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ACOUSTIC TRAVELTIME TOMOGRAPHY FOR CO2 INJECTION MONITORING IN RESERVOIRS
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ABSTRACT. When considering with greenhouse effect and global warming, carbon dioxide is the main agent. As the major contributors to the increase in global
temperature, large companies and corporations have been encouraged to look for ways to reduce the emission of CO2 into the atmosphere. In the geological aspect, two

techniques have been applied in the use of CO2. The first is the carbon capture and storage, CCS, which refers to carbon dioxide injection into saline aquifers, reservoirs
and coal deposits, helping to limit CO2 emissions. The second is the enhanced oil recovery, or EOR, which refers to the injection of CO2 in heavy oil reservoirs to decrease

the viscosity and increase the recovery factor. Because CO2 can interact with rock, changing its porosity or changing the direction of flow due to lower permeability
zones, periodic monitoring of CO2 must be performed. In this work, methods of dealing with the poor conditioning of the inverse problem were discussed, applying the

methods of singular value decomposition and ray tracing. The Gassmann equation was used to simulate the velocity change within the reservoir due to fluid substitution.

The above methods were incorporated into traveltime seismic tomography, which was applied to monitor the carbon dioxide injection in reservoirs. Several simulations
in a synthetic model validated the proposed methodology.

Keywords: traveltime tomography, reservoir monitoring, geological storage, CO2 injection.

RESUMO. Quando tratamos do efeito estufa e aquecimento global temos como seu principal agente o dióxido de carbono. Por serem grandes contribuintes do

aumento da temperatura do planeta, grandes empresas e corporações têm sido incentivadas a buscar formas de reduzir a emissão de CO2 na atmosfera. No aspecto
geológico, duas técnicas têm sido aplicadas no aproveitamento do CO2. A primeira é o armazenamento geológico de CO2 ou CCS, do inglês carbon capture and storage,

que trata da injeção de dióxido de carbono em aquı́feros salinos, reservatórios e camadas de carvão, ajudando a limitar a emissão de CO2. A segunda é a recuperação
avançada de petróleo ou EOR (do inglês enhanced oil recovery ), que se refere à injeção de CO2 em reservatório de óleo pesado com o intuito de diminuir a viscosidade

e aumentar seu fator de recuperação. Devido ao fato do CO2 poder interagir com a rocha, alterando sua porosidade ou mudando a direção do fluxo devido a regiões

de menor permeabilidade, é necessário realizar um monitoramento periódico do CO2. Neste trabalho foram abordadas formas de lidar com o mau condicionamento
do problema inverso, onde aplicamos o método de decomposição em valores singulares juntamente com o traçado de raios. Utilizou-se a equação de Gassmann para

simular a variação da velocidade dentro do reservatório devido a uma substituição de fluidos. As técnicas acima foram incorporadas à tomografia sı́smica de tempos de
trânsito para o monitoramento da injeção do dióxido de carbono nos reservatórios. As diversas simulações num modelo sintético validaram a metodologia proposta.

Palavras-chave: tomografia de tempos de trânsito, monitoramento de reservatórios, armazenamento geológico, injeção de CO2.

1Universidade Federal da Bahia, Institute of Geosciences – E-mail: luara.r.pereira@gmail.com
2Universidade Federal da Bahia, Research Center in Geophysics and Geology, Institute of Geosciences and National Institute of Science and Technology in Petroleum

Geophysics, Rua Barão de Jeremoabo, s/n, Ondina, 40170-115, Salvador, BA, Brazil. Phone: +55(71) 3283-8508 – E-mail: bassrei@ufba.br



�

�

“main” — 2018/3/28 — 18:53 — page 420 — #2
�

�

�

�

�

�

420 ACOUSTIC TRAVELTIME TOMOGRAPHY FOR CO2 INJECTION MONITORING IN RESERVOIRS

INTRODUCTION

Recently, one of the industries that has most mobilized in an at-
tempt to encourage research to develop more appropriate man-
agement of greenhouse gas emissions (including CO2) is the oil
industry. One of the alternatives studied and applied is carbon
capture and storage (CCS), which occurs preferentially in natu-
ral reservoirs, where there is almost no risk of impact on human
consumption. CO2 sequestration involves carbon dioxide injec-
tion into saline aquifers, reservoirs and coal deposits, helping
to limit CO2 emissions and enabling the continued use of fossil
energy sources to provide more time for the transition to sustain-
able energy systems.

A common practice in the oil industry is fluid injection tech-
nique enhanced oil recovery (EOR). This practice has been used in
carbon sequestration. Some depleted reservoirs also contain large
quantities of oil, which can be produced by the injection of CO2,
a fluid capable of reactivating the production, with the benefits of
reducing the cost of injection while at the same time mitigating the
impact of CO2 emission to the atmosphere (Ravagnani & Suslick,
2008). In addition, preference is given to oil and gas reservoirs
for CO2 sequestration because they are long-term proven traps for
fluids and gases with known geological parameters with immedi-
ate availability and considerable potential. When injected into a
reservoir, the carbon dioxide may behave in different ways. It can
interact with the reservoir rocks (when we are dealing with carbon-
ate rocks) increasing or decreasing their porosity, and can change
the direction of flow due to lower permeability regions. Thus, it is
necessary to conduct periodic monitoring of CO2.

Geophysical analysis is an essential tool both in geological
sequestration of CO2 and for an enhanced oil recovery, starting
with the choice of target reservoirs for permanent storage of car-
bon dioxide (in the case of sequestration) and extending to the
monitoring of its integrity. Of the existing geophysical methods,
seismic analysis is the most used for the selection of targets
and monitoring. However, other methods can be employed during
monitoring, preferably in an integrated manner, such as electro-
magnetic, gravimetric and electrical methods. For this work, we
propose the use of traveltime seismic tomography to map the ve-
locity changes resulting from the injection of carbon dioxide in a
reservoir.

Tomography is classified as traveltime tomography, which has
a cinematic approach because it considers the travel time between
sources and receivers of the transmitted or reflected wave, and
waveform tomography, which considers the waveform of the sig-
nal that gets to the receiver. The tomographic inversion is an ill-
posed problem because the conditions of existence, unity and

stability are not completely satisfied. To numerically solve such
problems, mathematical techniques are applied to obtain a better
conditioning.

In this work we discuss options of dealing with the ill-
conditioning of the inverse problem. The method of singular value
decomposition with regularization is applied to achieve better re-
sults to study the viability of traveltime seismic tomography in the
monitoring of CO2 in saline reservoirs based on synthetic models.

This article is divided as follows: first, an overview of inver-
sion theory, the selection of single values and the regularization by
derivative matrices is presented. Second, the Gassmann equation
showing the effects of a substitution fluid in a reservoir is intro-
duced. Third, a brief introduction to the theory of seismic trav-
eltime tomography is presented. Finally, the results of numerical
simulations for different stages of CO2 saturations in the studied
reservoir are presented and discussed.

INVERSE PROBLEMS AND LINEARIZED INVERSION
Geophysics studies the physical characterization of subsurface
areas based on data recorded in the subsurface of the earth. The
inversion technique is used for such situations to estimate the pa-
rameters of a particular model from the input data. Conversely,
the direct modeling technique results in a synthetic model for
obtaining these data.

The description of the geophysical data is the initial step in
the analysis, where the most practical means of representing these
values is through vectors. Thus,

d = [d1, d2, d3, d4, . . . , dM ]
T

is the data observed and

m = [m1, m2, m3, m4, . . . , mN ]
T

is the model. The equation d = Gm is the physical/
mathematical solution of the problem called direct modeling,
which means that for a given model, m, we can calculate d
when it consists of a linear combination of independent functions.

The method of ordinary least squares consists of a solu-
tion where the sum of squared errors is minimal. If we consider
modeling a process where m is a vector of model parameters,
the output is given byGm = d. The vector d describes the real
observed behavior. The difficulty is to select the parametersm
to minimize the difference between Gm and d, i.e., the error
e = d−Gm, whose measure is given by ‖�‖. As a linear
system, d = Gm, the sum of squared errors is given by the
objective function or cost function:

S(m) = ‖e‖2 = dTd−2mTGTd+mTGTGm. (1)
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Equation (1) corresponds to the equation of a paraboloid with
no negative values having a single minimum point. This mini-
mum point, m∗ is associated with the parameters that cancel
the derivative:

∂S(m)

∂mT
|m=m∗ = 0. (2)

Solving the system of equations obtained for m we have the
ordinary least squares solution:

m = (GTG)−1GTd. (3)

The matrix (GTG)−1GT in equation (3) can be calculated
using the generalized inverse technique. The determination of
m, the model that best describes the observed data, is called the
inverse problem.

The parameters of the Earth model usually relate non-linearly
with the geophysical observed data. The equivalent representation
of d =Gm for the non-linear case is given by d = g(m).

In the linearized inversion method we start from an initial
model, mo, which is reformulated successively. This is also
known as the Gauss-Newton method, which linearizes the non-
linear problem g(m) = d around an approximate solution. The
estimation of the model is obtained iteratively by solving a sys-
tem of equations for each step of the iterative process. The method
converges to the model associated with the minimum of the cost
function closest to S(mo), so the obtainment of the global min-
imum, S(mest), strongly depends on the initial model.

Deviations used in the generation of the cost function are
given by,

Δdi = d
obs
i − g(m, di), i = 1, . . . ,M. (4)

whereΔdk = dk −GkΔmk is the vector notation of equa-
tion (4), and mk = (mk1 , . . . , m

k
N)
T is the current model.

We can obtain an expression to update the current model:

(GTG)kΔmk = Gk,TΔdk, (5)

mk+1 =mk + (GTG)k,+Gk,TΔdk, (6)

where Δmk is the estimated update of the model parameters,
(GTG)k,+ is the pseudo-inverse matrix of (GTG)k,mk are
the current parameters of the model in k-th iteration, Δdk is
the difference between the data of iteration k + 1 and the data
of the k-th iteration, and mk+1 are the estimated parameters
for the iteration k + 1. The above algorithm is known as the
Gauss-Newton method.

SINGULAR VALUES AND REGULARIZATION
Geophysical problems are usually represented by rectangular
matrices, so an inverse matrix does not exist. Therefore, one can
determine the pseudo-inverse of a matrixG using singular value
decomposition or SVD. This consists of determining two orthog-
onal matrices and the singular eigenvalue matrix from the matrix
G, satisfying the following condition:

G = UΣVT , (7)

where U and V are orthonormal matrices and Σ is a diagonal
matrix having singular values of G. Given a ΣM×N , matrix,
there are orthogonal matrices UM×M and VN×N , that com-
bine withΣM×N matrix to produce the result mentioned above.

Then, based on equation (7) and the orthonormality prop-
erty, one can determine the generalized inverse or pseudo-inverse
G+ ofG using singular value decomposition:

G+ = VΣ+UT . (8)

One way to make the solution of the problem more stable is minimally limiting the variation of the model parameters. The difference
between the parameters of the model can be used as an approximation of the first derivative. The sum of these values can be defined as
the flatness l1 (Menke, 1989) of the vector solutionm,

l1 =

⎡
⎢⎢⎢⎢⎣
−1 1 0 . . . 0 0 0

0 −1 1 0 . . . 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
m1

m2

. . .

mN

⎤
⎥⎥⎥⎦ = D1m. (9)

The roughness l2 of the model parameters can be determined using an approximation of the matrix of the second derivativeD2:

l2 =

⎡
⎢⎢⎢⎢⎣
1 −2 1 0 . . . 0 0 0 0

0 1 −2 1 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . 0 1 −2 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
m1

m2

. . .

mN

⎤
⎥⎥⎥⎦ = D2m. (10)
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The Ln value of flatness (n = 1) or roughness (n = 2) of
the vectorm is calculated by:

Ln = ‖ln‖22 = (Dnm)T (Dnm), (11)

where n is the order of the derivative of the matrix. An objective
function Φ(m) can be defined:

Φ(m) = eTe+ λLn. (12)

By replacing e = d −Gm and Ln in equation (12), we
obtain:

Φ(m) =

(d−Gm)T (d−Gm) + λ(Dnm)T (Dnm),
(13)

where λ is a positive constant called the regularization parameter,
which is the intensity of the regularization value to be applied to
obtain a satisfactory solution. When λ = 0, the equation lies in
the method of ordinary least squares, and when it has a value of
λ �= 0 and the order of the derivative is zero, we have an identity
matrix. Therefore, the solution lies in the damped least squares
method.

Minimizing the objective function presented in equation (13)
and equating its result to zero, we find the solution (mest) that
produces the smallest error:

mest = (GTG+ λDn
TDn)

−1GTd. (14)

GASSMANN’S EQUATION
The Gassmann equation can model various scenarios with dif-
ferent fluid types and fluid saturations. The equation relates the
bulk modulus (K) of the rock through the pore, frame and fluid
properties:

Ksat = Kdry +

(
1− Kdry

Kmin

)2
φ

Kfluid
+ (1−φ)
Kmin

− Kdry
K2min

, (15)

whereKsat is the bulk modulus of a saturated rock with a fluid of
bulk modulus Kfluid, Kdry is the bulk modulus of dry rock,
Kmin is the bulk modulus of the mineral and φ is the rock
porosity.

The shear modulus is not affected by the presence of fluid, so:

μsat = μdry , (16)

where μsat is the shear modulus of the saturated rock and μdry
is the shear modulus of dry rock. The density of the saturated rock
and the density of the dry rock are given, respectively, by:

ρ = (1− φ)ρmin + φρfluid (17)

and

ρdry = (1− φ)ρg . (18)

The fluid density is calculated by the following equation:

ρfl = Saρa + Soρo + Sgρg , (19)

where Sa , So and Sg are the water, oil and gas saturation, and
ρa, ρo and ρg are the water, oil and gas densities, respectively.

Gassmann’s equation is based on various assumptions
(Wang, 2001): (i) the rock is uniform and isotropic, and the pore
space is completely connected; (ii) the rock is composed of a
single type of mineral; (iii) the equation is valid for low frequen-
cies; and (iv) the fluid does not interact with the rock. Smith et
al. (2003) showed that the bulk modulus of a rock composed of a
single type of mineral can be calculated from the Hill’s average.

From the saturated rock bulk modulus modeled with the
Gassmann equation we can estimate the velocity of the saturated
reservoir for any type of fluid:

vp =

√
Ksat +

3
4
μ

ρ
. (20)

We know that the Gassmann equation can model the velocity
expected for a reservoir that suffers a certain change in fluid satu-
ration. However, it is important to know which factors influence in
the seismic velocity inside the reservoir, enabling the understand-
ing of the modeling.

Some of the main factors affecting the value of the seismic
velocity in the reservoir are: the type of fluid, fluid saturation, rock
type, porosity, the pressure to which the reservoir is subjected, the
pore pressure, the ratio of sandstone and clay, and the relation-
ship between age and depth. Some factors are static, such as rock
type and the volume of clay, whereas others vary depending on the
exploitation of the reservoir and the type of fluid being injected,
in addition to the pressure with which the fluid is being injected
and/or exploited. Thus, there may be variation in the porosity of
a reservoir. The injection of CO2 into carbonate reservoirs is one
example. When CO2 is injected into a reservoir, it will react with
water, causing mineral precipitation in some regions and mineral
deposition in others, modifying the porosity of the formation.

SEISMIC TRAVELTIME TOMOGRAPHY

Tomography is based on the idea that a set of observed data con-
sists of integrals along lines of some physical quantity. Thus, the
traveltime of the energy that propagates through the Earth’s inte-
rior section, considering that it was discretized on N rectangular
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cells and M pairs of source-receptor distribution, is:

ti =

N∑
j=1

gijsj , i = 1, . . . ,M. (21)

The tomographic reconstruction in terms of line integral is
given by:

ti =

∫
Ri

s(x, z)dl = gi[s(x, z)], (22)

where ti is the traveltime for the i-th radius, Ri is the radius
along which the integration is performed, dl is the distance ele-
ment s(x, z) is the slowness in the middle of the point (x, z),
where x is the horizontal coordinate and z is the vertical coordi-
nate and g[s(x, z)] is the variable g as a function of slowness.
Equation (22) has nonlinear behavior because it describes the ray
path in an inhomogeneous and anisotropic environment, provid-
ing complex ray geometry. Therefore, it is necessary to use the
linearization method described previously.

Starting from an initial model, we can calculate the value for
new slowness by an iterative process.

Δsk = (GTG)k,+Gk,TΔtk, (23)

to update the slowness:

sk+1 = sk +Δsk. (24)

where Δt corresponds to the vector difference between the cal-
culated and observed traveltimes for the model,Δs is the vector
corresponds to the difference between true and estimated slow-
ness model, and G is the matrix that contains the elements
gij corresponding to the distances that the i-th ray travels in the
j-th block.

FORWARD MODELING BY RAY TRACING
The seismic signals propagating in a medium can be represented
in various ways: analytical models, finite difference, and ray trac-
ing. Modeling using ray tracing gives us accuracy, along with
computational efficiency when modeling geological media.

In the geometric acoustic approach, energy can be regarded
as being transported along curved trajectories that are orthogonal
to the movement of the wavefront. A more logical way of analyzing
ray tracing without the concept of the wavefront is the principle of
Fermat. The principle states that energy propagates along paths
that minimize the traveltime. This path is called ray (Andersen &
Kak, 1982) and it is used to calculate the integral:

I =

∫ p2
p1

n(x, z)ds. (25)

Equation (25) defines the acoustic length between the points
p1 and p2 along the ray, n(x, z) = c/v(x, z) is the two-
dimensional refractive index corresponding to the position (x, z)
in a heterogeneous isotropic medium, and ds is the arc length
along the ray.

Several methods are described in the literature to determine
the path described by the distance between two points. The fol-
lowing is the numerical algorithm described by Schots (1990).
Applying the principle of Fermat in equation (22) and knowing
that the Euler equation is a necessary condition for the existence
of an extreme value of the integral

∫ p2
p1
nds, we obtain the follow-

ing differential equation for a heterogeneous environment:

d

ds

(
n
dr

ds

)
= ∇n, (26)

where n(x, z) is the refractive index at position (x, z), r is the
ray position vector, dr is the vector tangential to the ray in (x, z),
ds is the ray path length element, and ∇n ≡ dn/dr is the
gradient of the refractive index n(x, z). This differential equa-
tion is called the ray equation, and for a certain neighborhood (in
which the refractive index varies smoothly), its solution represents
a family of smaller acoustic ray lengths (Andersen & Kak, 1982).

Developing the ray equation, we obtain:

dn

ds

dr

ds
+ n
d2r

ds2
= ∇n. (27)

But,
dn

ds
=
dn

dr
· dr
ds
= ∇n · dr

ds
, (28)

then, (
∇n · dr

ds

)
dr

ds
+ n
d2r

ds2
= ∇n . (29)

Taking into account two distinct points of the ray,P1(xk, zk)
and P2(xk+1, zk+1) separated by a distance Δs, the unit
vector in the propagation direction can be written as:

dr

ds
= (cosαk)̂ı+ (sinαk)k̂ , (30)

where ı̂ and k̂ are the unit vectors in the x and z directions, re-
spectively, and the angle between the tangent and the horizontal
directions in iteration k is αk. The values of the sine and cosine
can be obtained by:

sinαk =
zk−1 − zk
Δs

, (31)

cosαk =
xk−1− xk
Δs

. (32)

Brazilian Journal of Geophysics, Vol. 34(4), 2016



�

�

“main” — 2018/3/28 — 18:53 — page 424 — #6
�

�

�

�

�

�

424 ACOUSTIC TRAVELTIME TOMOGRAPHY FOR CO2 INJECTION MONITORING IN RESERVOIRS

Through finite difference, we can approach the directional
derivatives from the discretized media by:

nx(i, j) =
n(i+ 1, j)− n(i− 1, j)

2Δx
, (33)

nz(i, j) =
n(i, j + 1)− n(i, j − 1)

2Δz
. (34)

The next point in the ray is estimated by the equation:

xk+1 =

xk + cosαkΔs+
1

2nk
(nk,x − dk cosαk)Δs2,

(35)

and

zk+1 =

zk + sinαkΔs+
1

2nk
(nk,z − dk sinαk)Δs2 ,

(36)

where nk , nk,x and nk,z are, respectively, the refractive index
and the directional derivative in the x and z directions. For equa-
tions (35) and (36), the substitution nk = c/vk = csk was
made, where sk is the slowness and vk is the velocity. Finally,
the equations (35) and (36) can be written as:

xk+1 =

xk + cosαkΔs+
1

2sk
(sk,x − dk cosαk)Δs2 ,

(37)

and

zk+1 =

zk + sinαkΔs+
1

2sk
(sk,z − dk sinαk)Δs2 ,

(38)

and dk is defined as:

dk = sk,x cosαk + sk,z sinαk . (39)

Beginning from a given starting point (x0, z0), correspond-
ing to the source position, successive points in the ray can be
obtained because the values of sinαk and cosαk are calculated
by equations (31) and (32). According to Andersen & Kak (1982),
this method has some limitations due to the fact the errors from
discretization and sudden velocity transitions, may become ac-
cumulative. To minimize this problem, a grid with sufficient res-
olution is adopted so that the medium is sampled appropriately,
resulting in smoother velocity transitions.

NUMERICAL SIMULATIONS
The geological model of the study is inspired by the Miranga Field
in the Reconcavo Basin. Four phases of monitoring were simu-
lated. The first is at a stage where the injection of CO2 has not
occurred and the subsequent phases have the presence of carbon
dioxide injected into the reservoir gradually. The model on which
the simulations are conducted was parameterized in a 30 × 30
grid totaling 900 blocks with dimensions of 20 m. The acquisition
geometry used is well-to-well, where 30 sources were arranged in
the left-side borehole and 30 receivers were located in the right-
side borehole. Different stages of CO2 saturation are applied to
the reservoir initially saturated with water. In Table 1, we observe
the main properties that affect the seismic velocity in the reservoir.

Table 1 – Reservoir properties during injection, whereSH2O is the water satu-
ration,SCO2 is the CO2 saturation,KCO2 is the bulk modulus of CO2,Ksat
is the bulk modulus of the saturated rock, ρsat is the density of the saturated
rock and Vp is the P wave velocity. The water density is 1.0 g/cm3, and the bulk
modulus of water is 2.25 GPa.

Reservoir properties during injection
SH2O SCO2 KCO2 Ksat ρCO2 ρsat Vp

100% 0% 0.25 12.8 0.71 2.14 2930
70% 30% 0.25 8.85 0.71 2.1 2610
40% 60% 0.25 8.81 0.71 2.09 2560

Two methods were used to compensate the ill-posed condi-
tion of the inverse problem used. The first consisted of a variable
selection of singular values associated to different condition num-
bers, to have greater control of the outcome of the experiment.
The second method used is the regularization by derivative ma-
trices of zero, first order and second orders. The data parameters
(traveltimes) were corrupted by Gaussian noise, and three noise
levels were used in the simulations, given by the noise factor a:
0.005, 0.01 and 0.05.

In the first stage (see Fig. 1), carbon dioxide injection into
the reservoir has not yet occurred, and the reservoir is saturated
with water. This stage is used to understand the geological con-
text of the area, to compare the results, and to analyze the behav-
ior CO2 within the reservoir. For the injection of fluid, the upper
reservoir was used. This layer is considered to be composed of
quartz, feldspar and clay in proportions of 65%, 20% and 15%,
respectively.

The use of traveltime tomography resulted in the following
results for the first stage: 658 singular values were used for the
solution of the linear inverse problem. By using a large amount of
numbers, it was possible to obtain the model framework, except
when there is relatively high noise (see Fig. 2). In the regular-
ization process by derivative matrices, the estimated tomogram

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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quality decreases as the noise level increases. This influence is
strongest in the regularization of zero order (see Fig. 3), where
the retrieved image does not provide information about the true
model for the highest noise. The regularization of the first and
second orders (see Fig. 4) provided the best results by perform-
ing a mitigation without significantly increasing the error in the
model estimation.

Figure 1 – True model, first stage with 100% saturation of water in the reservoir
of interest with Vp = 2930 m/s.

Figure 2 – Estimated model, linear case, first stage with 658 singular values and
noise factor α = 0.005.

Figure 3 – Estimated model, linear case, first stage with zero order regularization
and noise factorα = 0.005.

For the linearized inversions 500 singular values were used,
adding different levels of noise to the observed data. As expected,
the model error is reduced in each iteration, even with the increase

of the noise factor, converging, approximately, at the fourth inter-
action (see Fig. 5). For regularization, even when the estimated
model image is diffuse, the image suggests velocities approach-
ing of the real image model (see Fig. 6).

Figure 4 – Estimated model, linear case, first stage with first order regularization
and noise factor α = 0.005.

Figure 5 – Estimated model, linearized case, fourth interaction of the first stage
with 500 singular values and noise factor α = 0.005.

Figure 6 – Estimated model, linearized case, fourth interaction of the first stage
with first order regularization and noise factor α = 0.005.

The second stage (see Fig. 7) begins the injection of carbon
dioxide at the left side of the model. After the start of injection,
part of the reservoir is saturated with 30% CO2 and the rest re-
mains saturated with 100% water. A visual analysis of the esti-
mated model, obtained from the selection of singular values for
the linear case, shows that the saturated region with 30% CO2 can
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be easily viewed. By applying regularization, the estimated tomo-
grams quality decreases as they the noise level increases. This
influence is most effectively recorded in the regularization of zero
order. However, adjustments to orders one and two (see Fig. 8)
provided to be the best results.

Figure 7 – True model, second stage, with saturation of 30% CO2 in the green
region of the reservoir of interest.

Figure 8 – Estimated model, linear case, second stage with first order regular-
ization and noise factor α = 0.010.

In the linearized case, the estimated model converges on the
fourth interaction for the selection of singular values, as well as
the regularization. In both cases, the position of layers and the
velocities suggest that the image approximates the true model,
showing a good delimitation, especially in the fourth interaction,
for the region in which the fluid is located (see Fig. 9).

Figure 9 – Estimated model, linearized case, second stage with first order reg-
ularization and noise factor α = 0.010.

The third stage shows the condition of the reservoir after
another carbon dioxide injection period. CO2 has mobility such
that it is assumed that in this stage, it is divided into three regions
of different saturations and seismic velocities (see Fig. 10). The
region that was previously saturated with 30% CO2 and 70% water
has its CO2 saturation increased to 60%. The middle of the reser-
voir has a region with 30% CO2 saturation followed by a region
of 100% water.

Figure 10 – True model, third stage with different levels of CO2 and water sat-
uration in the reservoir of interest.

Figure 11 shows the model estimated for the selection of sin-
gular values in the linear case, which allows us to visualize satu-
rated regions with 30% and 60% CO2. However, because the two
regions are represented by different shades of green, the distinc-
tion between them is unclear. The regularization provides satis-
factory results because they delimit the region where the CO2 is
located, but the distinction of regions of different saturation only
occurs in the regularization of the zero order and is subtly noted
in the first order (see Fig. 12).

Figure 11 – Estimated model, linear case, third stage with 300 singular values
and noise factorα = 0.010.

In linearized inversion, it is possible to effectively define the
saturated region with CO2, in both forms of conditioning of the in-
verse problem. For all regularization orders, even when the image
of the estimated model is not as clear because of the dispersion of
energy, it was possible to view, especially in the fourth interaction,
the region where the CO2 is located (see Fig. 13).
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Figure 12 – Estimated model, linear case, third stage with first order regulariza-
tion and noise factor α = 0.010.

Figure 13 – Estimated model, linearized case, third stage with second order
regularization and noise factor α = 0.010.

Finally, in the fourth and final stage, after the last carbon diox-
ide injection step, the reservoir is homogeneously saturated with
60% fluid and 40% water (see Fig. 14). Thus, the entire reser-
voir layer has a single value seismic velocity of 2560 m/s. In both
cases, linear and linearized, in the selection of singular values,
as in the regularization, we obtain satisfactory results because it
was possible to image the reservoir saturated with CO2, despite
the presence of noise (see Figs. 15, 16 and 17).

Figure 14 – True model, fourth stage with 60% saturation of CO2 in the reservoir
of interest.

CONCLUSIONS
When addressing fluid replacement, Gassmann’s equation is an
useful tool that can model the change of velocity within the

reservoir. Based on the results obtained by the Gassmann’s equa-
tion, traveltime seismic tomography was implemented.

Figure 15 – Estimated model, linear case, fourth stage with 658 singular values
and noise factor α = 0.010.

Figure 16 – Estimated model, linearized case, fourth interaction of the fourth
stage with 300 singular values and noise factor α = 0.010.

Figure 17 – Estimated model, linear case, fourth stage with first order regular-
ization and noise factor α = 0.010.

Seismic tomography has two important aspects for geologi-
cal analysis: the estimation of properties and imaging. Thus, to-
mography results in a widely applicable tool in geophysics; how-
ever, it is an ill-posed, inverse problem and certain mathematical
treatments are needed to provide the reliable solutions. For this
purpose, the method of selection of singular values and the regu-
larization by derivative matrices were applied.

Traveltime seismic tomography has proven to be a useful tool
for monitoring CO2 injection in sandstone reservoirs because it is
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possible to verify the migration of fluid in the reservoir due to ve-
locity variations in several stages for the linear and linearized case,
which can satisfactorily define the entire region in which the fluid
is located. For the proposed problem, the use of ray theory with
the appropriate model discretization is viable due to the absence
of abrupt changes of velocity, although a small energy dispersal is
noted. The results of simulations, which included noisy data, were
satisfactory in dealing the ill-conditioning of the inverse problem.
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