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CRITIQUE OF SOLUTIONS IN LINEARIZED INVERSE PROBLEMS:
NUMERICAL EXPERIMENTS IN TRAVELTIME TOMOGRAPHY

Silvia L. Bejarano1 and Amin Bassrei2

ABSTRACT. In this work, we evaluated the quality of the solution of numerical experiments in traveltime tomography, in linear and linearized cases, using singular
value decomposition. The simulations were performed using a synthetic model, which has been discretized into uniform 2-D blocks, where the slowness in each block

was considered to be constant. These simulations were performed with different numbers of singular values, and different levels of Gaussian noise were added to the
traveltimes. Additionally, regularization by derivative matrices was used, known in literature as Tikhonov regularization. To evaluate the quality of the inversion, the

behavior of the main diagonal of the data resolution matrix and the model resolution matrix was analyzed for different amounts of singular values, providing a clear
indicator of the inversion success, either in the whole estimated model or in its parts. A second criterion used the concept of complementary solutions and the generation

of a pseudo-constant solution, allowing the analysis of regions where the inversion was not successful.
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RESUMO. Neste trabalho avaliamos a qualidade da solução em experimentos numéricos em tomografia de tempo de trânsito, nos casos linear e linearizado, utilizando

o método de decomposição por valores singulares. As simulações foram feitas utilizando um modelo sintético, o qual foi discretizado em blocos 2-D, uniformes,
considerando constantes as vagarosidades em cada bloco. Essas inversões foram efetuadas com diferentes números de valores singulares, assim como foi incorporado

diferentes nı́veis de ruı́do gaussiano aos tempos de trânsito. Também foi utilizada a regularização por matrizes de derivada, conhecida na literatura como regularização de
Tikhonov. Para avaliar a qualidade da inversão foi analisado o comportamento da diagonal principal da matriz de resolução de dado e da matriz de resolução de modelo,

para diferentes quantidades de valores singulares, fornecendo um claro indicador do sucesso da inversão, seja no modelo estimado como um todo ou em partes. Um
segundo critério utilizou o conceito da solução complementar e da geração da solução pseudo-constante, permitindo analisar em quais regiões do modelo a inversão

não foi bem-sucedida.
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496 CRITIQUE OF SOLUTIONS IN LINEARIZED INVERSE PROBLEMS

INTRODUCTION

Many geophysicists dedicate their efforts to the solutions of in-
verse problems, but generally little attention is given to the criti-
cism of the solution. In other words, once the solution is obtained,
little emphasis is given to a quantitative analysis of the solution.
The main objective of this work is to present new methodologies
to evaluate the inverse problem solution in traveltime tomography.

Seismic tomography is an inverse problem, which allows us
to estimate a function from a line integral. In traveltime tomog-
raphy, the unknown of the problem is the slowness distribution,
which is obtained from the values of the data parameter, in this
case, the traveltimes between sources and receivers.

In this study, two criteria were used to evaluate the solutions
of inverse problems. The first criterion is the resolution matrix, as
defined in Jackson (1972). The closer the resolution matrix is to
the identity matrix, the better the quality of the inversion.

The second criterion was originally suggested by Barbi-
eri (1974) with an application in medical tomography. We con-
sider that the estimated solution mest has an associate vec-
tor called the complementary estimated solution, expressed by
mest,c. The sum of these two vectors is a third vector, de-
noted by vector w. If the inverse problem is exact, the vector w
is constant.

To obtain the pseudo-inverse matrix G, also called the
Moore-Penrose inverse (Penrose, 1955), we use singular value
decomposition, or SVD. When using SVD, it is necessary to avoid
small singular values so as not to compromise the results be-
cause these small singular values act as if they were noise. There-
fore, we used some criteria for the selection of singular values,
such as the decay behavior of the singular values, the RMS er-
ror between the observed and calculated data parameters, and
the RMS error between the true and estimated model parameters.
These criteria were applied in traveltime tomography by Silva &
Bassrei (2007) for the linear case and Silva & Bassrei (2008,
2009) for the linearized case.

Due to the illposedness of the tomographic problem we also
used, for the linearized iterative inversion, regularization with
derivative matrices. The results improved and validated the ap-
plication of Barbieri method.

The region of interest was divided into square 2-D blocks with
constant dimensions. The data acquisition geometry was cross-
well, where the sources and receivers were uniformly distributed
on the sides of a 30 × 20 grid. The application of the proposed
methodology to synthetic data was necessary because it allows
the calculation of the RMS error between the true model param-
etersmtrue and the estimated model parametersmest. In real
data, mtrue is not available. We also calculated the RMS error

between the observed data parameters dobs and the calculated
data parameters dcal. However, this estimator is only auxiliary
because our inverse problem is usually ill-posed and non-unique
and a small RMS error for data parameters is not usually associ-
ated with consistent solutions.

INVERSE PROBLEMS AND TRAVELTIME TOMOGRAPHY
Inverse problems are usually ill-conditioned; that is, its solutions
do not exist, and if they exist, they are not unique and/or they
are unstable. On the other hand, overdetermined problems do not
have a unique solution. However, the least squares method en-
ables the determination of a unique solution, which has a min-
imum RMS error. If the problem to be analyzed is underdeter-
mined, then the system does not have enough information to de-
termine a unique solution, and therefore there are infinitely many
solutions.

In addition to these problems, there is also the issue of stabil-
ity; that is, even if the solution exists and is unique, it may still be
unstable. A small disturbance in the data (such as noise) implies
a great disturbance in the model parameters to be estimated.

One way to overcome this problem is to regularize it to in-
crease the stability of the solution. The instability of the inverse
problem can be assessed by the condition number of the prob-
lem, defined as the ratio between the largest and smallest singular
value of the matrix that relates the model parameters to the data
parameters.

According to Menke (2012), one can classify the relationship
between data and model parameters into two classes in the anal-
ysis of physical phenomena. The first class is direct or forward
modeling, where the data are predicted from a given model. In
the second class, called inverse modeling, the model parameters
are determined from observed data. Menke (2012) also states that
the linear, linear by parts or linearized inverse problems can be
formulated as a system of linear equations:

d = Gm, (1)

where d = [d1, d2, . . . , dM ]T is the vector of the data pa-
rameters and m = [m1, m2, . . . , mN ]T is the vector of the
model parameters. GM×N is a coefficient matrix that relates
theM data parameters to theN model parameters.

In most geophysical problems, the matrixG is an approxi-
mation of a non-linear operator g:

d = g(m). (2)

Tomography is an image reconstruction technique with many
applications in geophysics (Stewart, 1991; Lo & Inderwiesen,
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1996). Traveltime tomography is an inverse problem with a kine-
matic approach that uses the traveltimes between sources and
receivers as input data in the inverse procedure. Traveltime to-
mography finds application in reservoir geophysics because it is
an appropriate technique used in reservoir characterization and
monitoring.

The traveltime of a given ray in a path r is given by

t =

∫
r

s(x, z)dl, (3)

where s(x, z) is the 2-D slowness distribution and dl is an el-
ement of the ray path. By Fermat’s principle, the ray path in the
above integral is the one that has stationary value.

The traveltime equation (3) is a non-linear relationship like
equation (2). In homogeneous media, the rays are straight, but
the medium is non-homogeneous. Moreover, the ray path r de-
pends on the slowness distribution s(x, z) and the ray path will
be curved. Before we proceed to linearization, we will use vec-
tor notation for the traveltimes t and the slowness distribution
s(x, z) in such a way that

t = g[s(x, z)]. (4)

Using Taylor series, we can expand t around a reference
slowness s0. We truncate the expansion by ignoring the terms
with order greater than or equal to two:

t− t0 = ∂g
∂s
|s=s0(s − s0), (5)

which can be written as

Δt = GΔs, (6)

whereΔt = t−t0 is the traveltime residual andΔs = s−s0
is the slowness residual. Equation (6) can be adapted for an it-
erative procedure so that the traveltime residual can now be ex-
pressed as Δt = tobs − t(k), where tobs is the vector of the
observed traveltimes and t(k) is the k-th iteration vector of the
calculated traveltimes, and Δs(k) = s(k+1) − s(k), where
s(k+1) is the k + 1-th iteration vector of the estimated slow-
nesses and s(k) refers to the k-th iteration.

The elements of matrixGM×N are the distances traveled by
the rays. Each row of matrixG is associated to one ray and each
column to a specific portion of the medium. A simpler way to pa-
rameterize the slowness distribution is to divide the study area into
small cells or blocks and assign constant values of slowness. The
use of high-frequency sources allows a precise determination of
the traveltimes, which will provide high-resolution images of ve-
locity structures. Thus, the gji elements correspond to the j-th
ray inside the i-th block. This matrix is sparse, for a given ray
intercepts only a small part of the model.

The so called direct or forward modeling addresses the cal-
culation of traveltimes, performed in this work by ray tracing and
discussed in detail in Appendix A.

Properly speaking, the inversion is the determination of the
final estimate of s, the vector of the model parameters. This is
done iteratively along with ray tracing. In each iteration k, the in-
put data for the inversion is the vector Δt = tobs − t(k) and
the outcome is the vector Δs(k) = s(k+1) − s(k), which in
turn allows the calculation of the final estimate of s using the re-
lationship s(k+1) = s(k) + Δs(k). The inverse of G is the
generalized inverseG+ (Penrose, 1955), calculated in this work
by singular value decomposition or SVD.

REGULARIZATION

For the numerical inversion we used the classical singular value
decomposition (SVD), which is presented in Appendix B. One
important issue in SVD is the existence of small singular values,
which are always a problem because they usually degrade the so-
lution of the inverse problem. Thus, some type of regularization is
necessary, and we choose singular value selection, that is, our cri-
terion was to check the amplitude of the singular values. Usually
a SVD program provides the singular values in descending order,
so that from a certain value, this information is regarded as noise
that compromises the quality of inversion. Different amounts of
singular values were tested, in order to make a selection of the
number of singular values, denoted by nsv , to be used in the
SVD inversion.

We also used another kind of regularization to make the solution more stable is minimally limiting the variation of model parameters.
One can use the difference between physically adjacent model parameters as an approximation of the first derivative. The sum of these
values can be defined as flatness l1 (Menke, 2012) of the solution,

l1 =

⎛
⎜⎜⎜⎜⎝
−1 1 0 · · · 0 0 0

0 −1 1 · · · 0 0 0
...

...
...

...
. . .

...
...

0 0 0 0 0 −1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
m1

m2
...
mN

⎞
⎟⎟⎟⎟⎠ =D1m. (7)
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Or we can choose to use the roughness l2 (Menke, 2012) of the model parameters by using an approximation of the second
derivative matrixD2:

l2 =

⎛
⎜⎜⎜⎜⎝
1 −2 1 0 · · · 0 0 0 0

0 1 −2 1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 1 −2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
m1

m2
...
mN

⎞
⎟⎟⎟⎟⎠ = D2m. (8)

The value of Ln, either flatness (n = 1) or roughness (n = 2), related to the model parameters is:

Ln = ‖ln‖22 = (Dnm)T (Dnm),

where n is the order of the derivative matrix. One can then define an objective function S(m) as:

S(m) = eTe+ λLn;

or
S(m) = (d−Gm)T (d−Gm) + λ(Dnm)T (Dnm), (9)

where λ is a positive constant called regularization parameter, which represents the regularization intensity that is applied to provide a
satisfactory solution. When λ = 0 the above equation lies in the least squares method. If λ �= 0 and the regularization order is zero;
that is, L0 = ‖l0‖22 = (D0m)T (D0m) , we have the so called damped least squares method. Minimizing the objective function
shown in equation (9), we get:

m =mest = (GTG+ λDTnDn)
+GTd.

When n = 0,Dn corresponds to the identity matrix result-
ing in a zero order regularization, and the solution reduces to the
damped least squares method. When n = 1,Dn corresponds
to the first derivative matrix, and the regularization is then called
first order. Whenn = 2, we have the second-order regularization,
which uses the numerical approximation of the second derivative.

For the linearized process, we start with a homogeneous
initial model m0 and updated the model parameters iteratively
through the equation:

Δmk = [(GTG+ λDTnDn)
k]+(GT )kΔdk,

where,

mk+1 =mk +Δmk.

RESOLUTION MATRICES

We used the resolution matrix criterion for a quantitative analysis
of the inverse problem solution. The closer the resolution matrix
is to the identity matrix, the best the inversion quality (Jackson,
1972).

There are two resolution matrices. The model resolution ma-
trix is a matrix that characterizes the relationship between the es-
timated model parameters and the parameters of the true model

(Menke, 2012). The model resolution matrix depends on the in-
verse problem’s structure (model geometry and experiment geo-
metry) and, eventually, some a priori information. The main use
of the model resolution matrix is to provide a resolution measure-
ment obtained from the data that is of the degree so that the reso-
lution matrix approximates the identity matrix (Jackson, 1972):

mest =G+dobs = G+(Gmtrue) = Rmm
true,

and
Rm = G

+G.

In turn, the data resolution matrix is the matrix that charac-
terizes the relationship between the observed data and calculated
data with a given model (Menke, 2012). This matrix describes
how well the predictions match the data. The data resolution
matrix is determined only by the kernel matrix and a priori in-
formation added to the problem:

dcal = Gmest = G(G+dobs) =Rdd
obs,

and
Rd = GG

+.

To perform a quantitative study of the inverse problem, two
estimators were proposed: one related to the error of the diagonal
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elements of the model resolution matrix,

εRm =
1

N

√√√√ N∑
i=1

(1− Rm,ii)2 × 100%, (10)

and the other related to the error of the diagonal elements of the
data resolution matrix,

εRd =
1

M

√√√√ M∑
j=1

(1−Rd,jj)2 × 100%, (11)

BARBIERI METHOD
The second method was suggested by Barbieri (1974) and was
initially used in medical tomography. Consider thatmest is the
solution of an inverse problem, and mest,c is its complemen-
tary solution, so that the sum of these two vectors is given by a
constant vector w:

m+mc = w. (12)

We can either work with vectors or matrices. In other words, a
vectorm can be written or plotted as a matrixM:

m⇔M,
mc ⇔Mc,

and
w⇔W.

In the latter case, W is a constant matrix given by W =

(w0); w0 ≥ max(mi). The complementary solution mest

can be obtained from dobs and G using any inverse method;
in this work, we used SVD.

We then calculate the vector of complementary observed
data parameters dobs,c using the relationship dobs,c = Gw−
dobs. A second inversion is now performed to compute the
vector of complementary observed model parameters mest,c.
We now addmest andmest,c to be:

west =mest +mest,c. (13)

If the inverse problem is exact, then west = w. Because
this usually does not occur, we can verify in which regions the
inversion was not successful.

In the case of the linearized inversion, the pseudo-constant
vector west is checked at each k-th ray tracing iteration:

west,k =mest,k +mest,c,k,

where

mest,k = mest,k−1+Δmest,k−1,

= mest,k−1+G+,kΔdk−1,

= mest,k−1+G+,k(dobs − dcal,k−1),
and

mest,c,k = mest,c,k−1+Δmest,c,k−1,

= mest,c,k−1+G+,kΔdc,k−1,

= mest,c,k−1+G+,k(dobs,c − dcal,c,k−1),
Therefore, we have a clear view whether the inversion method

was effective on the whole model or in parts of it. In this study,
we conducted a quantitative analysis using an error estimator be-
tween a constant vector w and the usually non-constant west:

εw =

√∑N
i=1(wi −westi )2√∑N

i=1(wi)
2

× 100%. (14)

The Barbieri method was applied in in geophysical tomog-
raphy by Bassrei (2000) for a simple example in linear travel-
time tomography. In the present study, besides exploring deeper
the linear case we extended the application to the linearized case,
taking into account the presence of noise.

SIMULATIONS IN LINEAR AND LINEARIZED TRAVELTIME
TOMOGRAPHY
The synthetic model, shown in Figure 1, was discretized into 600
blocks, where each block is a 20 by 20 m square and has a con-
stant velocity. The overall dimensions of the region of interest are
600 m in horizontal length and 400 m in depth from the sur-
face, thus resulting in 30 blocks in the horizontal direction and
20 blocks in the vertical direction. The model’s main feature is
a layer that represents a reservoir with a P-wave propagation of
4400 m/s. The model has several horizontal layers where the ve-
locity ranges from 3600 m/s to 4000 m/s. Figure 1(a) shows the
velocity distribution, where the color bar indicates the velocities
in m/s. Because the unknown in the inverse process is slowness
and not the velocity, the same true model is shown in Figure 1(b),
where the color bar now displays the slowness in ms/m.

The data acquisition geometry is well to well, where the
sources and receivers are uniformly distributed on the sides of
a 20 × 30 grid. We considered three configurations in the ac-
quisition geometry: the first configuration has 20 sources and 20
receivers resulting in an underdetermined problem with 400 equa-
tions and 600 unknowns; the second one has 25 sources and 24
receivers, resulting in a determined problem with 600 equations

Brazilian Journal of Geophysics, Vol. 34(4), 2016



�

�

“main” — 2018/3/29 — 16:17 — page 500 — #6
�

�

�

�

�

�

500 CRITIQUE OF SOLUTIONS IN LINEARIZED INVERSE PROBLEMS

(a) Velocity model (b) Slowness model

Figure 1 – Velocity model, where the color bar indicates the P-wave velocity in m/s in (a) and slowness in ms/m in (b).

and unknowns; finally, the third configuration, which is an overde-
termined case, has the same number of unknowns but 900 equa-
tions resulting from 30 sources and 30 receivers.

The simulations were performed with data corrupted by differ-
ent levels of Gaussian noise. The noise was added to the observed
traveltimes by the equation t∗j = tj(1+ arj), j = 1, . . . ,M ,
where t∗j represents the j-th component of the data parameter
vector contaminated by noise, tj represents the j-th component
of the noise-free data parameter vector, a is the amplitude of the
applied noise and rj is the j-th element of a quasi-random num-
ber sequence.

The following two estimators were used to evaluate the inver-
sion performance: (i) data parameter error, which is the difference
between the observed and calculated model parameters and is
expressed in terms of percentage:

εd =

√∑M
j=1(t

obs
j − tcalj )2√∑M

j=1(t
obs
j )

2
× 100%. (15)

where M is the number of rays or equations in the inversion,
tobsj is the j-th observed traveltimes and tcalj is the calculated
one, and (ii) model parameter error, which is the difference be-
tween the true and estimated model parameters and is expressed
in terms of percentage:

εm =

√∑N
i=1(s

true
i − sesti )2√∑N

i=1(s
true
i )2

× 100%. (16)

where N is the number of blocks or unknowns in the inversion,
struei is the i-th true slowness and sesti is the estimated one.
Notice that this criterion can be used in only simulations with
synthetic data because the N true slownesses struei are never
known.

Many simulations were performed, but only some results are
displayed due to space limitations. All three situations were ex-
plored: underdetermined, determined and overdetermined. We
used noise-free data and noisy data using different noise levels:
α = 0.1, 0.05, 0.01, 0.005 and 0.001. Due to the harmful influ-
ence of small singular values over noisy data, different amounts
of singular values were considered: nsv = 200, 250, 300, 350,
400, 450, 500 and 550. The relative RMS data error εd was com-
puted by equation (15), and the relative RMS model error εm
was computed by equation (16). The model resolution matrix error
was computed using equation (10), and the data resolution matrix
error was computed using equation (11). The pseudo-constant
matrix error was computed using equation (14).

For Figure 2, the considered noise level was α = 0.1 and
the number of singular values used in the construction of the
pseudo-inverse matrix was nsv = 200. Most of the elements
in the model resolution matrix’s main diagonal are far from 1.0,
as observed in Figure 2(c), and most of the elements in the
pseudo-constant vector west are far from the assumed value of
0.2 ms/m. Comparing Figure 2(d) to Figure 2(b) it is possible to
see a good agreement between the yellow color (reference value
of 0.20) in the new Figure 2(d) and the well recovered portions of
the estimated model (Fig. 2(b)).

In Figure 3, the considered noise level was α = 0.01 and
the number of singular values used in the construction of the
pseudo-inverse matrix was nsv = 400. Most of the elements in
the model resolution matrix’s main diagonal are near 1, and most
of the elements in the pseudo-constant matrixwest are near the
assumed value of 0.2 ms/m. In other words, the inversion can be
qualified as successful even without knowledge of the true model
(Fig. 1(b)). The evaluation is done by analyzing Figure 3(c) and
Figure 3(d).

Traveltime tomography is, by definition, a non-linear problem,

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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(a) True model (b) Estimated model

(c) Rm main diagonal (d) Pseudo-constant matrix

Figure 2 – Simulations for the overdetermined case. The noise level is α = 0.1 and the number of singular values used in the construction of the pseudo-inverse

matrix is nsv = 200. (a) True model, where the color bar indicates the P-wave slowness in ms/m. (b) Estimated model. (c) The main diagonal of the model resolution

matrix. (d) Pseudo-constant matrix where the color bar indicates the elements ofwest in ms/m.

(a) True model (b) Estimated model

(c) Rm main diagonal (d) Pseudo-constant matrix

Figure 3 – Simulations for the overdetermined case. The noise level is α = 0.01 and the number of singular values used in the construction of the pseudo-inverse

matrix is nsv = 400. (a) True model, where the color bar indicates the P-wave slowness in ms/m. (b) Estimated model. (c) The main diagonal of the model resolution

matrix. (d) Pseudo-constant matrix where the color bar indicates the elements ofwest in ms/m.
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so the linear inversion is just an approximation that depends on
the velocity variation in the subsurface, which may lead to incon-
sistent results. The linearized version is also an approximation
but closer to physical world behavior.

Again, all three situations were explored: underdetermined,
determined and overdetermined. Once more, we used noise-free
data and noisy data using different noise levels: α = 0.1, 0.05,
0.01, 0.005 and 0.001. The harmful influence of small singular
values over noisy data is even more evident in the linearized in-
version scheme, and four amounts of singular values were con-
sidered: nsv = 200, 250, 300, and 350. The estimators were
computed, and analyzing the results of εRm , εRd and εw , we
can deduce that they decrease in value as the amount of singular
values increases.

Figure 4 shows the result of the εm estimate as a function
of iteration number for four different amounts of singular values
nsv and four different noise levels a, and Figure 5 presents the
εd estimate for the conditions as in Figure 4. Notice that the
εd estimate always converges because the inverse problem is
ill-posed, but the same behavior is not valid for the εm esti-
mate. In fact, the noise level expressed by the factor α = 0.1
was very high, compromising the inversion result. In Figures 4
and 5 considered a maximum of 10 iterations, for the sake of
comparison. However, the stopping criterion used in this work
was the calculated data RMS residual between iterations k and
k + 1, Δεk+1d = εk+1d − εkd ≤ εmin, where

εkd =

√∑M
j=1(t

obs
j − tcal,kj )2√∑M
j=1(t

obs
j )

2
× 100%. (17)

We adopted the value εmin = 10−2.
Figure 6 presents the inversion results at different iterations

for the overdetermined case with nsv = 250 and α = 0.001,
using the above stopping criterion.

Comparing Figure 6(a), which is the estimated model pa-
rameter obtained at the first iteration to Figure 6(b), which is the
pseudo-constant image, it is possible to see that most unsuccess-
ful portions of the estimated solution are correspondent with de-
viations from the dark yellow color in Figure 6(b), like for instance
the almost triangular symmetric artifact from 120 to 200 m depth.
There is also the ‘hole’ in the reservoir, from 220 to 280 m depth.
The same is true with the reservoir flanks. There are exceptions,
like the last layer (380 to 400 m depth) which is well recovered
in Figure 6(a) but the pseudo-constant image in Figure 6(b) in-
dicates a large deviation in relation to reference (0.26 ms/m in
relation to 0.20 ms/m). For the fifth iteration, the estimated model
(Fig. 6(c)) is improved, and most of the colors in Figure 6(d) are

within the range around 0.20 ms/m. But again, the method was
not successful for the last layer. One explanation is the fact that
the ray coverage is poor both for the first and the last layers, and
this inconsistency gets worse iteration after iteration. However for
the first layer, the true model has constant velocity from the sur-
face to 120 m depth, making the ray coverage uniform, despite not
being dense. And for last layer (360 to 400 m depth), there is a
slowness variation with the above layer (340 a 360 m), making the
ray coverage less uniform. On should mention that the slowness
range in the true model varies from 0.22 to 0.28 ms/s whereas in
the estimated model it varies from 0.18 to 0.34 ms/s. This lim-
itation comes from the inversion itself, that it, the illposedness
together with the linearized approach.

The above simulations were repeated with the inclusion of
regularization. Again the simulations were made for underdeter-
mined, determined and overdetermined systems. As before, we
made simulations using noise free data and data contaminated
with different levels of noise, given by the parameters α = 0.00,
0.001, 0.005, 0.01, 0.05 and 0.1. All three orders of regularization
were considered (n = 0, 1, 2). For the choice of regularization
parameter we used the trial and error approach selecting, in the
case of our synthetic data, λ = 102, 104, 106 and 108. The intro-
duction of regularization matrices improved the solutions, as can
be seen in Table 1 which shows the results only for the linearized
approach with regularization and for overdetermined case.

When compared to the non regularized simulations, the in-
clusion of regularization provided better results, as expected.
Figure 7 shows different iterations of the linearized inversion
through SVD method, for the overdetermined case and with first
order regularization. Figure 7(a) shows the estimated model pa-
rameters for the first iteration and Figure 7(c) for the seventh it-
eration. The correspondence between Figure 7(a) and Figure 7(b)
is very clear. There is also a good correspondence in relation to
last iteration, in particular the reservoir flanks, not well recov-
ered in Figure 7(c) and clearly identified in Figure 7(d), attesting
the methodology effectiveness. When we compare Figure 6(c) to
Figure 7(c) one can see that the regularization improves the
solution quality, and the same is true when comparing Figure 6(d)
to Figure 7(d). Overall the smoothing procedure ‘cleans’ the es-
timated model as well as the pseudo-constant image. The regu-
larization parameter used was λ = 104 and the noise level was
expressed by the factor α = 0.1.

CONCLUSIONS

Seismic inversion is an inverse procedure to reconstruct the
Earth’s velocity model from seismic data and it is an important
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(a) nsv = 200 (b) nsv = 250

(c) nsv = 300 (d) nsv = 350

Figure 4 – Simulations for the linearized overdetermined case. The model parameter error εm is a function of the number of iterations for different noise levels α

and different amounts of singular values used in the construction of the pseudo-inverse matrix nsv : (a) nsv = 200; (b) nsv = 250; (c) nsv = 300; (d) nsv = 350.

tool for reservoir characterization, which provides a detailed im-
age of the subsurface. On the other hand most of the geophys-
ical problems are considered ill-posed and traveltime tomogra-
phy, which is a nonlinear problem, does not escape this sit-
uation. To solve this ill-conditioning mathematical treatment is
required, that could provide reliable solutions that address the
problem non-linearity. In this sense we used singular value de-
composition, making a cutoff study of the small singular values,
and also Tikhonov regularization.

The presence of small singular values in the inversion pro-
cedure generates an anomalous increase in the model parameter
error and data parameter error criteria. Thus, it was necessary to
analyze some criteria to determine the regions with the optimal
number of singular values. The results show that the application
of data resolution matrix and model resolution matrix criteria show
the regions of the 2-D model distribution where the inversion was
unsuccessful.

Similarly, one can verify the inversion quality through the
Barbieri method, where the sum of the vectorsmest andmest,c

approaches a constant valuew; as a result, one can observe and

evaluate the inversion quality, which is quantitatively confirmed by
the RMS model parameter error. On the other hand, in the qual-
itative, visual approach, the Barbieri method indicates if the in-
version was successful and/or in which parts of the model the
inversion was successful. This can also be seen qualitatively, by
checking the RMS model parameter error.

The numerical simulations performed in a synthetic model
with 600 blocks, both for the linear and linearized cases, allowed
to validate the criteria used in this study. The results were satis-
factory, indicating the overall quality of the solution as well as the
regions of the model where inversion was successful.

ACKNOWLEDGEMENTS
S. Bejarano thanks CNPq for a PhD scholarship. A. Bassrei thanks
CNPq for the projects National Institute of Science and Tech-
nology in Petroleum Geophysics (INCT-GP) and 308690/2013-
3 (research fellowship), PETROBRAS for sponsoring the project
“Investigation on the Use of Crosswell Tomography as a Toll for
Complex Reservoir Characterization”, and FINEP for sponsoring
the CTPETRO Network in Exploration Geophysics (Rede 01).

Brazilian Journal of Geophysics, Vol. 34(4), 2016



�

�

“main” — 2018/3/29 — 16:17 — page 504 — #10
�

�

�

�

�

�

504 CRITIQUE OF SOLUTIONS IN LINEARIZED INVERSE PROBLEMS

(a) nsv = 200 (b) nsv = 250

(c) nsv = 300 (d) nsv = 350

Figure 5 – Simulations for the linearized overdetermined case. The data parameter error εd is a function of the number of iterations for different noise levels α

and different amounts of singular values used in the construction of the pseudo-inverse matrix nsv : (a) nsv = 200; (b) nsv = 250; (c) nsv = 300; (d)nsv = 350.
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de tempos de trânsito. In: 11th International Congress of the Brazilian
Geophysical Society, Salvador, BA, Brazil. CD-ROM.

STEWART RR. 1991. Exploration Seismic Tomography: Fundamentals.
Society of Exploration Geophysicists, Tulsa, OK, 201 pp.

APPENDIX A: ACOUSTIC RAY TRACING
In the geometric acoustics approach, the energy may be trans-
ported along curves whose trajectories are orthogonal to the
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(a) (b)

(c) (d)

Figure 6 – Simulations for the linearized overdetermined case. The noise level is α = 0.001 and the number of singular values used in the construction of the

pseudo-inverse matrix is nsv = 250. (a) and (c) show the estimated model parameter obtained, respectively, in the first and the fifth iterations, where the color bar

indicates the P-wave slowness in ms/m. (b) and (d) show the pseudo-constantwest, respectively, for the first and the fifth iterations, where the color bar indicates the

elements ofwest in ms/m.

wavefront movement. A more logical way to analyze the ray trace
without using the wavefront concept is through Fermat’s principle.
Several methods are described in the literature to determine the
ray path between two points. The following steps describe the nu-
merical algorithm proposed by Andersen & Kak (1982). Applying
Fermat’s principle and knowing that Euler’s equation is a neces-
sary condition for the existence of an extreme value of the inte-
gral
∫ P2
P1
n ds, we obtain the following differential equation for a

non-homogeneous medium:

d

ds

(
n
dr

ds

)
= ∇n, (A1)

where n(x, z) is the refraction index at position (x, z), r is the
ray position vector, dr/ds is a vector tangent to the ray at (x, z),
ds is the length element in the ray trajectory, and∇n = dn/dr
is the refraction index gradient. This differential equation is re-
ferred to as the ray equation of the radius, and its solution rep-
resents a family of rays with a shorter acoustic path for a certain
regular neighborhood (where the refraction index varies smoothly)

(Andersen & Kak, 1982).
Developing the ray equation, we obtain(

∇n · dr
ds

)
dr

ds
+ n
d2r

ds2
= ∇n. (A2)

Expanding the position vector in Taylor series at the point
s + Δs, where Δs is the ray increment, and considering only
the first three terms, we have

r(s+Δs) = r(s) +
dr

ds
Δs+

1

2

d2r

ds2
(Δs)2. (A3)

Isolating the curvature vector d2r/ds2 in equation (A2) and
substituting it into equation (A3), we obtain the following expres-
sion:

r(s+Δs) = r(s) +
dr

ds
Δs

+
1

2n

[
∇n−

(
∇n · dr

ds

)
dr

ds

]
(Δs)2.

(A4)

The next point along the ray is estimated by the following
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Table 1 – Simulation results with noisy synthetic data (α = 0.001) using linearized inversion with
SVD, different regularization orders and optimal parameters λopt. εm indicates the model error, εd
the data error, εRm the model resolution matrix error, εRd the data resolution matrix error, and εw
the pseudo-constant matrix error between iterations k + 1 and k.

α λ Iteration
Overdetermined (n = 0)

εm(%) εd(%) εRm(%) εRd(%) εw(%)

0 21,617 20,119
1 6,227 2,438 0,112 0,112 6,122
2 3,754 0,785 0,073 0,073 5,231

0,001 10+4 3 2,793 0,303 0,059 0,059 5,609
4 2,538 0,180 0,059 0,059 5,732
5 2,420 0,155 0,073 0,073 5,818
6 2,347 0,159 0,127 0,127 5,825

α λ Iteration
Overdetermined (n = 1)

εm(%) εd(%) εRm(%) εRd(%) εw(%)

0 21,617 20,119
1 6,246 2,351 0,012 0,012 7,397
2 3,602 0,762 0,012 0,012 4,013

0,001 10+4 3 2,470 0,334 0,013 0,013 2,224
4 2,120 0,288 0,008 0,008 1,840
5 2,084 0,210 0,011 0,011 1,830
6 2,031 0,121 0,011 0,011 1,911
7 1,935 0,122 0,008 0,008 1,839

α λ Iteration
Overdetermined (n = 2)

εm(%) εd(%) εRm(%) εRd(%) εw(%)

0 21,617 20,119
1 5,899 2,317 0,026 0,026 6,596

0,001 10+6 2 3,443 0,680 0,012 0,012 3,490
3 2,613 0,289 0,029 0,029 1,787
4 2,490 0,236 0,029 0,029 2,235
5 2,460 0,239 0,029 0,029 2,066

equations:

xk+1 = xk + cosαkΔs

+
1

2sk
(sk,x − dk cosαk)Δs2,

zk+1 = zk + sinαkΔs

+
1

2sk
(sk,z − dk sinαk)Δs2,

(A5)

where sk,x and sk,z are the slownesses in thex and z directions,
respectively. dk is defined as

dk = sk,x cosαk + sk,z sinαk. (A6)

Starting from a given initial point (x0, z0) that corresponds
to the source position, one may obtain successive points along

the ray because the values of sinαk and cosαk are easily
calculated. According to Andersen & Kak (1982), this method
has some limitations as the errors caused by the discretization
process or abrupt velocity transitions may be cumulative. To min-
imize this problem, one must adopt a grid with a sufficient res-
olution so that the medium is properly sampled, resulting in
smoother velocity transitions. One can also smooth the velocity
field and use the bilinear interpolation of the refraction index and
its partial derivatives.

APPENDIX B: SINGULAR VALUE DECOMPOSITION

Consider a rectangular matrix GM×N , with rank k, that has a
singular value decomposition (SVD) as follows:

G = UΣVT (B1)

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016



�

�

“main” — 2018/3/29 — 16:17 — page 507 — #13
�

�

�

�

�

�

BEJARANO SL & BASSREI A 507

(a) (b)

(c) (d)

Figure 7 – Simulations in linearized inversion through SVD method, overdetermined case, with first order regularization. Regularization parameter λ = 104 and

noise level α = 0.001. (a) and (c) show the estimated model parameter obtained, respectively, in the first and the seventh iterations, where the color bar indicates the

P-wave slowness in ms/m. (b) and (d) show the pseudo-constantwest, respectively, for the first and the seventh iterations, where the color bar indicates the elements

ofwest in ms/m.

such that (i) VN×N is the matrix containing the orthonormal-
ized eigenvectors of GTG; (ii) ΣM×N is the matrix contain-
ing the square roots of the eigenvalues (singular values) of G,
with these singular values displayed in decreasing order, that is,
σ1 ≥ σ2 ≥ · · ·σk > 0; and (iii)UM×M is the matrix con-
taining the orthonormalized eigenvectors ofGGT .

Then, the pseudo-inverse or generalized inverse is a matrix
equal to

G+ = VΣ+UT , (B2)

where Σ+M×N is the matrix containing the reciprocal of the
non-zero singular values ofG as follows:

Σ+ =

(
E 0

0 0

)
, (B3)

and E is a diagonal k × k matrix whose j-th diagonal element
is eii = (σi)−1 for 1 ≤ i ≤ k.

If GM×N is a real matrix, the matrix G+N×M will be its
generalized inverse or a pseudo-inverse with the following prop-

erties (Penrose, 1955):

(i) GG+G = G,

(ii) G+GG+ = G+,

(iii) (GG+)T = GG+, and

(iv) (GG+)T = G+G.

If those properties are satisfied, the generalized inverse or
pseudo-inverse G+ will be unique.

IfG = UΣVT , thenGT = (UΣVT )T = VΣTUT .
The matrixGTG will be

GTG =VΣTUTUΣVT . (B4)

IfU is an orthonormal matrix, that is,UTU = I, the above
expression can be written as

GTG = VΣTΣVT . (B5)

This last equation is an orthogonal transformation. It can be
said that V is the matrix containing the eigenvectors of GTG
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and V is really orthogonal because the matrixGTG is always
symmetric.
ΣTΣ is the matrix containing the eigenvalues ofGTG, or

singular values of G. The same analysis can be done with the
multiplication ofG byGT . In the case of square matrices of full
rank, the classical inverse and pseudo-inverse are identical.
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