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OPTIMIZATION OF RAYLEIGH WAVE DATA INVERSION
BY A TRIAL AND ERROR METHOD

Rodrigo Ferreira de Lucena1 and Fabio Taioli1,2

ABSTRACT. This paper examines Rayleigh waves dispersion curves inversion using local search procedures but carrying out the last step after data inversion through
global search procedures. The data inversion was carried out using the least squares method (Levenberg-Marquardt procedure) implemented in Matlab. During inversion,

control procedures and corrections were implemented to improve the fit between the real and inverted dispersion curves. In addition, a new post-inversion program was
implemented whose methodology, directed by trial and error and aided by modeling information, refines the previously inverted data. The results, obtained to synthetic

data, show that the implemented boundary conditions help to accelerate data convergence during the inversion and avoid anomalies caused in a free data inversion.
In addition, the post-inversion stage developed contributes to the refinement of the data with a significant improvement in its fit, particularly in complex dispersion curves

with abrupt changes in phase velocity or inversions in the S-wave velocities of the layers models.

Keywords: local search procedures, dispersion curve, MASW, seismic inversion, least squares method.

RESUMO. Este artigo analisa a inversão de curvas de dispersão das ondas Rayleigh através de procedimentos de busca local, mas sua última etapa pode ser

realizada posteriormente a procedimentos de busca global. A inversão de dados foi realizada por meio do método de mı́nimos quadrados (procedimento de Levenberg-
Marquardt) implementado em Matlab. Durante a inversão de dados, procedimentos de controle e correções foram implementados para melhorar o ajuste entre as curvas

de dispersão real e invertida. Além disso, foi implementado um novo programa de pós-inversão com metodologia baseada em um procedimento de tentativa e erro
e auxiliada por informações de modelagem, que refina os dados invertidos previamente. Os resultados, obtidos para dados sintéticos, mostram que as condições de

contorno implementadas ajudam a acelerar a convergência dos dados durante a inversão e evitam anomalias provocadas em uma inversão de dados livre. Além disso,
o estágio de pós-inversão desenvolvido contribui para o refinamento dos dados com uma significante melhora em seus ajustes, principalmente em curvas de dispersão

complexas com mudanças bruscas de velocidade de fase ou inversões nas velocidades de onda S dos modelos de camadas.
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INTRODUCTION

Refraction and reflection are the most popular among the vari-
ous seismic methods. However, new methods developed in re-
cent decades have gained increased attention, particularly those
that utilize surface waves, the subject of this study.

Surface waves were classified as undesirable noise in seismic
methods as refraction and reflection, but the physical description
of these waves has allowed its use in news methods as the Seis-
mic Spectral Analysis of Surface Waves (SASW) developed in the
beginning of 1980s by Nazarian & Stokoe (1984). This method
is based on the study of Rayleigh waves. It has proven very use-
ful for shallow depths but very imprecise for greater depths. By
the end of the 1990s, Park et al. (1999a) proposed a new seismic
method based on the same physical principles as SASW but us-
ing the same experimental configuration as for refraction seismic,
with a multichannel array. This improved the signal-to-noise ratio
and data processing, as well as increased the efficiency of field
surveys. The authors called the Multichannel Analysis of Surface
Waves (MASW) and it differs from SASW by utilizing a linear ar-
ray (identical to that used for refraction seismic) of at least 12
geophones, but low frequency (4.5 Hz) ones.

Starting from a time domain seismogram, a two-dimensional
Fourier transform can be performed to separate Rayleigh waves
from other waves, obtaining a frequency-wave number (f-k ) am-
plitude spectrum (Horike, 1985). This spectrum can be mathe-
matically transformed into a graph of the phase velocity (velocity
of each Rayleigh wave component) as a function of frequency or
wavelength (λ), called the dispersion curve.

Since most of the energy is carried by the Rayleigh waves,
they are easily identified on an f-k amplitude spectrum. Since
Rayleigh waves present dispersive behavior, different wavelengths
of the wave will reach different depths and, depending on the elas-
tic properties of the materials, different phase velocities. The dis-
persion curve displays the heterogeneity of the medium through
its modal nature, with several curves, the first of which is known
as the fundamental mode and is normally used for modeling and
data inversion.

The dispersion curve contains information about the subsur-
face; therefore, starting from a direct model, it is possible to carry
out an inversion on the field data which produces a model with lay-
ers of different thicknesses and shear velocities (Rayleigh waves
velocities present high dependence on S-wave velocities).

Rayleigh surface wave methods have been successfully used
in civil engineering (Foti, 2000; Ryden & Park, 2006; Baniasadi,
2009), since they reach depths of up to 100 meters (Louie, 2001;
Wathelet, 2004; Park et al., 2005) and allow inversion as a func-

tion of S-wave velocity, which, with knowledge of the material
density, enables calculation of the substrate shear modulus.

Rayleigh wave modeling and inversion
The dispersion curve (Fig. 1) relative to a model of heterogeneous
layers can be generated through a nonlinear secular function

H(c, ω, ρ, α, β, d) = 0 (1)

involving the physical parameters of density (ρ), P-wave veloc-
ity (α), S-wave velocity (β), layer thickness (d), and phase ve-
locity (c) (Thomson, 1950; Haskell,1953; Dunkin, 1965).

Figure 1 – Dispersion curves (modal nature).

The roots of the secular equation (Eq. 1) provide the phase
velocities for each intended frequency value ω) and the param-
eters ρ, α, β, and d must be known during the modeling pro-
cess. For each frequency value, one or more phase velocity val-
ues are found, each integrating a different mode of the dispersion
curve (Fig. 1). Studies often involve only the first mode (funda-
mental mode) of the dispersion curve, but higher modes can be
employed in the data modeling and inversion (Park et al., 1999b;
Xia et al., 2003).

The theoretical dispersion curve is essential for the data inver-
sion because it integrates the objective function, whose estimated
minimum represents a good fit between theoretical and real data.
In the data inversion, the objective function is used in an iterative
procedure in which a set of initial values is required to start the
inversion algorithm.

Deduction of the physical properties of a geological substrate
through data measured by geophysical sensors is characterized
by a process called the inverse problem. The goal of solving the
inverse problem (data inversion) is to generate a model of the
physical properties of the layers of interest as a function of depth.

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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For this, the field-acquired and subsequently processed data need
to be adjusted to a theoretical model that associates these data
with the depths investigated and the physical parameters of inter-
est (S-wave velocity, density, resistivity, etc.).

The inverse problem can be solved by applying the least-
squares method, as the Levenberg-Marquardt (Levenberg, 1944;
Marquardt, 1963) procedure, which aims to minimize the residue
between the experimental and theoretical data. For this, a good
layers initial model to obtain a suitable data fit is required.

The layers initial model (depth as a function of S-wave veloc-
ity) to the Rayleigh wave data inversion can be initially estimated
scanning the real dispersion curve through equation

Z = Pλ (2)

where, according to Abbiss (1981), the maximum penetration
depth (Z) of a shear wave component is estimated to be between
one-third and one-half (P ) of its wavelength (λ). In the study of
the surface waves, the phase velocity (cn(λn)) must be converted
to an S-wave velocity (βn ) during the scan of the dispersion curve:

βn =
cn(λn)

Q
(3)

whereQ is a conversion factor with a value between 0.87 and 0.96
(Richart et al., 1970).

The use of the Eqs. (5) and (6) allows estimating the S-wave
velocities in predetermined layer thicknesses that will be used to
start the data inversion algorithm. For more details, see Xia et
al. (1999) and Lucena & Taioli (2014).

METHODOLOGY

The inversion program implemented in Matlab programming lan-
guage uses the Levenberg-Marquardt algorithm to minimize the
objective function and consequently fits the data between the real
and inverted dispersion curves. In this process, parameters need
to be calibrated and boundary conditions implemented to optimize
the data inversion.

The P factor was calibrated as 0.5 (Lucena & Taioli, 2014).
However, that value does not always lead to satisfactory data in-
version and under these circumstances needs to be changed. In
this work, the P factor is analyzed through its variation using as a
reference the minimization of the values of the relative root mean-
squared error (rRMSE) between the synthetic and inverted disper-
sion curves calculated at the end of each data inversion for more
than 50 models. The rRMSE provides an indicator of inversion
quality, where the lower its value, the better the data fit.

Two boundary conditions are implemented to improve data
convergence. They can be applied in every interaction and their
effectiveness was evaluated using the values of rRMSE gener-
ated at the end of each data inversion. The first boundary con-
dition ensures the S-wave velocities obey the minimum and max-
imum limits of the phase velocities of the dispersion curve, us-
ing Eq. (6) to convert the phase velocities to S-wave velocities.
The second boundary condition ensures that the smallest Pois-
son ratio is obeyed; in others words, the ratio αn/βn is never
less than

√
2 during the data inversion.

The post-inversion stage consists of a trial and error proce-
dure started after the data inversion. Its goal is to create a fine
fit between the real and inverted dispersion curves and conse-
quently improve the inverted layered model. A fine fit is achieved
by changing the S-wave velocities of the inverted layered model
such that the inverted dispersion curve approximates the real dis-
persion curve. Figure 2 provides a general idea of how each layer
comprises a particular region of the dispersion curve and shows
that the shallower layers help compose a larger region of the dis-
persion curve, unlike the deeper layers that only help in the com-
position of the low frequencies of the dispersion curve. Therefore,
the procedure should be performed in the direction of low frequen-
cies, starting with the shallower layers of the layered model.

Figure 2 – Scheme of the influence of each layer of a layered model in the dis-
persion curve (adapted from Strobbia, 2003).

Two tools were implemented in the post-inversion procedure
to help the user choose better changes of the inverted layered
model, resulting in a better data fit. With the first tool, the user
indicates which point in the dispersion curve is to be changed
and, in response, the tool indicates in which layer the velocity
should be changed, using Eq. (5) for the estimation. The sec-
ond tool generates a sensibility graph of the inverted model. This
involves individually changing the S-wave velocity in 20% of
each of the 10 layers of the inverted layered model and gen-
erating a dispersion curve for each of the 10 changed layers.

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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Figure 3 – Graphic interface of the post-inversion program.

The graph thus indicates the influence of each changed layer in
the points of the dispersion curve, allowing the user to deter-
mine which points in a particular frequency range will change
with different intensities when a particular layer is modified. Fig-
ure 3 shows the post-inversion program interface for the graphs
of the dispersion curves (Fig. 3a), the layer model (Fig. 3b),
the dependency of the dispersion curve with the variation of
the S-wave velocities of each layer (Fig. 3c), and the table with
the parameters αn, βn , and dn updated with every program
adjustment (Fig. 3d).

In this initial interface, the user selects the point to be
changed in the dispersion curve. Using an estimation of Eq. (5),
the program suggests a layer to be changed, allowing the user
to adjust the chosen point. The user can change the suggested
layer or another layer, using as a reference the dependence of
the dispersion curve along the 10 layers (Fig. 3c) and the table
of layers model parameters (Fig. 3d). The fitted data are updated
with every modification on the S-wave velocities until the end fit
is achieved. Information relative to the last update is displayed
in green so it can be compared to that of the previous update,
displayed in red (Figs. 3a and 3b).

Using the post-inversion methodology accordingly and con-
sidering the execution order and two tools described above, the
procedure of trial and error can be well controlled by the user and
is thus efficient.

This study was conducted on more than 50 models, with
similar results to those presented here, characterized by the re-

sults for Models 1 to 3 reported in Table 1. The models have
been used as input data to generate synthetic dispersion curves.
The synthetic dispersion curves have been inverted and their in-
verted models compared with the initial models (dn and βn of
the Table 1).

Table 1 – Results for Models 1 to 3.

Models n
αn βn ρn dn

αn/βn(m/s) (m/s) (kg/m3) (m)

Model 1

1 170 100 1200 2 1.7
2 1020 600 2000 3 1.7
3 629 370 1900 7 1.7
4 1440 900 2100 ∞ 1.6

Model 2
1 1350 250 1900 4 5.4
2 2150 580 2200 5 3.7
3 2500 850 2500 ∞ 2.9

Model 3
1 600 280 1280 3 2.1
2 430 215 1200 5 2.0
3 1530 850 1950 ∞ 1.8

These models were chosen because they present different
characteristics, such as contrasts of S-wave velocities between
layers, with some models presenting velocity inversion and differ-
ent Poisson ratios, as seen in the work of Lucena & Taioli (2014),
that can significantly change the dispersion curves, interfering in
the data inversion, and dispersion curves with different shapes,
where the inversion algorithm will encounter difficulties in adjust-
ing the data.

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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Figure 4 – Data inversion of Model 1, with a P factor equal to 0.5.

Figure 5 – Data inversion of Model 1, with a P factor equal to 0.3.

RESULTS AND DISCUSSION

Setting the inversion parameters

The study of the 50 models shows, on average, that a P parameter
equal to 0.5 is best to generate an initial model of layers close to
the real layer model. However, this value does not always result in
satisfactory data inversion. The inversion of Model 1 (Fig. 4), for
example, shows that, despite the completion of five iterations and
the good initial model generated, the fit between the inverted and
synthetic dispersion curves has a high rRMSE.

Figure 4 shows good fit between the dispersion curves for the
initial and synthetic models at high frequencies (above 30 Hz),
but not at lower frequencies. When the P value is changed to less
than 0.5, the dispersion curve for the initial model tends to move
horizontally in the direction of higher frequencies. This can be
seen in Figure 5, where the P parameter of Model 1 was changed
to 0.3.

The initial model fit improves significantly at low frequencies
with changes in the P parameter. Already at frequencies above
30 Hz, the fit becomes slight worse. This general improvement

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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in the fit between the initial and synthetic dispersion curves of
Model 3 is reflected in the data inversion, whose errors decrease
by approximately 8.7% to 4.6%.

Studying the other models shows that the high frequency re-
gion of the synthetic dispersion curve is better represented by
the initial model for high values of P, since the low frequency
region is better represented for low values of P. Physically, this
means that wave components with greater wavelengths lose effi-
ciency at greater depths. Therefore, the method’s maximum depth
of investigation does not reach 50% of the maximum wavelength
and sometimes the maximum investigation depth approaches
only 30% of the maximum wavelength.

During data processing, the user can generate an initial model
with a P value equal to 0.5 and compare the initial dispersion
curve generated with the real curve. The P value should be de-
creased if the aim is to shift the initial dispersion curve toward
high frequencies and increase the values of the phase velocity.
If the aim is to shift the initial dispersion curve toward low fre-
quencies and reduce the phase velocity, the P value should be
increased. The computational cost to perform this task is low, be-
cause at this stage the data inversion is not required. Figure 6
shows an example of adjusting P factor to generate the initial
model relative to Model 2. The variation of this factor substan-
tially interferes in the behavior of the dispersion curve of the ini-
tial model and can be used as a tool to estimate the best initial
dispersion curve to be used for the data inversion. In the case of
Model 2, the yellow curve (P = 0.4) presents the best adjustment
and is a good choice for the initial model to be inverted.

Figure 6 – Generation of initial dispersion curves for different P factor values
for Model 2.

Boundary conditions

The boundary conditions implemented in the inversion program
correct unwanted results at each iteration. They can influence the

rRMSE, reducing it if a boundary condition is triggered during the
data inversion. Figure 7 shows the interference in the rRMSE with
and without the boundary conditions for Models 1 to 3.

Figure 7 – Influence of boundary conditions on the rRMSE for Models 1 to 3.

In all cases in which the boundary conditions are imple-
mented, the rRMSE decreases or at least remains constant. We
observe this behavior for the three models (Fig. 7) used to exem-
plify the other 50 models: Models 1 and 2 show a significant drop
in rRMSE values and, in Model 3, the boundary conditions don’t
change the rRMSE value.

We found no cases where the rRMSE increases with im-
plementation of the boundary conditions. This is because the
boundary conditions correct for undesirable effects that occur at
every iteration of the inversion process. When these corrections
are necessary and are carried out, the inversion presents with an
improved data fit; when there is no need for these corrections, the
algorithm simply ignores the boundary conditions. Corrections
are made when the minimum and maximum limits of the disper-
sion curve are violated, given a margin of error of 30%.

The boundary conditions should also be introduced to obey
the minimum Poisson ratio (γ = 0 or αn/βn =

√
2). In

a data inversion of the S-wave velocity totally independent of
the previously set P-wave velocity values, the minimum Pois-
son ratio cannot ever be obeyed and affect the data model-
ing. Figure 8 illustrates this problem when the S-wave veloc-
ity of the first layer of Model 1 that obeys the minimum Pois-
son ratio (αn/βn = 1.7) is increased by 50% and the ratio
αn/βn drops to about 1.13. The dispersion curve for the mod-
ified model is abruptly discontinued without any pattern and the
dispersion curve is completely uncharacterized at approximately
14 Hz. The imposition of boundary conditions relative to the
minimum Poisson ratio prevents errors in the initial modeling
and in all iterations performed in the inversion process, avoiding

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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the inadequate convergence of data with the poor fit between the
real and inverted dispersion curves.

Figure 8 – Dispersion curves relative to the original Model 1 (black line) and to
Model 1 with the S-wave velocity increased by 50% (red line).

Post-inversion program

The post-inversion trial and error program allows for the real-
ization of a fine data inversion results fit. The main objective of
improving the fit of regions where there is great discrepancy be-
tween the points of the real and inverted dispersion curves that
can significantly interfere in the model of generated layers. Fig-
ure 3 shows the procedure implemented for Model 3, where the
synthetic and inverted dispersion curves (Fig. 3a), the inverted
layer model (Fig. 3b), the dependence of the dispersion curve as
a function of the 10 inverted layers (Fig. 3c), and the table of the
values of the number of layers, layer thicknesses, and the S-wave
velocities of all the layers (Fig. 3d) are initially generated.

The graph of the dependence of the dispersion curve along the
10 layers (Fig. 3c) is extremely useful for showing the frequency
regions in which and the intensity with which the dispersion curve
is sensitized when the value of the S-wave velocity of a given layer
is changed. It is important to perform this analysis for each model
because the graphs of the dependencies are completely different
for each model studied, as can be seen in Figure 9.

It is interesting to note that the shallower layers tend to
sensitize the dispersion curve in a larger frequency range; in
other words, when the S-wave velocity of the first layer is modi-
fied, the high- and intermediate-frequency points of the disper-
sion curve can be influenced and in some cases the low fre-
quency points as well. The deepest layers concentrate their in-
fluence at low frequencies (Fig. 9) and therefore do not affect the
higher frequencies of the dispersion curve, as can be also seen
in Figure 2. This information is important because it indicates
that a fine fit should be achieved by initially modifying the S-

waves velocities of the shallow layers and then the velocities of
the deeper layers.

Figure 9 – Dependence of the dispersion curve along the 10 layers for
(a) Model 1, (b) Model 2, and (c) Model 3.

The trial and error procedure initiated in the first layers and
finalized in the latest layers can be executed repeatedly, increas-
ingly refining the adjustment between the dispersion curves.
Figure 10 compares the inverted Model 2 (Fig. 10a) and its final
fine fit (Fig. 10b).

For a simple layer model with a gradual increase in the S-
wave velocity as a function of depth, as noted in Model 2 (Fig. 10),
the improvement in the final fit of the data is slightly notice-
able in the adjustment of the dispersion curves and of the layers
model, with little interference in the final result, since in this sit-
uation the data inversion is enough to generate a good data fit.

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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Figure 10 – Influence of the post-inversion data of Model 2: a) only the data inversion stage and b) the data inversion and post-inversion stages.

In more complex layer models with inversion of the velocities of
the layers, for example, or abrupt changes in the dispersion curve,
the inversion algorithm cannot obtain a good fit in these regions
of abrupt changes or ripples generating adjustments with large
values of rRMSE between the real and inverted dispersion curves.
Thus, the post-inversion procedure significantly improves the ad-
justment of the inverted data, highlighting S-wave velocity inver-
sions and adjusting the inverted data to be closest to the real data.
This situation is exemplified in Model 3, where the presence of
a ripple is noted in the intermediate frequency of the dispersion
curve due to the S-wave velocity inversion of the second layer.
This inversion and fine adjustment can be seen in Figure 11, where
the difference between the dispersion curve in the two procedures
is quite pronounced.

Note that, as shown in Figure 11, the improvement in fit be-
tween the dispersion curves, with the rRMSE falling from 3.63%
to 1.21%, is positively reflected in the adjusted layer model, where
the velocity inversion is very well defined.

The post-inversion procedure can replace the inversion pro-
cess, that is, be its own data inversion in entirety. However, it is

advisable to perform the data inversion previously through an
inversion algorithm, because the post-inversion procedure be-
comes simpler and faster, since the process starts from a good
data fit.

CONCLUSIONS

Each procedure adopted in this work improves, on average, the fit
between the synthetic and estimated dispersion curves in the pre-
inversion, inversion, and post-inversion steps of the 50 studied
models.

The study of the P parameter allows a greater understanding
of the dispersion curve generated by the initial layered model.
Thus the user can manipulate this parameter such that the esti-
mated dispersion curve approximates the real dispersion curve,
decreasing the mean-squared error in the pre-inversion stage.

In the inversion stage, the implemented boundary conditions
help to accelerate data convergence and avoid anomalies caused
in a free data inversion, where some iterations cannot obey the
minimum Poisson ratio.

Finally, the post-inversion stage developed contributes to

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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Figure 11 – Influence of the post-inversion data of Model 3: a) only the data inversion stage and b) the data inversion and post-inversion stages.

the refinement of the data, where the trial and error procedure di-
rected through a priori information decreases the mean-squared
error between the real and adjusted dispersion curves. This im-
provement depends on the real data acquired, as well as the qual-
ity of the data inversion. When the data show a dispersion curve
with a smoothly varying S-wave velocity and data inversion with
low mean-squared errors, the post-inversion stage improves the
data fit very little and can even be omitted. However, when the real
data acquired exhibit an abrupt change in velocities or ripples in
their dispersion curve and the inversions present a high rRMSE,
the post-inversion procedure significantly improves the data fit.

Therefore, the procedures described in this study and adopted
together tend to improve the final result of the data inversion,
especially in complex models with abrupt changes in veloc-
ity or inversions in the S-wave velocities of the layers of the
model studied.
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PARK CB, MILLER RD, RYDÉN N, XIA J & IVANOV J. 2005. Combined
use of active and passive surface waves. Journal of Environmental &
Engineering Geophysics, 10(3): 323–334.

RICHART Jr FE, HALL JR & WOODS RD. 1970. Vibrations of Soils and
Foundations. Prentice Hall, NJ. 437 pp.

RYDEN N & PARK CB. 2006. Fast simulated annealing inversion of
surface waves on pavement using phase-velocity spectra. Geophysics,
71: R49–R58.

STROBBIA C. 2003. Surface wave method acquisition, processing and
inversion. Ph.D. Thesis, Polytechnic University of Turin. 317 pp.

THOMSON WT. 1950. Transmission of elastic waves through a stratified
solid medium. Journal of Applied Physics, 21: 89–93.

WATHELET M, JONGMANS D & OHRNBERGER M. 2004. Surface wave
inversion using a direct search algorithm and its application to ambient
vibrations measurements. Near Surface Geophysics, 2: 211–221.

XIA J, MILLER RD & PARK CB. 1999. Estimation of near-surface shear-
wave velocity by inversion of Rayleigh waves. Geophysics,64: 691–700.

XIA J, MILLER RD, PARK CB & TIAN G. 2003. Inversion of high fre-

quency surface waves with fundamental and higher modes. Journal of
Applied Geophysics, 52: 45–57.

Recebido em 21 março, 2016 / Aceito em 14 junho, 2017

Received on March 21, 2016 / Accepted on June 14, 2017

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016


