to increase
resolution of the models and better convergence of the objective function has also been proposed. Beyond that, we compared the performance of the preconditioning

method with relation to conventional gradient method for two types of source signature. To test the efficiency of our proposed FWI approach, we apply it using a frequency

multiscale scheme for a synthetic data set with a complex velocity model. The inversion results show satisfactory inverted velocity models which can be used to produce
depth imaging of high quality. Thus we demonstrate the effectiveness and applicability of our FWI scheme using REM combined with a multiscale approach.

Keywords: full-waveform inversion, preconditioning method, rapid expansion method.

RESUMO. Inversão de forma de onda completa (FWI) é um método eficiente e tem sido utilizado com sucesso para inverter parâmetros de subsuperf́ıcie. Consiste

basicamente na minimização da diferença entre os dados previstos e observados. No entanto, sua aplicação usando esquemas de diferenças finitas é limitada ao con-
teúdo de baixa frequência e ao aumento da banda incluindo mais altas frequências que demanda um alto custo computacional devido ao procedimento de propagação

do campo de onda e também em todo o esquema de inversão. Para superar este problema, aplicamos o método de expansão rápida (REM) para a extrapolação numérica
do campo de onda dentro do fluxo de trabalho da FWI, aumentando assim o conteúdo de frequência do processo de inversão. Além disso, também foi proposto um

método eficiente de pré-condicionamento usando a iluminação da fonte e do receptor para o vetor gradiente que tem como objetivo aumentar a resolução dos modelos

e a convergência da função objetivo. Dessa forma, comparamos o método de pré-condicionamento ao método gradiente convencional para dois tipos de assinatura da
fonte. Para testar a eficiência de nossa abordagem de FWI proposta, utilizamos um esquema multiescala na frequência para um conjunto de dados sintéticos com um

modelo complexo de velocidade. Os resultados da inversão mostram modelos de velocidades invertidos satisfatórios que podem ser utilizados para produzir imagens
de profundidade de alta qualidade. Assim, demonstramos a eficácia e aplicabilidade do nosso esquema FWI usando REM combinado com uma abordagem multiescala.

Palavras-chave: inversão completa da forma de onda, método de pré-condicionamento, método de expansão rápida.
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INTRODUCTION

The difficulty of estimating subsurface model parameters through
seismic data is the problem that the full-waveform inversion
(FWI) attempts to solve and is rapidly becoming a standard tool
for estimating velocity fields with high resolution. The reformula-
tion of the principle of reverse time migration as a velocity model
construction by Tarantola (1984) and Lailly (1983) made possible
the implementation of FWI. The FWI procedure needs to solve two
problems: the forward modeling, which is the numerical solution
of wave propagation and the inverse problem. In addition, in the
inversion process there is an objective function that measures the
comparison between observed and calculated data obtained for
the estimated model, which is minimized.

Depending on the frequency content of the data, the FWI can
be highly nonlinear and contain different local minima. Due to
this, several authors formulated different alternative methods to
mitigate the problem, starting with the multiscale approach in the
gradient domain (Mora, 1989), then with the heuristic interpreta-
tion of the multiscale approach proposed by Bunks et al. (1995),
to the current work of Wang et al. (2016) based on wavefield
decomposition.

In this work, we propose a variant of the gradient method,
based on the work of Kaelin et al. (2007) aiming at a better light
compensation. First we calculate the squares of the wavefields of
the source and receiver, obtain their respective gradients, and then
sum. Thus, it is possible to obtain a more illuminated gradient
vector with the better highlighted events, making the search of the
global minimum of the objective function more effective.

FWI THEORY

The application of the multiscale scheme is crucial for the FWI
method specially because it can prevent the inversion method
from converging to a local minimum. Here, in our case, we have
used during the inversion procedure higher frequency data allow-
ing us to obtain inverted models with higher resolution.

The full-waveform inversion method consists of iteratively
improving an initial velocity model (m). This optimization is
based on the modeling of seismic waves through the solution
of the direct problem, which offers the possibility to compute si-
multaneously the amplitude and the traveltimes of the waves. The
solution of the inverse problem involves minimizing the objective
function in the space of the model parameters to measure the dif-
ference between the predicted (dcal) and observed data (dobs)
(Virieux & Operto, 2009). The inversion of the directly observed
data is computationally impractical. Thus, FWI is formulated as

a least squares type optimization problem, in which the objective
function of norm l2 representing the problem can be defined by
(Tarantola, 1984):

F (m) =
1

2
||d(m)cal − dobs||22

=
1

2

∑
ns

∫ T
0

(dcal − dobs)2dt,
(1)

where F is a measure of error, T is the maximum record time.
The summation is done in the shot domain, where ns is the total
number of shots. The purpose of this formulation is to find the
modelm so that the functional F (m) is minimum.

This minimization is done in a recurrent way, that is, given
a current model mk , we search for a next model mk+1, which
theoretically should be closer to the true model.

The iterative process can be deduced using the second order
Taylor-Lagrange approximation (Virieux & Operto, 2009) and the
updating of the model is given by:

mk+1 =mk − αkH−1k ∇Fk. (2)

where Hk is Hessian matrix, which correspond to the second
derivatives of the objective function and the curvature of F in
mk . αk is step length which represents the magnitude of the
update vector. In the first iteration, αk is computed by Eq. (19)
and for the other iterations was used the method presented by
Barzilai & Borwein (1988) adapted by Zhou et al. (2006),∇Fk is
the gradient of the misfit function, i.e., ∂F∂m .

Rapid Expansion Method
The efficient solution of the direct problem has great relevance in
the FWI, since the difference between the observed and estimated
data must only contain information about the model. That is, the
modeling procedure can not produce events that do not exist in the
observed data. This procedure is performed with the extrapolation
of the wavefield on a physical medium through a forward model-
ing operator. This operator should be implemented to include the
elastic modulus and density Virieux & Operto (2009), however,
this implementation is still computationally difficult. Thus, prop-
agation of the wave can be understood by considering a purely
acoustic medium in which no transverse waves are propagated.

We consider the following acoustic wave equation, which pre-
dicts only the propagation of longitudinal waves:

∂2u(x, t)

∂t2
+ L2u(x, t) = f(x, t) (3)

where −L2 = c2(x)∇2, c(x) is the velocity of prop-
agation, x = (x, y, z) is the position vector, ∇2 =
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(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
is the Laplacian operator in cartesian

coordinates and f(x, t) is the source term.
The approach that we use to solve Eq. (3) is called variations

of parameters (VOP). Thus, the general solution of u(x, t) to
Eq. (1) on [0, t] is written as:

u(x, t) = u0 cos(Lt) +
u̇0
L
sin(Lt)

+
1

L

∫ t
0

f(x, s) sin[L(t− s)]ds
(4)

where u(x, t = 0) = u0 and ∂u(x,t)∂t |t=0= u̇0.

Equation (4) is the fundamental equation from which we de-
rive the integration procedure. Now, if Eq. (4) is reevaluated us-
ing the intervals [t, t + Δt], [t, t − Δt] and by adding them
and evaluating the resulting integral, we obtain the following
complete solution of 3, which includes the source term and is
given by:

u(x, t+Δt) + u(x, t−Δt) =
2 cos(LΔt)u(x, t) + S(x, t ±Δt) (5)

where,

S(x, t±Δt) = Δt
2

2
[f(x, t+Δt)+ f(x, t−Δt)]. (6)

The rapid expansion method is an efficient way of numerically
solving the acoustic wave equation (Pestana & Stoffa, 2009). This
technique can extrapolate the wavefield with higher frequencies
and larger sampling intervals in time and space than the usual
finite-difference scheme, thus being more stable and less disper-
sive than the conventional finite-difference scheme.

Following Kosloff et al. (1989) and based on the expansion
method presented by Tal-Ezer et al. (1987) the cosine function
can be expanded as

cos(LΔt) =

∞∑
k=0

C2kJ2k(ΔtR)Q2k

(
iL

R

)
, (7)

where C2k = 1 for k = 0 and C2k = 2 for k > 0, J2k
represents the Bessel function of order 2k and Q2k(w) are the
modified Chebyshev polynomials. The term R is a scalar larger
than the range of eigenvalues of−L2 and it is the sameR which
appeared in the original Tal-Ezer method (Tal-Ezer et al., 1987).

Since (7) contains only even polynomials, it is more conve-
nient to use the relation,

Qk+2(w) = 2(1 + 2w
2)Qk(w) −Qk−2(w). (8)

The recursion is initiated by

Q0(w) = 1 and Q2(w) = 1 + 2w
2, (9)

where we have replaced iL/R by w.
For 2D wave propagation, and considering the constant ve-

locity case, R is given by R = πc
√
(1/Δx2) + (1/Δz2).

In general c should be replaced by cmax, the highest velocity
in the grid, and Δx, Δy and Δz are the spatial grid spacing
(Tal-Ezer et al., 1987).

The sum in (7) is known to converge exponentially for k >
ΔtR and the summation can be safely truncated with a k value
slightly greater than ΔtR.

In this way, the stability of the REM is ensured, since the num-
ber of terms used in the expansion is directly proportional to the
used time sampling interval. Thus, anyΔt can be used, provided
that the number of terms calculated will be sufficient to guaran-
tee the convergence and the stability of the method. Therefore, the
use of REM makes the wave propagation FWI more stable and free
of numerical dispersion when high frequency components are in-
serted in the modeling scheme (dos Santos & Pestana, 2015).

Computation of the gradient

The gradient of the objective function∇F (m)measures the dis-
crepancy of the difference between estimated and observed data,
with respect to each of the model parameters. The gradient can be
calculated numerically by perturbing each of the model param-
eters individually, noting this variation in the objective function.
However, generally the models used in FWI can have a very large
number of parameters, which makes the derivation for each pa-
rameter of the model computationally unfeasible.

A good alternative to perform the gradient computation is to
make use of the adjoint method. This method can calculate the
objective function gradient without requiring the explicit numer-
ical calculation of the partial derivatives of F (m) relative to the
parameters of the model (Plessix, 2006). The gradient can be then
calculated in time domain (Bunks et al., 1995) using the following
formulation:

∇F (x) = 2
c3

∑
ns

tmax∑
t=0

üs(x, t)ur(x, t), (10)

where ns is the total number of shots. üs corresponds to the
second time derivative and can be obtained from:

üs(x, t) ≈ ∂
2u

∂t2
=
un+1 − 2un + un−1

Δt2
, (11)

where, un+1, un and un−1 are the future, present and past
wavefields, respectively.
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By using the following relation

un+1 + un−1 = 2 cos(LΔt)un, (12)

where cos(LΔt) is given by Eq. (7) and the Eq. (11) can be ex-
pressed as:

üs =
2
[∑∞

k=0C2kJ2k(ΔtR)Q2k
(
iL
R

)− 1]
Δt2

un (13)

Additionally, we need to compute ur which is the field resulting
from the reverse propagation of the residue (dcalc − dobs) in
the current velocity model. The residue wavefield, ur, is called
the adjoint state variable and can be computed by the following
equation:

1

c(x)2
∂2ur(x, t)

∂t2
= ∇2ur(x, t) + (dcalc − dobs). (14)

The source term, which is propagated to generate these wave-
fields, depends on the formulation of the objective function that
is minimized in the FWI procedure. That is, the adjoint source is
the derivative of the objective function with respect to the modeled
wavefield

(
∂F (m)
∂u

)
.

Preconditioning method using source-receiver
illumination – PSRI method
In order to improve the computation of the gradient and suppress
the noises, Kaelin et al. (2007) proposed to divide Eq. (10) by
the illumination of the source and the receivers, which can be ex-
pressed as:

∇Fs(x) = 2
c3

∑
ns

∑tmax
t=0 üs(x, t)ur(x, t)∑
ns

∑
t ü
2
s(x, t)

, (15)

and

∇Fr(x) = 2
c3

∑
ns

∑tmax
t=0 üs(x, t)ur(x, t)∑
ns

∑
t u
2
r(x, t)

, (16)

Eq. (15) is intended to highlight the shallower reflectors and (16)
tries to highlight the deepest reflectors.

Thus, by combining the two previous imaging conditions (15)
and (16), we can obtain equal illumination for all reflectors, and
the gradient is defined as:

∇Fsr(x) = ∇Fs(x) +∇Fr(x). (17)

In the FWI procedure, Eq. (17) proved to be very efficient,
improving the amplitude values of the conventional gradient
(Eq. 10) and consequently increasing the resolution of the in-
verted velocity models.

Convergence condition of the inversion

In this work, the condition used to reduce the objective func-
tion and assure the convergence (Nocedal & Wright, 2006) of the
process has to satisfy:

F (mk + αkpk) < F (mk) (18)

In this way, the length of the step is evaluated using this condition,
which ensures the decrease of the data mismatch at each iteration.

If the length of the step is accepted, in other words, satisfy-
ing Eq. (18), the modeling performed to evaluate this condition is
used in the next iteration of FWI, avoiding extra computational cost
(dos Santos & Pestana, 2015). If the size of the step is rejected,
a new αk is computed using a backtracking method described
in Algorithm 1 (Nocedal & Wright, 2006), until the condition is
satisfied.

Determining the step length of the first iteration

Another challenge that must be solved is the determination of the
step length of the first iteration, which is where the backtracking
method begins. In linearized inversion problems the step length
can be estimated by the steepest-descent method. In this work,
the initial step length was implemented based on the work of Pica
et al. (1990) from a small perturbation in the velocity model en-
suring that the value of the subsequent objective function is less
than the previous value. The parameter vector of the model is dis-
turbed using a differential step length ε, which corresponds to the
solution of:

max(ε|pk|) ≤ max(|mk|)
100σk

(19)

where σk is a scalar between 0 and 1, which determines the
maximum percentage in which the value of each model param-
eter will change.

FWI EXAMPLES

Marmousi velocity model

The Marmousi model contains a series of normal faults and re-
sulting tilted blocks complicates the model towards its center.
The model sits under approximately 32 m of water and is 9.2 km
in length and 3 km in depth. The numerical grid consists of 375
× 369 grid nodes in total. The spatial sampling in the velocity
grid is 25 m in the horizontal direction and 8 m in the vertical
direction. The inversion parameters consist of 62 shots, spacing
between shots of 150 m, 369 receivers, peak frequency of 15 Hz,
recording time of 3 s and 751 samples in time.

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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Algorithm 1 – Backtracking method

1: αk ← alpha0

2: compute F (mk + αkpk);
3: while F (mk + αkpk) > F (mk) do
4: τ ← r[0, 1];
5: αk ← ταk;
6: compute F (mk + αkpk);
7: end while

(a) (b)

Figure 1 – Source signatures used in the inversion procedure: (a) Ricker; (b) Pulse.

The FWI procedure was performed for two types of source sig-
nature (Fig. 1). The first is a Ricker wavelet, a well-known source
in the geophysical literature. The second source is a pulse. The
difference between them is that the Ricker represents a function
that has more than one critical point, whereas, the pulse has only
one critical point of maximum. This difference in the number of
critical points may interfere with the seismic data phase. Thus,
we evaluated the performance of FWI for both source types and
concluded that the inversion using the pulse as source provided
velocity fields with higher resolution than the inversion using the
Ricker source.

In addition, for each type of source, two methods for the calcu-
lation of the gradient vector were implemented: the conventional
gradient method and the gradient preconditioning method using
source-receiver illumination compensation (PSRI) applied in the
image condition of the gradient. In the tests performed, a better
efficiency of the PSRI method was noted compared to the conven-
tional gradient method. The best performance of the PSRI method
occurs for both source types, that is because the source-receiver
illumination compensation is a better approximation of the in-

verse of the Hessian matrix than the identity matrix used in the
conventional gradient method.

The observed data (Fig. 2) was generated using the REM
with the true velocity field of the Marmousi model (Fig. 3). The
input velocity field (Fig. 4) which was initiate the inversion is
a smoothed version of the original model. The observed data
was filtered for each frequency band and the calculated data was
modeled with these corresponding frequencies using the updated
fields and then compared with the observed data. In this work,
25 iterations by frequency band were computated.

The inversion procedure starts by updating the observed low
frequency seismic data filtered in the ranges of 0-2.5 Hz and 0-
5.0 Hz, which will result in the recover of the large structures of
the model as we can notice in Figure 5: (a) and (b), Figure 6: (a)
and (b), Figure 8: (a) and (b) and Figure 9: (a) and (b). After
a fixed number of iterations, we increased the frequency range,
to 0-7.5 Hz and 0-10.0 Hz which resulted in the delineation of
small structures. The results in Figure 5: (c) and (d), Figure 6:
(c) and (d), Figure 8: (c) and (d) and Figure 9: (c) and (d), for
these intermediate ranges of frequency, show that the resolution

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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(a) (b)

Figure 2 – Observed data generated using: (a) Ricker source; (b) Pulse source.

Figure 3 – Marmousi true velocity model.

Figure 4 – Marmousi initial velocity model.

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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(a) (b)

(c) (d)

(e) (f)

Figure 5 – Estimated model using Ricker source for the gradient method for peak frequency of: (a) 2.5 Hz; (b) 5 Hz; (c) 7.5 Hz; (d) 10 Hz; (e) 12.5 Hz; (f) 15 Hz.

has increased and the inverted model is comparable to the true one
present in Figure 4. Finally the process ends with the inversion of
the high frequency seismic data, which inserts higher resolution
details on the inverted final model (Fig. 5: (e) and (f), Fig. 6: (e)
and (f), Fig. 8: (e) and (f) and Fig. 9: (e) and (f)).

Finally, FWI results using a pulse as source provided velocity

models with higher resolution than the inversion using the Ricker
wavelet. The PSRI method was also more efficient than the con-
ventional gradient method for both sources used.

The graphs of the objective functions (Figs. 7 and 10), veloc-
ity profile (Fig. 11) and comparison of the number of attempts in
the backtracking process (Figs. 12 and 13) show the advantages

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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(a) (b)

(c) (d)

(e) (f)

Figure 6 – Estimated model using Ricker source with the PSRI method for peak frequency of: (a) 2.5 Hz; (b) 5 Hz; (c) 7.5 Hz; (d) 10 Hz; (e) 12.5 Hz; (f) 15 Hz.

and disadvantages of the implemented methods.

CONCLUSION

Considering the aforementioned results, it was possible verify that
FWI with the rapid expansion method and the proposed precondi-
tioning method for the gradient vector led to an overall improve-

ment of the procedure and produced velocity models with high
resolution. The application of the multiscale approach is crucial
to avoid local minimums and obtain models with better resolution.

In the FWI solution, it was evident that the use of a pulse as a
source can provide better results than the Ricker source, thus al-
lowing velocity fields with higher resolution, since the pulse has

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016



�

�

“main” — 2018/3/27 — 11:50 — page 413 — #9
�

�

�

�

�

�

SANTOS PN & PESTANA RC 413

(a) (b)

(c) (d)

(e) (f)

Figure 7 – Convergence of the objective function using Ricker source for the gradient and PSRI methods with peak frequency of: (a) 2.5 Hz; (b) 5 Hz; (c) 7.5 Hz;

(d) 10 Hz; (e) 12.5 Hz; (f) 15 Hz.

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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(a) (b)

(c) (d)

(e) (f)

Figure 8 – Estimated model using pulse source for the gradient method for peak frequency of: (a) 2.5 Hz; (b) 5 Hz; (c) 7.5 Hz; (d) 10 Hz; (e) 12.5 Hz; (f) 15 Hz.

no negative amplitudes and its corresponding function only has
one critical point of maximum, which may have contributed to
avoid problems related to the phase of the seismic data.

The PSRI method used here for computing the gradient vec-
tor consists of a light compensation which can be considered an
approximation of the inverse of the Hessian matrix. This method
proved to be more efficient, converging rapidly for all frequency

bands, reducing the objective function faster than the conven-
tional gradient method.
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(a) (b)

(c) (d)

(e) (f)

Figure 9 – Estimated model using pulse source with the PSRI method for peak frequency of: (a) 2.5 Hz; (b) 5 Hz; (c) 7.5 Hz; (d) 10 Hz; (e) 12.5 Hz; (f) 15 Hz.
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Figure 11 – Comparison between velocity profiles for the different methods.

Figure 12 – Comparison of the number of attempts in the backtracking process per FWI iteration using Ricker source.

Figure 13 – Comparison of the number of attempts in the backtracking process per FWI iteration using pulse source.
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