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MODELING AND PRESSURE PREDICTION OF A BLOCK OF THE JEQUITINHONHA BASIN

Wildney W.S. Vieira, Lourenildo W.B. Leite and Boris Sibiryakov

ABSTRACT. We present in this paper a seismic-stratigraphical framework for pressure prediction for oil and gas exploration in sedimentary basins, that is based on
seismic information, with application to a marine part of the Jequitinhonha basin (east of the State of Bahia, Brazil). For this purpose it is necessary the knowledge of

velocity distributions (compressionalvP and shearvS ), that can be obtained from seismic sections, petrophysical information and empirical models, and the distribution
of density (ρ). We show some details of the theoretical modeling method, with an example that shows how pressure varies in the subsurface. We highlight that pressure

that does not necessarily increase linearly with depth, but in a complex way that requires specific numerical calculations to be able to see important details related to a
reservoir and surroundings. The model considers the vertical gravity load as the source of pressure in the geological formations, and in the present case we do not take

into account the effects of formation curvatures, faulting, diagenesis and lateral tectonic events. We show that the meaning of cap rock of a reservoir is not to be related

to lithology, but directly to the physics of high and low pressure zones that results from the mechanics of solid bodies under a stress-strain system; in this direction, and
as a curiosity, we also show how a basement rock can become a reservoir. It is important to emphasize that an accurate prediction needs a 3D model for a meaningful

and complete practical application, in the other hand, it requires handling large matrices.

Keywords: basin modeling, seismic velocity analysis, pressure prediction, empirical models.

RESUMO. Este artigo tem como objetivo compor uma estratégia sismo-estratigráfica onde se visa a predição de pressão na exploração de gás e óleo em bacias
sedimentares com base em informação sı́smica, com aplicação a uma parte marinha da bacia de Jequitinhonha (leste do estado da Bahia, Brasil). Para esta finalidade

é necessário o conhecimento das distribuições de velocidades (compressiva vP e cisalhante vS ) que podem ser obtidas a partir de seções sı́smicas, informações
petrof́ısicas e modelos empı́ricos, e da distribuição de densidade (ρ). Apresentamos alguns detalhes da modelagem teórica, e um exemplo para mostrar como a pressão

varia na subsuperf́ıcie, onde destacamos que a predição de pressão não aumenta necessariamente linearmente, mas de uma forma complexa que requer cálculos

numéricos especı́ficos para poder obter detalhes relacionados a um reservatório. O modelo apresenta a carga vertical da gravidade como a fonte de pressão nas
formações geológicas, e neste caso não se leva em consideração os efeitos de curvaturas das camadas, falhas, diagênese e eventos tectônicos laterais. Mostramos que

o significado de uma rocha selante de um reservatório não deve estar relacionado à litologia, mas simplesmente à f́ısica de zonas de alta e baixa pressão como resultado
da mecânica dos corpos sólidos sob o sistema de tensão-deformação; neste sentido, e como curiosidade, mostramos também como uma rocha do embasamento pode

se tornar um reservatório de óleo e gás. É importante observar que uma predição com precisão necessita de um modelo 3D para uma aplicação prática significativa e

completa, mas que requer o manuseio de matrizes grandes.

Palavras-chave: modelagem de bacia, análise de velocidade sı́smica, predição de pressão, modelos empı́ricos.
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174 MODELING AND PRESSURE PREDICTION OF A BLOCK OF THE JEQUITINHONHA BASIN

INTRODUCTION
This paper presents a numerical experiment of basin modeling
and pressure prediction, where we use four seismic lines of the
Jequitinhonha basin located to the east of the State of Bahia
(Brazil), marine side. The lines used were separated into two
groups: three lines in the NE-SW (L214-266, L214-268, L214-
270), and one line in the NW-SE direction (L214-297), in or-
der to construct what we call an empirical 3D pressure model.
This means, since the surveyed lines are independent, in principle
we cannot construct a single subsurface distribution of velocities
(vP and vS ) and density (ρ). Therefore, we interpolated and ex-
trapolated the results obtained for the individual time sections to
construct a limited block, but that can still give plausible and con-
sistent geological information. A precursor to the present paper
describing the basic and fundamental theory can be followed in
Leite et al. (2016).

The methodology was composed of velocity analysis, CRS
stacking and migration (Mann, 2002), geometrical interpretation
of reflectors, and the construction of a controlled empirical model
for vP , vS , and density ρ, leading to the prediction of pressure in
the subsurface. The goal is the mapping of areas of low (example,
rock reservoir) and high (example, rock generator) pressure zones
that act as natural pumps for the accumulation of fluids (Payton,
1977). In this direction, Sibiryakov et al. (2014) have also pre-
sented the basic theory, and Silva (2016) presented results that
also serves as precursors to the present work. Pressure predic-
tion, in sedimentary basin modeling for oil and gas exploration,
is a very attractive subject that can contribute to complex geolog-
ical understanding, and to participate in the location of a borehole
for a successful productive well.

The interpretation of the seismic sections was to recognize
patterns existing between the main reflective events, where four
basic principles were considered: resolution (vertical), continuity
(horizontal), texture (of the intervals between dominant events),
and frequency content (low, medium, high).

The so-called Regência Petroleum System is responsible for
all hydrocarbon occurrences in the Jequitinhonha basin (Mello
et al., 1994). However, we should mention that it is necessary
to emphasize that a rock is a reservoir candidate if it fulfills the
mechanical-static conditions of pressure state, therefore we may
put some literature in contradictory positions in some details
about the reservoir stratigraphy.

Basin modeling aiming at oil and gas exploration contains
many theoretical aspects related to engineering, geology, geo-
chemistry and geophysics, in order to characterize a reservoir
as described by Hantschel & Kauerauf (2009). Ameem (2003)

presents a special bibliography for methods and theories on
crustal stress studies, where basins are included. But, it should
be clear here that we follow the development of a specific data
driven method that is based on vP(x), vS(x) andρ(x) as a priori
knowledge, in order to map low pressure zones that are important
to locate a successful drilling zone for oil and gas exploration.

METHODOLOGY

We start describing part of the data information contained in Fig-
ure 1, where we show the interpreted sections of the CRS zero off-
set stack (normal incidence sections). The geometrical interpre-
tation was based on reflection events with clear lateral continuity,
and on the texture of the macro intervals, where the sequences and
structures are indicated by letters and numbers. The interpretation
outlines basement highs, the layered sequence displaying lateral
variations and specific textures. The flat top of the figures shows
clearly the contact water/sediments with similar behavior for a
flatter platform followed by the main marine continental slope.
We point out here that the three parallel lines (66, 68 and 70) were
used to construct the empirical 3D cube, while the transversal line,
97, was only used to help the interpretation process.

Pressure Prediction

The main physical parameter governing pressure prediction is
given by the measure of discontinuity represented by the velocity
ratio γ = vS/vP along the interfaces. Sibiryakov et al. (2015)
deals with different aspects of this special method, where is de-
scribed that, as a result of the γ ratio behavior, an anticline is not
necessarily the only structural condition for potentiating a zone to
be an oil and gas accumulator (reservoir).

The continuous linear elastic stress, σ = σ(x, y, z), and
deformation, ε = ε(x, y, z), fields described as tensors func-
tions of space, and represented by nine components. For the gen-
eral anisotropic media, the tensors σ and ε obey the spatial co-
ordinate rotation by the relation: σij =

∑
k,l ajklσ

′
kl, and

εij =
∑
k,l bjjklε

′
kl, where the coefficients aijkl and bijkl

define the new plane with respect to a reference system. The linear
elastic relationship between stress and strain is given by the gen-
eralized Hooke’s law: σij =

∑
k cijklεkl. In this description,

the first index (i) in σij and εjj represents the plane direction,
and the second (j) the component direction. The stress state is
represented at a point Q by a matrix S with elements σij .

Now we describe internal aspects of the stress fields followed
by the constituent relations for pressure prediction in layered
solid subsurface.

Revista Brasileira de Geof́ısica, Vol. 35(3), 2017
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(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 1 – Seismic interpretation of the used sections.

Stress states
The stress matrix can be decomposed in three parts: S = S0+SDSN, which allow a physical interpretation (Persen, 1975). For the
state S0 we simply have that S0 = {PHδij}, where PH = 1

3
(σxx +σyy +σzz) is the sum of the normal stresses which defines

the so-called hydrostatic pressure, and this state is present in any plane around the point Q. For the state SD we have that:

SD =

⎡
⎢⎢⎢⎣
σxx − PH 1

2(σxy + σyx)
1
2 (σxz + σzx)

1
2(σxy + σyx) σyy − PH 1

2(σyz + σzy)

1
2
(σxz + σzx)

1
2
(σzy + σyz) σzz − PH

⎤
⎥⎥⎥⎦ . (1)

Applying the symmetry property to the above matrix (1): σxy = σyx, σxz = σzx, σyz = σzy , SD, results in a null state, i.e.,
SD = 0. For the state SN we have that:

SN =

⎡
⎢⎢⎢⎣

0 1
2
(σxy − σyx) 1

2
(σxz − σzx)

1
2 (σxy − σyx) 0 1

2(σyz − σzy)
1
2 (σxz − σzx) 1

2 (σzy − σyz) 0

⎤
⎥⎥⎥⎦ . (2)

Brazilian Journal of Geophysics, Vol. 35(3), 2017
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By the same principle, applying the symmetry property, the state
SN simplifies to:

SN =

⎡
⎢⎣
σxx − PH σxy σxz

σyx σyy − PH σxz

σzx σzx σzz − PH

⎤
⎥⎦ . (3)

what places the deviatoric state along the diagonal (normal
stresses), from where the hydrostatic state is subtracted, remain-
ing the non-hydrostatic state.

For an isotropic, linear elastic, medium, the relation between
stress and strain is represented by Hooke’s law in the special form:
σij = λθδij +2μεij , where λ and μ are the Lamé’s elastic pa-
rameters, and δij the Kronecker delta (δij = 0, if i �= j and
δij = 1, if i = j). The non-dimensional parameter θ represents
the cubic dilation, and is given by the divergence of the displace-
ment vector u as:

θ = ∇ · u = ∂ux
∂x
+
∂uy
∂y
+
∂uz
∂z
.

The non-dimensional tensor components εij are defined in
terms of the displacement components ui in the form:

εij =
1

2

(
∂ui

∂xj
+
∂uj

∂xi

)
.

Besides, the linear shear-extensional tensor:

ϕij =
1

2

(
∂ui

∂xj
− ∂uj
∂xi

)
,

is a non-dimensional rotation tensor.
We may notice that, once the displacement field is known,

the stress and deformation tensors can be calculated by applying
spatial derivatives.

Governing equations
The differential equations that represent static stress state of a
physical particle of the subsurface, and to be integrated, is given
by a system of related forces as:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂σxx
∂x
+
∂σxy
∂y
+ ∂σxz

∂z
= px(x, y, z),

∂σyx
∂x +

∂σyy
∂y +

∂σyz
∂z = py(x, y, z),

∂σzx
∂x
+
∂σzy
∂y
+ ∂σzz

∂z
= pz(x, y, z),

(4)

resumed to the form,

∂σij
∂xj

= pj(x, y, z),

(i, j = 1, 2, 3) or (i, j = x, y, z),
(5)

where pj(x, y, z) can represent a tectonic (external) horizontal
(x and y) stress-pressure field on the block, but the horizontal
components are usually defined as null, and the vertical compo-
nent is defined as the gravity loading, pz = ρ(z)g(z), that can
be further simplified to pz = ρg, with ρg constant for the consid-
ered thickness column. In other words, for the present approach
the vertical gravity load is considered the only one responsible for
producing the basin stress field, therefore the horizontal tectonic
components are null, px(x, y, z) = 0 and py(x, y, z) = 0,
and they could be introduced if there is a difference between cal-
culated and real horizontal stresses.

The present model is related to the wave propagation in a per-
fect linear elastic medium, where the elasto-dynamic equations of
motion have in the right hand side the acceleration term, and a
ceased source term; to recall the case, the system of equations of
dynamic state is resumed to the form:

∂σij
∂xj

= ρ
∂2ui
∂t2
. (6)

This means that the temporal-spatial stress variation is related
to the inertial forces (per unit volume), not considering internal
forces in this case. It should be clear that we are not studying
wave propagation in pre-stressed media, but the case of static de-
formation, that could be analyzed based on the dynamic equation
of motion for the limit of zero frequency (static condition).

The basic seismic velocities (P and S) for elastic, homoge-
neous, isotropic media are given by:

vP =
√
(λ + 2μ)/ρ, vS =

√
μ/ρ,

where μ is the shear module, ρ is the volumetric density, and λ is
related to the bulk and shear modules. From the above relations,
the modules can calculated by:

μ = v2s ρ, λ = v
2
Pρ− 2μ = (v2P − 2v2S )ρ.

The ratio γ = vS/vP =
μ

λ+2μ
does not depend on ρ, and

represent a sampling over the μ and λ parameters. The waves
sample the elastic parameters in the subsurface, and the parame-
ters are considered to vary only spatially, and not with the propa-
gation time.

Density is usually admitted as a parameter that varies slowly
with depth, from the Earth’s surface to the top of the target inter-
face; but, in some geological situations the density discontinuity,
across an interface, can be relatively high. In the present case of
vertical sections, the density is modeled in 2D, ρ = ρ(x, z), and
is integrated in the calculation grid.

The used system of differential equations to be integrated cor-
responds to the description of the static problem [no time variation

Revista Brasileira de Geof́ısica, Vol. 35(3), 2017
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(4)]. These equations govern the mechanics of solids under the
influence of gravity (may include tectonic forces over the selected

block), and they are summarized to the form:
∂σij

∂xj
= ρg δ3j .

This means that the sum of the horizontal stress variations are
zero, and the vertical component is controlled by the gravity load-
ing in the subsurface expressed in terms of force per unit area, and
set to pz = ρg. That is, the lateral tectonic stresses are not taken
into account in this model, besides we do not have such informa-
tion for the area. Also, in other macro cases the quantities ρ and
g can be considered as spatial functions; that is, ρ = ρ(x, y, z)
and g = g(x, y, z).

We describe first a model for the geological medium as repre-
sented by plane-horizontal layers along the vertical z axis at each
point of the x axis of the profile. The equilibrium equation for the

linear elastic medium for each layer is
∂σik

∂xk
= ρgi, where σik

represents the components of the stress tensor, ρ the rock den-
sity, andgi the gravity acceleration. For the case of vertical gravity,
gi=z(z) ≈ g, admitted as constant for a small depth variation,

the equilibrium equation is simplified to the form
∂σzz
∂xz

= ρg.

This equation has an elementary solution that is given by:

σzz|z=z0 = Pz =
∫ z=z0
z=0

ρgdz = ρgz0 = P0(z0), (7)

where P0 = ρgz0 is the overload rock weight per unit area; i.e.,
the vertical pressure due to the overload at any depth z0.

For the present model, where the vertical stress, σzz(z),
is defined as only due to the overloading layer; i.e., σzz =
Pz = P0(z). The horizontal stress, σxx(z), considering that
σyy = σxx, is smaller than the vertical stress, σzz , and we can
demonstrate it to be given by:

σxx = Px = P0(1− 2γ2), (8)

where P0 = P0(z), γ = γ(z) = vS(z)/vP(z).
The scalar invariant hydrostatic pressure field, P (z) = PH ,

was defined in the matrix (1) as the average:

P = PH =
1

3
(σxx + σyy + σzz). (9)

Using Hooke’s generalized law, it is demonstrated that P =
PH = (λ +

2
3
μ)θ, where θ(z) is the cubic dilation, and λ(z)

and μ(z) are Lamé’s parameters described before.
A very important physical feature is the pressure discontinu-

ity across interfaces layers (ΔP = P+ − P−), at the depth
z (positive down), which exists if the velocity ratio, γ, exhibits a

discontinuity. Considering the case of a medium formed by plane-
horizontal layers, and Hooke’s isotropic law, it is shown that the
discontinuity ΔP is given by

ΔP (z) =
4

3
(γ21 − γ22)P0(z), (10)

where γ1 is the upper layer and γ2 the lower layer parameters
across the interface positioned at depth z, with the overload pres-
sure varying by positive and negative jumps.

This idea may seem a little strange in simple geological de-
scriptions, but it is a fact related to the non-elementary behavior of
stress in solids. The mentioned interfaces are goals in the geolog-
ical interpretation of seismic sections, and examples are shown in
Figure 1.

The intensity of tangential stress, PT , is a way of measuring
the mechanical instability responsible for the capacity to destroy
a granular structure, and to produce fracture in a solid rock, and
the following result is obtained:

PT (z) =
1

2
(σzz − σxx) = γ2Pz(z), (11)

where again this result also depends on the γ ratio.

RESULTS
The velocities distribution used were based on controlled empiri-
cal models with the parameters presented in the Table 1 and illus-
trated in Figure 2, where A1 represents the water layer (dark blue),
A2 a formation overlying the reservoir (light blue), A3 the reser-
voir formation (yellow), A4 the formation that includes the source
rock (reddish orange), and A5 the basement (brownish red).

Table 1 – Example of used parameters.

Parameter A1 A2 A3 A4 A5
γ0 0 0.687 0.807 0.677 0.570
vP0 1500 2280 3442 4222 5002
kP 0 1.5 0.5 0.75 0.5
kg 0.0001 0.0001 0.0001 0.0001 0.0001

The formula for the velocity vP in each geological formation
was defined by vP (z) = vP0 + kP z, with a small gradient
kP . For the γ distribution was also admitted a linear function,
γ(z) = γ0 + kgz, with also a small gradient kg . For the den-
sity distribution, as ρ(vP ) = 0.452+0.4788vP adopted from
Mavko et al. (1999). These models were applied to the interpreted
seismic-stratigraphic sections of Figure 1; to emphasize, these
formulas were applied along z for each point of the x axis; in this
way, the maps show directly the matrix distributions for vP (x, z),
vS(x, z), ρ(x, z), and consequently γ(x, z).

Brazilian Journal of Geophysics, Vol. 35(3), 2017
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(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 2 – Velocity, vP .

(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 3 – Gamma ratio, γ.

Revista Brasileira de Geof́ısica, Vol. 35(3), 2017
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(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 4 – Velocity, vS .

The basic sections to start the pressure prediction are the ve-
locity vP and the γ ratio, from where the other parameters were
calculated (see Figs. 2, 3 and 4). In order to obtain these sections
for the parameter distributions, we started from the CRS stack
interpreted sections, where the source and reservoir formations
were selected based on some geological information.

The empirical vP models are of mixed type; i.e., composed of
jumps and smooth linear trend; thus, for the rock formations a ver-
tical gradient was assigned to the P wave velocity in the discrete
form vP (n) = vP0+kPn (in the experiment k varied between
0.1 and 0.7), where Δz is included in the kP factor. This also
means that we looked only at the data as a matrix, where can be
applied a rather complex change of scale to transform from time
(t) to depth (z), or simply by using a constant average velocity
value. A similar formulation was applied to the γ(z) distribution.
From the vP (x, z) and γ(x, z) a priori informations, the distri-
bution for vS(x, z) was calculated and, therefore, for the other
desired parameters.

Figure 5 shows the density distribution ρ(x, z) for the ex-
ample, which also followed the mixed formalism similar to that
for vP ; that is, with jumps and smooth vertical gradients.

In the following figures for the different types of pressure cal-
culation, we look for zones of low and high values. Figures for
the vertical pressure, Pz, calculated by Eq. (7), showed a very
smooth behavior as expected, and for the sake of space are not
presented here. Figure 6 of the horizontal pressure, Px, calcu-
lated by Eq. (8), shows a very distinct and special behavior in each
section. Figure 7 of the deviatoric pressure between vertical and
horizontal pressures, PT , calculated by Eq. (11), shows a very
special behavior for the low and high value zones, and either pos-
itive or negative, and the information is that the vertical pressure
exceeds the horizontal pressure that can act as a reservoir zone.

The hydrostatic pressure (solid phase) of Figure 8, PH , cal-
culated by Eq. (9), clearly models the low pressure zone (cen-
tral blue stripe) between two high pressure zones (weaker above
and stronger below). But it is interesting that part of the basement
presents zones of intermediate pressure.

Brazilian Journal of Geophysics, Vol. 35(3), 2017
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(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 5 – Density, ρ.

(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 6 – Horizontal pressure, Px .

Revista Brasileira de Geof́ısica, Vol. 35(3), 2017
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(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 7 – Deviatoric pressure,PT .

(a) Line 66. (b) Line 68.

(c) Line 70. (d) Line 97.

Figure 8 – Hydrostatic pressure,PH .

Brazilian Journal of Geophysics, Vol. 35(3), 2017
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Figures of the pressure jump,

ΔP (z) =
4

3
(γ21 − γ22)P0(z)

(γ1 is above and γ2 below the separating interface), expose faint
lines of the discontinuities that serve to mark the different forma-
tions, and the quality of the process, but they were not presented
here due to to space. Similarly, figures of the Poisson’s coefficient,
ν = Δx

Δz
, clearly model, in some detail, negative values for the

low pressure zone, and smooth gradients for the other formations,
and positive values.

Figures 9, 11 and 13 represent the called empirical cubes for
the contents of horizontal, hydrostatic and deviatoric pressures,
respectively. These cubes were constructed by simple linear in-
terpolation, after placing the three parallel sections (lines 66, 68,
70) in their respective positions as an empirical cube controlled by
a discrete, (i, j, k) grid, with established spacingsΔx =383 m
and Δy =195 m. The value for Δz will depend on the scale of
the transformation of the time axis, t, to depth, Δz; for example,
admitting a total depth of 8000 m for the total number of points
(200), then we have approximately Δz =40 m. Also the vertical
scale can be constructed using an average velocity, or a depth mi-
gration operator. A reservoir formation usually has a rather small
thickness (for instance, 5 m, 10 m, 20 m); therefore, to follow a
reservoir laterally one needs to make horizontal sections in the 3D
cube; but the main idea here is to look at the lateral extensions of
the target zone (formation mapped as the reservoir), since it can
have a rather large dip across the section. The matrix representing
the cube is 200×107×41 points. The correspondent geological
cube is x =42 km, y =12 km, and z =7 s (1750 points in the
time scale, with a discretization of 4 ms). These values were estab-
lished due to the available computer power; the finer the sampling,
better details can be seen.

Following this main idea, Figures 10, 12 and 14 represent
horizontal sections of the respective cube, that were selected
based on the vertical index (also called depth index), therefore
they represent maps of the variation of pressure for different lev-
els. Looking at these horizontal sections we can notice the non-
uniform sampling in the (x, y, z) directions, resulting in square
edges, while the vertical sections (Figs. 9, 11 and 13) are smooth.
We make clear and inform that only a linear interpolation was per-
formed to construct the cubes, although other interpolation op-
tions exist like cubic spline.

The main idea is to combine pairs, Figures 9 and 10, 11 and
12, 13 and 14, in order, first, to interpret the subsurface con-
tinuation of a productive reservoir, and second to examine po-
tential zones as reservoirs. The present analysis is very specific,

and takes in consideration the mapping of zones of low and high
pressures. Looking at the combined pairs of pressure distribu-
tions (horizontal, hydrostatic and deviatoric), we should follow
the evolution of the blue (bluish) color of the target zone horizon-
tally and vertically.

With these considerations, we call attention to the target hor-
izontal pressure with the form of a blue strip crossing the vertical
sections from left to right, with a gentle dip, and can be clearly
seen in Figure 9, for an easy description. Now following Figure 10,
the target presents a lateral extension, and a sharp confined zone
at the level depth index 60. This effect can also be seen in the
Figure 12 for the hydrostatic pressure, but for the deviatoric pres-
sure (Fig. 14) the color pattern changes to indicate the concept for
variation between hydrostatic and horizontal pressures.

CONCLUSIONS

Pressure prediction is a very attractive subject, but not so sim-
ple and deserves a lot of attention to the physical-mathematical
modeling as a boundary value problem.

The seismic data were processed with CRS technology proved
to be more effective in the geometrical delineation of reflectors of
the stacked and migrated sections, that were used to construct an
empirical velocity (vP and vS ) and density (ρ) models based on
the concept of an existing productive reservoir, where the γ dis-
tribution is the constraint to indicate its presence.

The mapping of low pressure zones, corresponding to a pro-
posed reservoir formation, has a spatial extension that depends
on the seismic-stratigraphic and structural geology, consequently
on their interpretation.

This research topic is attractive in the sense that it is a data-
driven method aiming to extend, or discover, a low pressure zone
for a successful drilling.

A more complete continuation of this work would require
more seismic data and log information. 3D surveys would be
ideal, besides borehole, structural, and tectonic parameters for
the area; but, this type of information has limits to public use for
academic studies due to property contracts.
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Figure 9 – Vertical sections of the empirical cube for horizontal pressure Px(x, y, z).

(a) Depth index=60. (b) Depth index=70.

(c) Depth index=80. (d) Depth index=90.

Figure 10 – Horizontal sections of the empirical cube for horizontal pressure Px(x, y, z).
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Figure 11 – Vertical sections of the empirical cube for hydrostatic pressure PH(x, y, z).

(a) Depth index=60. (b) Depth index=70.

(c) Depth index=80. (d) Depth index=90.

Figure 12 – Horizontal sections of the empirical cube for hydrostatic pressure PH(x, y, z).
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Figure 13 – Vertical sections of the empirical cube for deviatoric pressure PT (x, y, z).

(a) Depth index=60. (b) Depth index=70.

(c) Depth index=80. (d) Depth index=90.

Figure 14 – Horizontal sections of the empirical cube for deviatoric pressure PT (x, y, z).
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