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SENSITIVITY OF STEREOTOMOGRAPHY IN RELATION TO THE REGULARIZATION PARAMETERS

Josimar Roberto da Silva1, Jessé Carvalho Costa2 and Amin Bassrei3

ABSTRACT. Migration is one of the most important steps in seismic processing because it is responsible for retrieving the existing geometric relationships in reflection
events that are due to the existence of dips or irregularities at interfaces with different acoustic impedances. Thus, the seismic section is closer to reality, considerably

facilitating the task of interpretation. However, to be successful, migration requires an accurate velocity model from the area to be imaged. Thus, in addition to being
important, migration is usually the most complicated stage of seismic processing, especially in geologically complex areas. Stereotomography is a robust method for

estimating velocity macro-models from seismic reflection data and is an alternative to velocity analysis, which is based on the stacking velocity. Occasionally, velocity
analysis is not efficient enough to determine satisfactory velocity models. In addition to traveltime picking in locally coherent reflection events, the stereotomography

method requires the local inclination associated with picked events simultaneously with common shot gathers and common receiver gathers. The data thus consist of

a discrete set of traveltimes, shot and receiver positions, and inclinations for the selected reflection events. The objectives of this work are to apply stereotomography
as a tool for generating velocity macro-models and to perform sensitivity analysis of stereotomography with regard to the so-called regularization factor or parameters.

Various tests were performed with an extension of Marmousi data, called the Marmousoft model. The results clearly showed the variation in sensitivity of stereotomo-
graphic inversion for each type of regularization parameter used.

Keywords: stereotomography, seismic inversion, regularization, reservoir characterization.

RESUMO. A migração é uma das mais importantes etapas do processamento sı́smico, pois é responsável por recuperar as relações geométricas existentes nos

eventos de reflexão devido à existência de mergulhos ou irregularidades nas interfaces com diferentes impedâncias acústicas. Desta forma, a seção sı́smica fica mais
próxima à realidade, facilitando em muito o trabalho de interpretação. Contudo, para que a migração seja bem sucedida é necessário um modelo de velocidades bem

apurado da área a ser imageada. Assim, além de ser importante, a migração é geralmente a etapa mais complicada do processamento sı́smico, principalmente em

áreas geologicamente complexas. A estereotomografia é um método tomográfico robusto para estimar macromodelos de velocidade a partir de dados sı́smicos de
reflexão e surge como uma alternativa à análise de velocidade, que é baseada na velocidade de empilhamento. Por vezes a análise de velocidade não é eficiente na

determinação de modelos satisfatórios. Em adição à marcação dos tempos de trânsito nos eventos de reflexão localmente coerentes, o método da estereotomografia
requer a inclinação local associada aos eventos marcados, simultaneamente, nos traços de famı́lias de tiro comum e de receptor comum. Os dados então consistem de

uma coleção discreta de tempos de trânsito, posições de tiros e receptores, e inclinações para os eventos de reflexão selecionados. Os objetivos deste trabalho são a

aplicação da estereotomografia como uma ferramenta para a geração de macromodelos de velocidades, e a análise de sensibilidade da estereotomografia aos chamados
fatores ou parâmetros de regularização. Vários testes foram realizados com uma extensão dos dados Marmousi, chamado de modelo Marmousoft. Os resultados obtidos

mostraram de forma clara a variação da sensibilidade da inversão estereotomográfica para cada tipo de parâmetro de regularização utilizado.

Palavras-chave: estereotomografia, inversão sı́smica, regularização, caracterização de reservatórios.
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INTRODUCTION

Stereotomography is an alternative to velocity analysis based on
stacking velocity, which has proven to be a robust method for
estimating macro-model velocities from reflection seismic data.
In addition to traveltime picking of locally coherent reflection
events, the method requires the local inclination associated with
picking events, in both families of common-shot gathers and
common-receiver gathers. The data then consist of a discrete set
of traveltimes, positions (of shots and receivers) and slopes for
the selected reflection events. Unlike standard traveltime tomog-
raphy, only picking is required for locally coherent events. In fact,
for the model description, the method does not require informa-
tion on the interfaces. Many tomography approaches using the
slope have been proposed. Stereotomography has a formulation
based on a model described by a velocity field and a set of pairs of
ray segments associated with reflected or diffracted events, which
involves adjusting all observed data to the data calculated by ray
tracing. It is important to stress that there are no theoretical limi-
tations on stereotomography for lateral velocity variations.

The set of synthetic data used in the computer simulations
was the Marmousoft set, which was adapted from Marmousi data.
This dataset was created by the French Petroleum Institute to be
used in the European Association of Exploration Geophysicists
meeting in 1990. Marmousoft was adapted by Billete and Lam-
baré (1998) using ray modeling with Born approximation from a
data set free of multiples and refractions. It is a combination of a
smoothed velocity field and complex reflectivity.

Stereotomography belongs to the family of inclination to-
mography methods (Riabinkin, 1957; Sword, 1987; Billette &
Lambaré, 1998). The basis of these methods is to recognize that
any locally coherent event in the not migrated pre-stacked do-
main, characterized by its traveltime and inclinations, can provide
information on the velocity model.

The implementation of stereotomography demands the use of
regularization by derivative matrices, which in turn uses a set of
regularization parameters. In this work, the value of each regu-
larization parameter is varied gradually, keeping the other param-
eters constant. The objective is to analyze the influence of each
regularization parameter in the solution of the inverse problem.
The behavior of the estimated model parameters is analyzed
through the RMS data error, and the absolute error is computed in
terms of slowness, position and traveltime. Moreover, for a bet-
ter visualization of the variation effects in these parameters, we
present the images of the RMS error between the true and esti-
mated velocities.

INVERSE PROBLEMS, LINEARIZATION,
REGULARIZATION AND L-MODULE
Inversion is a technique that estimates the parameters of a given
model using the observed data as an input. On the other hand,
forward modeling provides such data by assuming a synthetic
model. While the output of the forward problem is theoretically
unique, inverse problems show an inherent ambiguity in the con-
clusions that can be obtained.

The information description is used as the starting point when
analyzing geophysical data. A vector provides a practical repre-
sentation of these values: d = [d1, d2, . . . , dM ]T is the
vector of observed data parameters or simply observed data. The
vector of model parameters, or simply model, is represented by
m = [m1, m2, . . . , mN ]

T . For the linear problem, the
equation d = Gm represents the solution of the forward prob-
lem, andmest = G−1d represents the solution of the inverse
problem. To solve an inverse problem, we must analyze the ex-
isting issues, uniqueness and stability. If one of these conditions
fails, the problem is said to be ill-posed.

The method of linearization starts from an initial model,mo,
which is updated successively and is also known as the Gauss-
Newton method. It linearizes the nonlinear problem g(m) = d
around an approximate solution. The estimated model is then
obtained iteratively by solving a system of linear equations at
each step. This method will converge to the model associated with
the cost function closer to S(mo) (Menke, 1989).

The expression to update the current model is:

(GT )kΔdk = (GTG)kΔmk, (1)

whereΔmk = mk+1 −mk is the estimated model param-
eters update for the k-th iteration, Gk is the tomographic matrix
for the k-th iteration, and Δdk is the data residual between the
k + 1-th and the k-th iterations.

Regularization techniques are applied in the numerical solu-
tion of discrete ill-posed problems to make the inversion more
stable. The term regularization refers to different procedures to
solve or at least to attenuate the ill-posedness of the inverse
problem. For example, when using singular value decomposi-
tion, small singular values can be avoided in the construction of
the pseudo-inversion, which will regularize the solution. In this
work we used the regularization with derivative matrices, usually
known in the literature as Tikhonov regularization or sometimes
as Phillips-Twomey regularization. Besides the first and second
order derivative matrices, the zero order regularization was also
used simultaneously. The latter approach is usually known in
the literature as damped least squares or Levenberg-Marquadt
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technique. The regularization by derivative matrices is expressed
by the objective function ϕ(m):

ϕ(m) = eTe+ λLn , (2)

where Ln is a discrete derivative operator that imposes some
smoothing to the solution and λ is a non-negative constant
called the regularization parameter, which controls the amount of
smoothing on the solution. We can use the difference between
the physically adjacent model parameters as an approximation of
the first derivative (n = 1) matrix expressed asD1. The oper-
ator, also known as flatness, will then be L1 =mTDT1D1m
(Menke, 1989). We can also use a matrix that approximates the
second derivative (n = 2), expressed as D2. The operator,
L2 = m

TDT2D2m, is called roughness (Menke, 1989).
The general expression for Ln, either flatness or roughness is
given by:

Ln = ‖ln‖22 = (Dnm)TDnm, (3)

where n is the order of the derivative matrix. By developing the
Eq. (2) and using the appropriate substitutions e = d −Gm
and Ln = (Dnm)TDnm, we have:

ϕ(m) =

(dT −mTGT )(d−Gm) + λ(Dnm)TDnm.
(4)

For the linearized process, we started with a homogeneous
initial model m0 and updated the model parameters iteratively
through the following equation:

(GTG+ λDTnDn)
kΔmk = (GT )kΔdk. (5)

There are several methods presented in the literature to find
the optimal regularization parameter λ. Among them, the L-
module, which was proposed by Sá (1996), is based on the L-
curve. The concept of the L-curve is necessary to understand the
L-module. The L-curve is a graphical tool used to choose the
regularization parameter. One recent application of the L-curve
in seismic inversion can be seen in Santos et al. (2006).

The abscissas correspond to the error vector between the ob-
served and calculated data, ‖e‖ = ‖Gm− d‖. The ordinates
correspond to the amount of regularization, ‖Dnm‖. When dis-
played on a log-log scale, this curve usually resembles the shape
of the letter L, where the inflection region represents the region
of interest because it indicates the best regularization parameter.
Thus, each point on this curve is the result of an estimated model
by which its turn is related to λ, and the ideal point expresses the
balance between the error and the regularization.

The L-module measures the distance of a point on the L-curve
to the axes origin and is defined by the following equation:

ModL2 =
[
eTe
]2
+
[
(Dnm)

T
(Dnm)

]2
(6)

It is not necessary to construct the L-curve, and the interest
region minimizes the L-module. This method has another version
if the input data are corrupted by noise:

ModL2 =
[
eTe− rTr]2 +

[
(Dnm)

T
(Dnm)

]2
(7)

where r is the vector that represents the noise in the data. When
the noise level added in the data is unknown, an estimate may be
used. Again, the curve must have a minimum.

STEREOTOMOGRAPHY
A set of stereotomography data d consists of a set of parameters
corresponding toM chosen locally coherent events. Each locally
coherent event is represented by the following:

dT = (s, r, Tsr , ps, pr,), (8)

described by the positions of the source and the receiver, s and
r, respectively, by the double traveltime, Tsr, and by the vertical
inclination angles of the event in the directions of the common
shot and common receiver, ps and pr, respectively. This is what
we call stereotomographic picking. Any event can be associated
in a particular velocity model with a pair of rays parameterized
by (X , βs, βr , Ts, Tr), where X indicates the reflector or
diffractor position and βs and βr are the ray shooting angles for
s and r, respectively (Fig. 1).

In stereotomography, the cost function is the square of mis-
fits in all data parameters of the data, that is, positions, vertical
inclination angles and traveltimes. This introduces uncertainties
in all parameters, and theoretically ensures the robustness of the
local optimization (Billette & Lambaré, 1998). As a consequence,
the ray segment pairs must be optimized in conjunction with the
velocity macro-model, thereby increasing the number of model
parameters. Thus, the stereotomographic model is a combination
of the velocity macro-model described by a set of velocity param-
eters Vj and a set of ray segments pairs associated with each
chosen event (Terra et al., 2012):

m =
[
(vj)

M
j=1 , [(X, βs, βr, ts, tr)i]

N

i=1

]
. (9)

For any pair of ray segments and a priori velocity model, the
set of stereotomographic parameters corresponding to a stereoto-
mographic picking can be calculated. This calculation requires
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Figure 1 – (a) Stereotomography data: a locally coherent event in a pre-stacked
data cube, characterized by its source and received positions S and R along
the axis sX and rX , vertical inclination angles and traveltimes. (b) Stereoto-
mography model: a pair of ray segments displayed in the macrovelocity model
characterized by reflector/diffractor pointX , angle shots in the directions of s
andr, and traveltime paths fromX tos and tor. Adapted from Lambaré (1998).

only two ray segments from the common pointX toward the sur-
face, with initial directionsβs andβr and ray lengths correspond-
ing to traveltimes Ts and Tr. In this paper, we use an objective
function (Costa et al., 2008):

ϕ(m) =
∣
∣
∣d
obs − g(m)

∣
∣
∣

2

2
+ λ2D|(m−m0)|22

+ λ2Lap
∣
∣(D21 +D

2
3)(m−m0)

∣
∣
2

2

+ λ2C1
∣
∣D21(m −m0)

∣
∣
2

2
+ λ2C3

∣
∣D23(m−m0)

∣
∣
2

2

+ λ2G1|D1(m −m0)|22 + λ2G3|D3(m−m0)|22
+ λ2RDR |(m−m0)|22

(10)

where the parameters λ work as Lagrange multipliers that aver-
age the regularization contributions of the objective function. The
parameter λD acts on all model parameters and its purpose is to
average the model parameter updates. λR controls the smooth-
ing degree over the reflector. The parameter λLap determines the
smoothing of the isotropic curvatures (Laplacian). The parameters
λC1 and λC3 determine the curvature in the horizontal and ver-
tical directions, respectively, while the parameters λG1 and λG3
determine the gradient in the horizontal and vertical directions, re-
spectively. In this work, the value of each regularization parame-
ter is varied gradually, keeping the other parameters constant. The
objective is to analyze the influence of each regularization param-
eter in the solution of the inverse problem. The behavior of the
estimated model parameters is analyzed through the RMS data

error, and the absolute error is computed in terms of slowness,
position and traveltime. We have to be aware that the adoption of
several regularization constraints together with their regulariza-
tion parameters in the construction of the objective function will
increase the level of non-linearity of the inverse problem.

OPTIMIZATION IN STEREOTOMOGRAPHY

As in traditional traveltime tomography, a non-linear, iterative,
local optimization scheme, is used to update the estimated
model stereotomography. Quasi-Newton optimization methods
have been used until the present time, which require the calcu-
lation of Fréchet derivatives of the data in relation to the model
m. The calculation of the Fréchet derivative is detailed in Billette
& Lambaré (1998). It is based on paraxial ray tracing (Farra &
Madariaga, 1987) and requires a bit of softness in the velocity
macro-model.

In these local optimization methods, first ray segment pairs
are optimized from a defined initial velocity model. This step is
called localization. It can be seen as a generalization of the kine-
matic migration, for example, Guillaume et al. (2001). The same
cost function for global updating is used but with a fixed velocity
model, and with an independent procedure only the ray segment
parameters are optimized to fit the source and receiver positions,
the double traveltime and the inclinations.

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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In a standard common offset kinematic migration, only the
slopes in common offset gathers are considered. An a priori co-
variance matrix is used, which is a diagonal matrix containing
the square errors for each observed data parameter. According to
Billette et al. (2003), the stereotomographic algorithm consists of
three steps, as illustrated in Figure 2.

Figure 2 – Diagram for the non-linear stereotomographic optimization. After
the adoption of an initial model (velocities and rays), the first optimization step
is a localization where the ray segment pairs are rearranged iteratively in the ini-
tial velocity model. The misfit function is minimized and the joint optimization is
performed with a gradient method (LSQR). Adapted from Lambaré (1998).

(1) Construction of the initial model, that is, the ray segment
pairs and the velocity model. In practice, simple initial
models are used, e.g., a homogeneous velocity model and
ray segments derived from simple geometrical considera-
tions.

(2) Event localization in the initial velocity model. This is done
using a Quasi-Newton nonlinear optimization, where all
events can be located independently, using, for example,
singular value decomposition. The location phase leads to
a significant reduction in the cost function.

(3) Joint iterative inversion of ray segments and velocity
model parameters. This is accomplished using the LSQR
method (Paige and Saunders, 1982). The LSQR opti-
mization scheme is widely used for seismic tomography
problems because it is well suited for tomographic prob-
lems with large and sparse Fréchet derivative matrices.
A Laplacian regularization term is introduced to the veloc-
ity model.

APPLICATION TO THE MARMOUSOFT DATA
We used the Marmousoft data which was adapted by Billete &
Lambaré (1998) from the 2-D Marmousi synthetic data, where
they used ray modeling with Born approximation from a data set
free from multiple and refractions (Fig. 3).

The Marmousoft is the combination of a smoothed velocity
field and a complex reflectivity. Originally created by the French
Petroleum Institute for the European Association of Exploration
Geophysicists meeting in 1990, this model was developed to be
geologically plausible and complex to ensure the presence of var-
ious reflectors, high dips and strong velocity gradients, both ver-
tical and lateral. The data acquisition was modeled by a program
that simulates a seismic line with records from different sources.
The first and the last source position are 3.75 and 9.975 km,
respectively. The distance between shots is 0.075 km. The dis-
tance between receivers is 0.075 km, the first one being located at
1.425 km the last one at 9.75 km and all of them with a constant
depth of 1.01 km.

The stereotomographic program is based on ray theory using
linear iterations around a reference model for building an esti-
mated velocity model. The first step in the process was to collect
the picks using an automatic selection tool, which provided a total
of 5,490 locally coherent events, containing source and receiver
positions, estimates for traveltimes and horizontal slowness com-
ponents (slopes measured in the events). In the first set of itera-
tions, with a 13 × 11 less dense mesh, the initial model was a
gradient-type velocity field. The result of these iterations is the
final model, with a 49 × 21 denser B-spline mesh, with nodes
spaced at 0.25 km, laterally and vertically. The inversion algo-
rithm ends after reaching the maximum number of 30 iterations,
and then the models are resampled in a 243× 767 mesh, where
nodes are spaced at 12 m both laterally and vertically.

ANALYSIS OF REGULARIZATION PARAMETERS

For each regularization parameter, different inversions were per-
formed gradually varying the value of the analyzed parameters
while keeping the other parameters constant. It was therefore
possible to assess the contribution of each parameter separately.
The chosen methodology to evaluate the inversion sensitivity to
regularization parameters was the construction of the L-curve, the
L-module curve, in addition to obtaining the RMS errors of the
data and the absolute deviations of the estimated model parame-
ters in relation to the true ones.

The parameter λD acts on all model parameters and its pur-
pose is to average the model parameter updates. Table 1 shows
the simulation results, where λD was the only parameter to be
varied and all the other parameters were kept constant and equal
to zero.

The L-curve in Figure 4 shows that for small values of λD ,
the inversion is minimally sensitive with respect to the calculated

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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Figure 3 – Investigation area for stereotomography in the Marmousoft synthetic model.

Table 1 – Stereotomography inversion results in relation to the variation of parameter λD.
Ed is the RMS error between the observed and the calculated data, and δv is the absolute
error between the true slowness and the estimated slowness (in s/km).

λD Ed(%) δv
∥
∥D01m

∥
∥2

2

∥
∥dobs − dcal∥∥2

2
ModL

0.01 0.1518 0.0026 347.6533 0.2976 347.6534

0.05 0.2072 0.0035 344.4127 0.4063 344.4129

0.06 0.2271 0.0038 344.3345 0.4452 344.3348

0.07 0.2412 0.0041 344.2937 0.4739 344.2940

0.08 0.2545 0.0043 344.2661 0.4984 344.2665

0.09 0.2649 0.0045 344.2475 0.5193 344.2479

0.10 0.2747 0.0046 344.2332 0.5386 344.2336

1.00 0.5477 0.0088 344.0620 1.0736 344.0637

4.00 1.0953 0.0125 344.0884 2.1471 344.0951

7.00 1.3520 0.0134 344.1251 2.6503 344.1353

10.00 1.6114 0.0133 344.1428 3.1588 344.2433

data; that is, for λD less than 0.06, the variation in the regulariza-
tion parameters has little influence on the observed data. However,
in this same region, there is great sensitivity in the inversion in re-
lation to the estimated model parameters; that is, minor variations
in λD lead to large variations in the estimated velocity field. For
larger values of λD , above 7.0, the behavior is the opposite; the
inversion becomes quite sensitive with respect to the observed
data calculated and very stable in relation to the estimated veloc-
ity field. This behavior is expected, as we saw in the section on
the L-curve. Between λD = 0.06 and λD = 7.0, in the knee
of the L-curve, there is an equilibrium point with a trade-off be-
tween the terms of the objective function. To identify this point
more clearly the L-module criterion was used, as shown in Figure
5, where it is easier to observe that the equilibrium point corre-
sponds to λD ∼= 1. Figure 6 shows the estimated model using
this regularization parameter.

The parameter λLap determines the smoothing of the
isotropic curvatures (Laplacian), acting directly on the velocity
model. During the computer simulations in which λLap was
varied, keeping the remaining regularization parameters equal to
zero, it was observed that the inversion did not converge. Thus,
it was decided to keep λD = 1 and vary λLap, leaving the other
parameters constant and equal to zero, as seen in Table 2.

The results show that the stereotomographic inversion was
less sensitive to the regularization parameter λLap, as seen in
Table 2 and Figure 7. It was observed that both data and model
parameters vary little with the gradual variation of λLap. For
example, for all used values of λLap , the absolute deviation in
slowness had no variation to the fourth decimal figure, remain-
ing equal to 0.0088 s/km in all simulations. The L-curve was not
effective in this part, in such a way that we used the L-module
criterion (Fig. 7), which had a very stable performance with lit-

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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Figure 4 – L-curve for the selection of the regularization parameter λD.

Figure 5 – L-module for the selection of the regularization parameter λD. The curve has its minimum in λD = 1.

tle change in the y-axis between λLap = 0 and λLap = 0.09.
The L-module curve has its minimum in xλLap = 2 and then
grows with a steeper slope. Figure 8 shows the velocity distribu-
tion obtained with λLap = 2 which can be considered quite sat-
isfactory when compared to the exact model in Figure 1. The RMS
data error is 0.5474%, and the absolute deviation in the estimated
slowness is 0.0088 s/km.

The parameter λC1 determines the curvature in relation to
the x direction and as for the parameter λLap, it was necessary
to keep λD = 1 to guarantee the convergence. Table 3 shows
the results, where the parameter λC1 varied while λD = 1 and

the other parameters were constant and equal to zero. The in-
version proved to be very sensitive in general to λC1. The built
L-curve exhibited typical behavior, as seen in Figure 9. At first,
between λC1 = 0.001 and λC1 = 10.0, the modulus of the
model parameter derivative is very stable or varies very little with
the variation of λC1. On the other hand, the modulus of the
data error vector varies greatly in the same region. Between
λC1 = 100 and λC1 = 30,000, the behavior is reversed; that
is, the modulus of the data error vector is stable, and the mod-
ulus of the model parameter derivative becomes very sensitive.
From this point, λC1 = 30,000, the curve reaches its knee.

Brazilian Journal of Geophysics, Vol. 34(3), 2016
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Figure 6 – Estimated model using λD = 1 and the other parameters equal to zero. The RMS error in data was Ed = 0.5477%.

Table 2 – Stereotomography inversion results in relation to the variation of parameter λLap. Ed is the
RMS error between the observed and the calculated data, and δv is the absolute error between the true
slowness and the estimated slowness (in s/km).

λLap Ed(%) δv
∥
∥(D21 +D

2
3)m
∥
∥2

2

∥
∥dobs − dcal∥∥2

2
ModL

0.001 0.5477 0.0088 5.0127 1.0736 5.1264

0.010 0.5477 0.0088 5.0125 1.0736 5.1262

0.030 0.5477 0.0088 5.0124 1.0736 5.1261

0.050 0.5477 0.0088 5.0128 1.0736 5.1265

0.070 0.5476 0.0088 5.0127 1.0735 5.1226

0.090 0.5476 0.0088 5.0125 1.0735 5.1262

1.000 0.5478 0.0088 5.0020 1.0735 5.1160

2.000 0.5474 0.0088 4.9885 1.0730 5.1026

3.000 0.5469 0.0088 4.9896 1.0721 5.1035

4.000 5.4688 0.0088 5.0129 1.0720 5.1262

10.000 0.5518 0.0088 5.3406 1.0818 5.4491

Figure 7 – L-module for the selection of the regularization parameter λLap. The curve has its minimum in λLap = 2.
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Figure 8 – Estimated model using λD = 1, λLap = 2 and the other parameters equal to zero. The RMS error in the data was Ed = 0.5474%.

Table 3 – Stereotomography inversion results in relation to the variation of parameter λC1. Ed is the RMS
error between the observed and the calculated data, and δv is the absolute error between the true slowness and
the estimated slowness (in s/km).

λLap Ed(%) δv
∥
∥(D21 +D

2
3)m
∥
∥2

2

∥
∥dobs − dcal∥∥2

2
ModL

0.001 0.5477 0.0088 198.2591 1.0736 198.2620

0.010 0.5477 0.0088 198.2646 1.0737 198.2675

0.100 0.5943 0.0096 198.2605 1.1651 198.2639

1.000 1.2764 0.0210 198.5747 2.5021 198.5905

10.000 1.6454 0.0266 198.4731 3.2255 198.4993

200.000 1.6371 0.0266 197.7518 3.2094 197.7778

10,000.000 1.6009 0.0264 197.7064 3.1383 197.8357

30,000.000 1.6539 0.0271 197.3427 3.2422 197.3693

50,000.000 1.6993 0.0277 197.3281 3.3312 197.3562

80,000.000 1.7986 0.0289 197.3268 3.5259 197.3583

100,000.000 1.9116 0.0302 197.3276 3.7473 197.3632

Figure 9 – L-curve for the selection of the regularization parameter λC1. The curve has its knee between λC1 = 30,000 and λC1 = 100,000.
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Figure 10 – L-module for the selection of the regularization parameter λC1. The curve has its minimum in λC1 = 30,000.

The L-module curve in Figure 10 confirms the results shown by
the L-curve. We see a very sharp variation in ModL in the begin-
ning of the L-module curve and some stabilization from λC1 =
30,000, where the L-curve has its knee. The curve has its mini-
mum value at λC1 = 50,000.

The parameter λC3, as the parameter λC1, determines the
curvature but in relation to the z direction, acting directly on
the velocity field. Again, it was necessary to keep λD = 1 to
guarantee the convergence, while the other parameters were con-
stant and equal to zero. Table 4 shows that in general, the inver-
sion proved to be reasonably sensitive to changes in λC3. At
the beginning, there is very little response in the data with the
variation of the regularization parameter and, at the same time,
a higher response in the derivatives of the model parameters in
the same range. Soon after, between λC3 = 0.1 and λC3 =
0.5, there is a sudden variation in the calculated data, which can

be seen in Ed, δv and
∥∥∥dobs − dcal

∥∥∥
2

2
and is also apparent

in Figures 11 and 12. The parameters proved to be slightly more
stable, with a higher sensitivity at the beginning, as already stated,
and a lower sensitivity after the L-curve knee. From the L-module
curve, one can see that the minimum value of ModL was around
λC3 = 0.1.

The parameter λG1 acts directly on the velocity field and
determines the gradient with respect to the x direction. In this
step, λG1 was varied keeping λD = 1 and the remaining pa-

rameters constant and equal to zero, as seen in Table 5. The con-
structed L-curve showed an unusual behavior and was not used
in this analysis. The inversion was sensitive to the variation of
λG1 in relation to the calculated data and insensitive with re-
spect to the estimated model parameters for the first two λG1
parameters. As for the last three values of λG1, from λG1= 1 to
λG1 = 100, the behavior is reversed.

CONCLUSIONS

The use of regularization in stereotomography is essential for in-
version success. Without regularization, the iterations tend not
to converge, as observed in this work. We also observed that
stereotomographical inversion is relatively more sensitive to some
regulation parameters. For λLap, there was little sensitivity with
the L-curve with a very unusual format. For the other regulariza-
tion parameters, the inversion is in general very sensitive, with
some small differences in behavior in regions within the respec-
tive L-curves.

Most regularization parameters only worked when used in
conjunction with another parameter because when they were act-
ing alone, the inversion procedure did not converge. On the other
hand, λD was the only regularization parameter that could be
used without the aid of another, allowing the iterations to con-
verge. The use of methods such as the L-curve and L-module
curve were very satisfactory for the analysis of the influences of

Revista Brasileira de Geof́ısica, Vol. 34(3), 2016
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Table 4 – Stereotomography inversion results in relation to the variation of parameter λC3.
Ed is the RMS error between the observed and the calculated data, and δv is the absolute error
between the true slowness and the estimated slowness (in s/km).

λC3 Ed(%) δv
∥
∥D23m

∥
∥2

2

∥
∥dobs − dcal∥∥2

2
ModL

0.001 0.5476 0.0088 5.0090 1.0735 5.1227
0.010 0.5455 0.0088 4.8242 1.0693 4.9413

0.050 0.5707 0.0088 3.8784 1.0927 4.1257

0.100 0.6707 0.0099 3.2121 1.3148 3.4708

0.500 5.0295 0.0750 5.4986 9.8595 11.2891

1.000 5.5656 0.0911 5.1201 10.9105 12.0522
10.000 5.6390 0.0935 4.7751 11.0543 12.0416

100.000 5.8057 0.0975 4.2205 11.3811 12.1385

Figure 11 – L-curve for the selection of the regularization parameter λC3. The curve has its knee between λC3 = 0.01 and λC3 = 0.1.

Table 5 – Stereotomography inversion results in relation to the variation of parameterλG1 .Ed is
the RMS error between the observed and the calculated data, and δv is the absolute error between
the true slowness and the estimated slowness (in s/km).

λG1 Ed(%) δv
∥
∥D11m

∥
∥2

2

∥
∥dobs − dcal∥∥2

2
ModL

0.001 0.5477 0.0088 137.6565 1.0737 137.6607
0.010 0.5605 0.0090 137.6511 1.0988 137.6555

0.100 0.8114 0.0132 137.5680 1.5907 137.5772

1.000 1.2603 0.0203 137.7353 2.4705 137.7575

10.000 1.2645 0.0196 137.8133 2.2828 137.8322

100.000 1.2657 0.0196 137.6725 2.2851 137.6915

each regularization parameter, as well as for the choice of the op-
timum parameter. The L-curve makes is possible to observe the
behavior of the calculated data and the estimated model simulta-

neously, whereas the L-curve module provides a greater certainty
equilibrium point and requires a smaller number of points when
compared to the L-curve.
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Figure 12 – L-module for the selection of the regularization parameter λC3. The curve has its minimum in λC3 = 0.1.
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