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EVALUATION OF MODEL PERFORMANCES IN REPRODUCING MEASURES
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ABSTRACT. We evaluate the performances of the Krischer-Esdorn (KE), Hashin-Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric

mean (GM) models in reproducing 1,105 measurements of thermal conductivity of crystalline rocks collected in Borborema Province (NE-Brazil). Percent volumes

of quartz, K-feldspar, plagioclase, and mafic minerals were also measured. Rock samples were divided into the IOG (igneous and ortho-derived) and MET (metasedimen-
tary) groups. IOG-group (939 samples) covered most the lithologies of the Streckeisen diagram and MET-group (166 samples) covered low-to-medium metamorphic

grade lithologies. Reproducing rock conductivities was treated as an inverse problem, where conductivity measurements and constituent mineral volumes are the known
quantities while the constituent mineral effective conductivities and model parameters are the unknowns. To identify the model better reproducing the measurements,

model performances were compared by using the percentage of number of samples whose estimated conductivities are close to the measured conductivities within the

tolerance level of 15%. For all models, the performances are relatively inferior for the MET-group. In the IOG-group, the KE- and HS-model performances are rela-
tively superior. In the MET-group, model performances are very contrasting but the KE-model is again superior. The KE-model thus presents the best performance in

reproducing thermal conductivities of crystalline rocks.

Keywords: thermal conductivity, rock models, crystalline rocks, Borborema Province.

RESUMO. Avaliamos o desempenho dos modelos Krischer-Esdorn (KE), Hashin-Shtrikman (HS), Maxwell clássico (CM), Maxwell-Wiener (MW), e média geomé-
trica (GM) em reproduzir 1.105 medidas de condutividade térmica de rochas cristalinas da Provı́ncia Borborema (NE-Brasil). Os percentuais de volume de quartzo,

K-feldspato, plagioclásio e minerais máficos foram também medidos. As amostras foram divididas nos grupos IOG (́ıgneas e ortoderivadas) e MET (metassedimentares).
O grupo IOG (939 amostras) cobre as litologias principais do diagrama de Streckeisen e o grupo MET (166 amostras) contém rochas de baixo a médio graus de

metamorfismo. Estimar condutividade de rochas foi tratado como um problema inverso, em que medidas de condutividade e percentuais de volume de minerais são
conhecidos enquanto condutividades efetivas de minerais e parâmetros de modelo são incógnitas. O desempenho foi avaliado comparando-se a percentagem do número

de amostras cujas estimativas de condutividade reproduzem as medidas dentro da tolerância de 15%. Para todos os modelos, os desempenhos são relativamente piores

no grupo MET. No grupo IOG, os modelos KE e HS apresentaram os melhores desempenhos. No grupo MET, os desempenhos são contrastantes, mas o modelo KE
apresenta melhor desempenho. Assim, o modelo KE apresenta o melhor desempenho em reproduzir as medidas de condutividade térmica de rochas cristalinas.

Palavras-chave: condutividade térmica, modelos de rocha, rochas cristalinas, Provı́ncia Borborema.
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INTRODUCTION

Understanding the spatial distribution of heat flow in the Earth’s
crust is a key element in many important problems, as for ex-
ample, sedimentary basin evaluation for hydrocarbon exploration
(Chapman, 1986), characterization of geothermal reservoirs
(Chapman, 1986; Di Sipio et al., 2013), and geological disposal
of nuclear waste (Andersson et al., 2000). To estimate the heat
flow, it is necessary to measure the geothermal gradient and the
rock thermal conductivity of the geologic medium under consid-
eration. Estimations of geothermal gradients are commonly per-
formed based on temperature measurements at depth intervals of
3-10 m (Hamza, 1982; Gomes & Hamza, 2005; Jessop, 2009)
while thermal conductivity measurements are carried out on rock
samples with dimensions usually less than one hundredth of this
interval. Moreover, due to the facts that rock sampling from bore-
holes is a relatively expensive operation and rock conductivity
measurement is a somewhat time-expensive procedure, relatively
few experimental measurements are usually carried out. The pro-
cess of temperature gradient measurement thus incorporates an
averaging process that is lacking in the process of conductiv-
ity measurement (Jessop, 1983; Jessop, 2009). To obtain addi-
tional estimates of conductivity, a commonly used simplifying ap-
proach is to estimate rock thermal conductivities based on mod-
els (Clauser & Huenges, 1995; Schön, 2004), in particular those
based on observed or expected rock mineral content (Clauser &
Huenges, 1995). Thus, it is necessary to test the adequacy or
performance of thermal conductivity models in reproducing mea-
sured values and in evaluating possible errors involved in adopt-
ing this simplifying approach.

In this work, we evaluate the performances of Krischer
and Esdorn (Schön, 2004), Hashin and Shtrikman (Hashin &
Shtrikman, 1962), classic Maxwell (Schön, 2004), Maxwell-
Wiener (Buntebarth & Schopper, 1998), and geometric mean
(Schön, 2004) models in reproducing representative thermal con-
ductivity values of igneous and metamorphic rocks. We used
an extensive data set derived from 1,105 samples of crys-
talline rocks collected in outcrops of the Borborema Province
(Almeida et al., 1981) in Northeastern Brazil. Previous studies
(Figueiredo, 2006; Figueiredo et al., 2009; Silva, 2016) discussed
the relationships between thermal conductivity, modal compo-
sition and geochemistry of larger elements in crystalline silica
rocks, notably granite rocks, from Borborema Province (BP), aim-
ing to characterize different magmatic suites of this province.
However, as long as we known, no study was done in order to
identify the best theoretical models in reproducing the thermal
conductivity of crystalline rocks, which is the objective of the

present study. To achieve this goal, both thermal conductivity and
petrographic modal analysis were done on 1,105 samples of ig-
neous and metamorphic rocks collected in outcrops of the BP.
Both conductivity and selected petrographic modal analysis (per-
cent volumes of quartz, K-feldspar, plagioclase, and sum of mafic
minerals) were done. We show that most of these simple rock
models, in particular the Krischer and Esdorn model, present a
quite good performance in reproducing measured values of ther-
mal conductivity of crystalline rocks, particularly for igneous and
ortho-derived (or meta-igneous) rocks.

SAMPLED ROCKS

All rock samples (total of 1,105) used in this study were collected
from outcrops of igneous and metamorphic rocks in the northern
portion of the BP (Fig. 1). The BP is a major geologic and struc-
tural domain located in Northeastern Brazil, limited to the south
by the São Francisco craton, to the west by the Parnáıba Basin,
and to the north and east by the Atlantic coastal margin. It has a
complex Precambrian geologic evolution (Almeida et al., 1981),
culminating with the Gondwanaland assembly in the Late Neo-
proterozoic – Early Paleozoic (Brito Neves & Cordani, 1991;
Trompette, 1994). In the context of Gondwanaland assembly, the
BP comprises a Proterozoic fold belt extended between the São
Luis – West Africa and São Francisco – Congo/Kasai cratons. It
is widely accepted that the BP evolution occurred by a mecha-
nism of terrane collage (e.g. Santos & Medeiros, 1999; Oliveira,
2008), where large crustal blocks were put together during Meso
and Late-Proterozoic events. Major shear zones in E-W and/or
NE-SW directions are interpreted as boundaries between terranes,
as for example, the Patos, Pernambuco, Jaguaribe-Tatajuba, and
Transbrasiliano shear zones indicated in Figure 1.

Selecting and collecting rock samples from outcrops in BP
is a relatively easy field operation, since the present semi-arid
climate of the region has inhibited formation of thick soil cover
and allowed occurrence of large exposures of fresh unweathered
basement rocks.

In this study we classify samples of igneous and metamor-
phic rocks into the two groups of igneous and ortho-derived (or
meta-igneous) rocks and metasedimentary rocks. It were collected
samples of a large variety of igneous and ortho-derived rocks
(Table 1) covering most of the lithologies defined in the Streck-
eisen diagram (Fig. 2) (Streckeisen, 1976), with higher concen-
trations in the fields of granite, monzogranite, syenogranite, gra-
nodiorite and tonalite. Regarding the metasedimentary rocks, it
were sampled representative lithologies (Table 2) usually of low
to medium metamorphic grades.

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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Figure 1 – Geologic map of the northern portion of the Borborema Province, Brazil. Locations of sampled rocks are identified as black dots for igneous and ortho-derived
rocks and red dots for metasedimentary rocks. Map source: CPRM – Geological Survey of Brazil at http://geobank.sa.cprm.gov.br/.

Table 1 – Sampled lithologies of igneous and ortho-derived rocks according
to their classification in the Streckeisen diagram (Streckeisen, 1976).

Lithology Number of samples
alkali-feldspar granite 5

alkali-feldspar quartz syenite 5
alkali-feldspar syenite 5

granite 296
granodiorite 99

monzogranite 241
quartz diorite 17

quartz monzodiorite 11
quartz monzonite 25

quartz rich granitoid 5
quartz syenite 11

quartzolit 2
syenogranite 138

tonalite 79
Total 939

THERMAL CONDUCTIVITY MEASUREMENTS

A thermal impedance meter, manufactured by Anter Corp. (model
QuicklineTM-30), was used for measurements. This instrument
uses two different sensor systems and measures conductivities

in the ranges 0.3 to 2.0 Wm–1K–1 and 2.0 to 6.0 Wm–1K–1. The
principle of operation of this device is based on analysis of tran-
sient thermal field produced by a planar heat source (Carslaw &
Jaeger, 1959; Gomes & Hamza, 2005) in the sample. According to
the manufacturer, the mean reproducibility of the measurements
is 3% with accuracy of about 10% in both ranges. Flat plates with
dimensions 11 cm× 11 cm× 3 cm for length, width, and thick-
ness, respectively, were cut from the rock samples. One of the flat
faces was polished to allow a good coupling with the sensor unit
of the measuring device. Five measurements (one near each cor-
ner and one on the plate centre) were done in each sample, from
which values of mean and standard deviation were calculated.

Table 2 – Sampled lithologies of metasedimentary rocks.

Lithology Number of samples
Marble 7

Metaconglomerate 6
Metasandstone 7

Paragnaiss 32
Phyllite 14

Quartzite 18
Schist 82
Total 166

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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Figure 2 – Streckeisen diagram showing distribution of the 939 samples (black dots) of igneous and ortho-derived rocks and contours of their
measured conductivities in Wm–1K–1.

Results of conductivity measures (Fig. 3) are in the range
1.0 to 7.0 Wm–1K–1, with most of them in the range 2.0 to
4.0 Wm–1K–1. The normalized standard deviation is lower than
10% for most of the measures (Fig. 3), pointing to relatively
good precision in experimental data. For the igneous and ortho-
derived rocks, the conductivities measures were interpolated as
isovalue lines on the Streckeisen diagram (Fig. 2). Observe that
the expected broad increase in thermal conductivity with increas-
ing quartz content is clear.

PETROGRAPHIC MODAL ANALYSIS AND
GEOCHEMISTRY

Mineral content modal analyses were carried out for all rock
samples using a conventional petrographic microscope and thin
polished sections of rocks (with thickness in the range 25 to
30 μm). The percent volumes of quartz (VQz), K-feldspar (VKf ),
plagioclase (VPl ), and sum of mafic minerals (VMa) were esti-
mated by using a computerized version of the classic point count

method (Chayes, 1956), being the statistics based on 600 points.
In the case of metasedimentary rocks presenting high anisotropy,
a visual estimate of the silica percent composition was also done.
Data on silica percent weight derived from results of geochemi-
cal analyses were also available for a subset of 160 samples of
igneous rocks. These can easily be converted to the silica per-
cent volume, given the densities of the silica and of the sample.
For quartz volume fraction in the range of 0.05 to 0.4, there is
good correlation between the silica percent volume, given by the
geochemistry, and the quartz percent volume, given by the petro-
graphic modal analysis (Fig. 4). We show later that it is possible
to estimate the rock conductivity from the silica percent volume
using this correlation.

THERMAL CONDUCTIVITY MODELS

All models considered in this study are based on the volume
fraction of the main minerals forming the rocks and on the ther-
mal conductivity of these minerals. It is assumed that the rock is

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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Figure 3 – Quality of the conductivity measures as expressed by mean and normalized (by the mean) standard deviation for each rock sample. There are 1,105 rock
samples. To estimate mean and standard deviation of each rock sample five measures of conductivity were used.

Figure 4 – Correlation between silica percent volume (from results of geochemical analysis) and quartz percent volume (from petrographic modal analysis), for quartz
volume fraction in the range 0.05 to 0.4. The silica volumes were averaged over the corresponding sequential strips (with width of 5%) of quartz percent volume.

formed by volume fractions Vi, ofN minerals (i = 1,N ), each
mineral having conductivity λi. Commonly, quartz, K-feldspar,
plagioclase, and sum of mafic minerals are the main constituents.
We considered the models of Krischer and Esdorn (Schön, 2004),
Hashin and Shtrikman (Hashin & Shtrikman, 1962), classic
Maxwell (Schön, 2004), Maxwell-Wiener (Buntebarth & Schop-
per, 1998) and geometric mean (Schön, 2004). Below is given a
brief description of each model.

The Krischer and Esdorn model (KE-model) estimates the
conductivity λKE of the rock as

λKE =

(
α

λs
+
1− α
λp

)−1
, (1)

λ−1s =
N∑
i=1

Vi · λ−1i , (2)

λp =

N∑
i=1

Vi · λi . (3)

In Eq. (1), α is a parameter that defines in a somewhat
empirical way the mineral volume fraction that is connected in
series in the rock volume. For this model, α = 0 and α =
1 correspond to the two end-members of parallel and series
cases, when λKE would be equal to λp (Eq. 3) or λs (Eq. 2),
respectively.

The Hashin and Shtrickman model (HS-model) estimates
a conductivity λHS for the rock with a formula equivalent to
Eq. (1) but using a maximum (λHSmax) and a minimum (λHSmin)
estimates for the rock conductivity instead of λp (Eq. 3) and λs
(Eq. 2), respectively. The equations defining the HS-model are

λHS =

(
α

λHSmin
+
1− α
λHSmax

)−1
, (4)

λHSmax = λmax +
Amax

(1 − amaxAmax) , (5)

λHSmin = λmin +
Amin

(1− aminAmin) , (6)

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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Amax =

N∑
i=1

Vi
[
(λi − λmax)−1 + amax

]−1
, (7)

Amin =

N∑
i=1

Vi
[
(λi − λmin)−1 + amin

]−1
, (8)

λmax = max(λi), λmin = min(λi), i = 1, N , (9)

amax =
1

3λmax
, amin =

1

3λmin
. (10)

In the HS-model the rock is assumed to be composed of
spheres in mutual contact with a coat covering completely the
surfaces of the spheres. Equations (5) and (6) correspond to the
cases where the conductivity of the coat is higher or lower, respec-
tively, than the conductivity of the inner sphere.

The classic Maxwell model (CM-model) estimates the rock
conductivity λCM based on the assumption that the rock is com-
posed of two phases: a continuous homogeneous medium, the
matrix, and randomly distributed isolated spheres, all spheres
having the same composition. It is also supposed that the total
volume of the spheres is low compared to the matrix volume.
In crystalline rocks, the quartz is usually taken as the material
composing the spheres and the matrix is the union of all other
minerals forming the rock. We define VQz as the volume fraction
of quartz with conductivity λQz . In a similar manner, λMx and
VMx are defined as the conductivity and volume fraction of the
matrix, respectively. According to Schön (2004), λCM is given
by

λCM =

λMx

[
λQz + 2λMx + 2VQz(λQz − λMx)
λQz + 2λMx − VQz(λQz − λMx)

]
.

(11)

We considered also in this study the Maxwell-Wiener model
(MW-model) that is the generalization done by Wiener (Bunte-
barth & Schopper, 1998) of the CM-model. The MW-model was
by us parameterized as

λMW =

λMx

[
P−1λQz+2PλMx+2PVQz(λQz−λMx)
P−1λQz+2PλMx−P−1VQz(λQz−λMx)

]
,

(12)

where P is a parameter defined in the interval (0,∞) and λMW

varies continuously with P . When P = 1, Eq. (12) reduces to
Eq. (11). Moreover, when P � 1 (say, 0.1) and P � 1 (say,
10), Eq. (12) reduces to the same two end-members of series and
parallel models, respectively associated with α = 0 and α = 1

in Eq. (1), but now considering the rock as being composed with
just two phases (the matrix and the spheres).

Finally, we used also the geometric mean model (GM-model)
where the rock conductivity is estimated by

λGM =

N∏
i=1

λVii . (13)

In cases where the matrix is composed of quartz, K-feldspar,
plagioclase and mafic minerals, the KE and HS-models use five
parameters (λQz , λKf , λPl , λMa, and α) while the GM-
models use four parameters (λQz , λKf , λPl , and λMa).
On the other hand, the CM and MW-models use two (λQz and
λMx) or three parameters (λQz , λMx and P ), respectively. In
general, the larger is the number of model parameters, the greater
the flexibility of the model.

MODELLING APPROACH
The above-described models do not take into account the influ-
ence of any other characteristic of the rock except its main mineral
content and associated thermal conductivities. However, there are
other possible factors that influence the effective values of the min-
eral conductivities as, for example, the degree of anisotropy. Thus,
to obtain meaningful results using the described simple models,
we adopted the approach of reproducing a large number of mea-
surements of rock conductivity using just one model (with its as-
sociated parameters) and one set of effective conductivities for the
constituent minerals. In other words, we treat the task of repro-
ducing the measured values of rock conductivity as an inverse
problem where values of rock conductivity and the volume frac-
tions of the constituent minerals are considered known quantities
while the effective conductivities of the constituent minerals and
the model parameters are considered unknown quantities. So, the
central idea is to identify the model (and its associated estimates
of effective mineral conductivities and parameters) that better ac-
counts for the measured values of rock conductivity.

To show that the inversion approach is feasible, we calculated
rock conductivities using the simple series and parallel models
(Eqs. 2 and 3, respectively), in each case varying the quartz con-
ductivity in the range 3.0 to 12.0 Wm–1K–1 and keeping constant
the other three mineral conductivities (Clauser & Huenges, 1995)
as 3.1, 2.2, and 2.0 Wm–1K–1, for K-feldspar, plagioclase, and
sum of mafic minerals, respectively. Figure 5 shows the results
as family of curves, each family member being identified by the
assumed value for the quartz conductivity. Superposed on the
family curves, are the measured values of rock conductivity. Both
cases (association in series in Fig. 5A and in parallel in Fig. 5B)

Revista Brasileira de Geof́ısica, Vol. 34(4), 2016
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show that a single curve of the family can honor all measures,
within the error bar, when the quartz volume is lower than 80%.
However, note that the effective quartz conductivity must be in the
lower portion of its range in both cases, requiring even lower val-
ues in the parallel case. Moreover, by using the parallel case it
is clearly more difficulty to honor all measures than in the series
case. Nonetheless these limitations, this simple exercise, using
just one parameter based on the dominant effect of the quartz con-
tent, evidences that a model with four or five parameters certainly
will reproduce adequately rock conductivities.

Given the thermal conductivity measures for N rock samples
and the respective volume fractions of the main constituent min-
erals, the inverse problem, for a given model (for example, the
KE-model), consists in estimating the effective mineral conduc-
tivities and parameter values that minimize a misfit functional be-
tween all measured and modeled values of conductivity. In this
study we use both classic misfit functionals (Menke, 1984) in the
�1 and �2 (least-squares) norms, respectively given below for the
KE-model as:

Ω1(λQz, λKf , λPl, λMa, α)

=

N∑
j=1

∣∣λexpj − λKEj (λQz, λKf , λPl, λMa, α)
∣∣ , (14)

Ω2(λQz, λKf , λPl, λMa, α)

=

N∑
j=1

∣∣λexpj − λKEj (λQz, λKf , λPl, λMa, α)
∣∣2 . (15)

Analogous problems can also be formulated for the other
models. Thus, for each one of the two described rock groups (one
with the igneous and ortho-derived rocks and the other with the
metasedimentary rocks), an inverse problem is solved for each
pair of model and fitting criterium. As a result, twenty inversion
problems are then solved.

Because the functionals Ω1 and Ω2 (Eqs. 14 and 15) are
non-linear and there are points in the search-space where Ω1
might not have gradient in relation to the unknowns, we solved
all inverse problems by using an optimization approach based
on a gradientless search method (Richardson & Kuester, 1973)
to find the minimum (or one of the minima) of the inverse prob-
lems. Three additional reasons justify the use of Richardson &
Kuester (1973) method: (1) the number of unknowns are always
small (between 2 and 5), (2) its implementation is simple, and
(3) it furnishes, besides the best solution, a set of quasi-solutions
(satisfying some stopping criteria), from which standard devia-
tions of the inversion problems solutions can also be calculated.

Details about this optimization method can be found for example
in Richardson & Kuester (1973) and Santana et al. (2012).

RESULTS
Estimated effective conductivities of the minerals
The twenty solutions for the effective mineral conductivities and
parameter values are given in Tables 3 and 4. All estimated con-
ductivity values are within the accepted ranges, except for the
GM-model estimates of the effective conductivity of the mafic
minerals. No matter of the used norm, the obtained solutions are
near the end-member cases: the series case both in the KE-model
(α ≈ 1) and in the MW-model (P ≈ 0) or the minimum in
the HS-model (α ≈ 1). About the norm type, there is a ten-
dency that the effective values of conductivity for the quartz, esti-
mated with the �1 norm, be lower that the values estimated with
the �2 norm. This tendency is due to the known fact that the �1
norm attributes low weight values for the outliers (Menke, 1984),
in this case, a relatively small number of rock samples with high
values of measured conductivities.

Table 3 – Solutions for the KE, HS, and GM-models. The line separates the
results for igneous and ortho-derived rocks, above, from the results for metased-
imentary rocks, below. Conductivities are expressed in Wm–1K–1.

Model Norm λQz λKf λPl λMa α

KE �1 6.87 2.54 2.04 1.88 0.98
HS �1 4.51 2.70 2.08 1.77 0.69
GM �1 4.34 2.74 2.09 1.77 —
KE �2 7.45 2.46 2.00 1.98 1.00
HS �2 6.12 2.39 1.87 1.86 1.00
GM �2 5.60 2.38 1.85 1.89 —
KE �1 6.71 2.72 2.80 1.36 1.00
HS �1 5.96 2.54 2.89 1.13 1.00
GM �1 5.49 2.38 3.06 0.97 —
KE �2 6.80 2.66 3.01 1.37 1.00
HS �2 6.42 2.62 2.97 1.07 1.00
GM �2 5.95 2.57 2.86 0.89 —

Table 4 – Solutions for the CM and MW-models. The line separates the results
for igneous and ortho-derived rocks, above, from the results for metasedimentary
rocks, below. Conductivities are expressed in Wm–1K–1.

Model Norm λQz λMx P

CM �1 4.79 2.08 1.00
MW �1 7.14 2.13 0.02
CM �2 5.66 1.99 1.00
MW �2 7.47 2.14 0.01
CM �1 4.96 1.61 1.00
MW �1 5.78 1.78 0.01
CM �2 5.59 1.41 1.00
MW �2 5.29 1.72 0.01

Brazilian Journal of Geophysics, Vol. 34(4), 2016
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Figure 5 – Rock conductivity as function of the percent quartz volume. Thin black lines comprise a family of curves giving rock conductivity estimates for the series
(A) and parallel (B) models (Eqs. 2 and 3, respectively). In both cases, the quartz conductivity varies in the range 3.0 to 12.0 Wm–1K–1, as indicated in the curves. The
other three mineral conductivities are kept constant (see text for details). Thick black lines show measured values of rock conductivity. The bars identify the limits of
± one standard deviation centered in the mean value. Both measured and estimated conductivities are averaged over sequential intervals of 5% in quartz volume.

Model performances
Table 5 shows the misfit cumulative frequency distribution Γ as
function of tolerance. For each rock sample j, the relative error
εj in estimating the measured conductivity λexpj is given by

εj = 100 ·
∣∣λMODj − λexpj

∣∣
λexpj

, (16)

where λMODj identifies generically the estimated conductivity
with a certain model. So Γ gives the percentage of number of
rock samples, where the difference between estimated and mea-
sured values are within a given tolerance τ (that is, εj ≤ τ ).
Because the accuracy of the conductivity measurements is about
10%, and there is an intrinsic inaccuracy in the modal analyses,
we select the tolerance of 15% to identify the best solutions.

For igneous and ortho-derived rocks, model performances
are very similar (Γ ≈ 70%), except for the GM-model that pre-
sented relatively lower values (51%< Γ < 65%). The Γ values
of KE and HS-models were slightly higher than the values for the
CM and MW-models (Γ ≈ 67%). This is a somewhat surprising
result because the KE and HS-models have 5 parameters while the
CM-model has just 2 parameters. This result is a consequence of
the well-known fact (Schön, 2004) that the quartz content is the
dominant factor in determining the conductivity of rocks. More-
over, for the MW-model, the solution is in practice the series as-
sociation of the quartz content. The fact that the estimates of ef-
fective quartz conductivity are in the lower portion of its interval
(Tables 3 and 4) and the good performance of the series model
corroborates the results shown in Figure 5. On the other hand,
the fact the GM-model presented a relatively poor performance,

even using four parameters, shows that – at least in this case – it
does not simulates properly the rock structure.

Table 5 – Performances of the models as measured by Γ that is equal to
the percentage of rock samples for which the difference between estimated and
measured conductivities are within a given tolerance τ . The line separates the
results for igneous and ortho-derived rocks (upper panel) from the results for
metasedimentary rocks (lower panel).

Model Norm τ = 10% τ = 15% τ = 20%
KE �1 49.7 69.5 81.0
HS �1 51.4 70.0 81.3
CM �1 49.0 66.6 80.2
MW �1 48.7 65.9 80.1
GM �1 49.1 64.6 76.5
KE �2 50.3 70.1 81.0
HS �2 48.9 69.1 80.8
CM �2 47.9 67.0 78.9
MW �2 47.7 67.3 79.8
GM �2 37.2 51.2 65.2
KE �1 48.5 65.2 76.8
HS �1 36.1 53.6 65.7
CM �1 25.3 42.2 51.2
MW �1 27.7 40.4 53.0
GM �1 27.8 42.0 54.2
KE �2 46.8 64.2 75.9
HS �2 37.3 53.0 65.1
CM �2 21.1 33.7 51.8
MW �2 30.1 39.2 54.8
GM �2 22.5 35.1 47.6

For metasedimentary rocks, model performances were found
to be quite contrasting. In general, the Γ values are lower for all
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FRANÇA DT, MOREIRA JAM, MEDEIROS WE, GALINDO AC & LINS FAPL 437

Figure 6 – Histograms of normalized number of samples against relative error. For each rock sample of the identified lithologies, the error is the difference between
the rock conductivity estimate, calculated with the KE-model (�2 norm), and the rock conductivity measure, normalized by the latter one. The number of samples is
normalized by the mode value in each group of lithologies (16 for schist and 173 for the set of granite, monzogranite, and syenogranite).

models than in the case of igneous and ortho-derived rocks. One
of the main reasons for this result is the fact that the metasedimen-
tary rocks (50% of them are schist) are richer in platy-minerals
than igneous and ortho-derived rocks. In the presence of platy-
minerals, it is more difficult to obtain a good thermal contact be-
tween the sample and the sensor system. Moreover, one of the
most common platy-minerals – the biotite – presents a very high
degree of anisotropy in conductivity. In this case, just the min-
eral volume fractions are not sufficient to account for the conduc-
tivity variations. Indeed, Figure 6 shows that high discrepancies
between measured and estimated conductivities (given by εj in
Eq. 16, in this case without taking the modulus operation) are
most common in schist than in granite.

For metasedimentary rocks, the KE-model is quite superior
(Γ ≈ 65%) than the HS-model (Γ ≈ 53%). On the other hand,
the performances of the CM (Γ < 42%), MW (Γ < 40%), and
GM (Γ < 42%) models were quite inferior than the KE-model.
Certainly, this is a consequence of the higher number of param-
eters defining the KE-model, except for the GM-model. Again,
the fact that the GM-model (with 4 parameters) presented a rel-
atively poor performance is additional evidence that it does not
account properly for the thermal conductivity structure of crys-
talline rocks.

To attest the robustness and stability of the above-described
Γ values, we used the following approach. For each inversion
case, the set of rock samples was randomly sorted in order to

construct twenty subsets with just 90% of the full set. Using the
subsets, mean and variance of the Γ values were estimated and,
as a result, we obtained that the maximum variations in the Γ
values were lower than 1% in all inversion cases.

By comparing Γ values (Table 5), we identify the KE-model
(�2 norm) as the best model for both rock groups. Figure 7 shows
the Streckeisen diagram superposed now with the contours of the
conductivity values calculated with the KE-model (�2 norm) for
all samples of igneous and ortho-derived rocks. Comparing Fig-
ures 2 and 7 we attest that the reproduction of the conductivity
measures is quite good.

Figure 7 can be used as an abacus for gross estimates of
thermal conductivity of igneous and ortho-derived rocks that may
be of value, for example, for gross estimates of thermal conduc-
tivity of rock samples for use in civil engineering.

We identified two main reasons for the cases where the mod-
els presented poor performances. One reason, already discussed,
is associated to the presence of platy-minerals in the rock. The
other reason is the fact that both very low and very high values
of rock conductivity are poorly explained by the used models,
even for the model presenting the best performance (KE-model,
�2 norm), as shown in Figure 8. This fact can also be recog-
nized in Figure 5 where it is shown that, in both series and parallel
models, one cannot identify a single member of the family curves
explaining simultaneously both the very low and very high rock
conductivity measures.
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Figure 7 – Streckeisen diagram with superposed contours of estimated rock conductivities calculated with the best performance model (KE-model,
�2 norm). Conductivities are given in Wm–1K–1.

Estimating effective conductivity with the silica content

We showed previously that there is good correlation between
the silica percent volume, given by the geochemistry, and the
quartz percent volume, given by the petrographic modal analysis
(Fig. 4). From this correlation, we can estimate the percent quartz
volume that would be given by the modal analysis. The percent
matrix volume is the complement to 1.0. Now, using these val-
ues and the four sets of estimated effective conductivities for the
models with just two phases (Table 4) (CM and MW-models), we
obtain rock conductivity estimates shown in Figure 9 against the
measures of rock conductivity. There is good correlation between
estimated and measured conductivities. In particular, by using the
models – with just two parameters – showing the best perfor-
mances (CM and MW-models, �2 norm; see Table 5), the esti-
mates of conductivity are contained in the interval of the mean±
one standard deviation of the measured conductivity (Fig. 10).

Sensibility of the estimated effective conductivities and
model parameters

It is necessary to ascertain if the inversion problems are well-
posed problems (Tikhonov & Arsenin, 1977), that is, if the solu-
tions are stable to small perturbations both in the sample conduc-
tivity measures and in the mineral volume fractions. As pointed
out before, the used optimization method for solving the inver-
sion problems furnishes, besides the best solution, a set of quasi-
solutions. Standard deviations of the estimated conductivities
(not shown) calculated with these set of quasi-solutions are very
small, being lower than 0.04 Wm–1K–1 for all cases, except for
just one case where it was equal to 0.12 Wm–1K–1 (KE-model,
�1 norm, quartz conductivity, igneous and ortho-derived rocks).
The same behavior was observed for the estimates of the param-
eters associated with the KE, HS and MW-models. These facts
evidence that all twenty solutions are stable for small perturba-
tions in the rock conductivity measures.
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Figure 8 – Relative error (in log scale) in model fits against measured values of rock conductivity. For
each rock sample, the error was calculated with Eq. (16) using the KE-model (�2 norm).

Figure 9 – Estimated rock conductivities, associated with the silica percent volumes, against measured conductivities. It
were used 160 samples of igneous rocks for which geochemical analyses are available. Percent quartz volumes are estimated
from the silica percent volumes using the correlation shown in Figure 4. Then, percent quartz volumes (and respective com-
plementary percent matrix volumes) are used to estimate the rock conductivities with the four sets of effective conductivities
(Table 4) obtained for the models with just two phases (CM and MW-models), for �1 and �2 norms.
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Figure 10 – Rock conductivity against quartz volume fraction. It were used 160 samples of igneous rocks for which geo-
chemical analyses are available. The estimated rock conductivities associated with the silica percent volumes (triangles and
squares) are in all cases located within the error bars associated with the rock conductivity measures.

Regarding the sensibility to perturbations in the mineral vol-
ume fractions, tests were carried out for the quartz content varia-
tion. We added perturbations to the percent quartz volumes (ob-
tained in the modal analyses) by using pseudo-random numbers
generated with a zero-mean Gaussian distribution and a given
standard deviation σ (Press et al., 1996). σ was varied in the
range 1% to 5%. In each sample, after the percent quartz volume
was perturbed (the perturbation being either positive or negative),
the percent volumes of the other minerals were adjusted so that the
sum of percent volumes remained equal to 100. It was observed
that all solutions are stable to these perturbations, showing how-
ever a higher sensibility than perturbations in the sample conduc-
tivity measures. As example, we show in Figure 11, for igneous
and ortho-derived rocks, and in Figure 12, for metasedimentary
rocks, the results for both KE and HS-models (�2 norm), which
are the models presenting the best performances (Table 5) for both
rock groups. These figures show a monotonic behavior for all per-
turbations in the estimated effective mineral conductivities with
increasing σ, decreasing for the quartz case and increasing for all
other minerals. To see that these results are meaningful, we ob-
tained analytical solutions in the �2 norm, for the simple case of
just two phases (quartz and matrix) arranged in series. The ana-
lytical solutions are superposed in Figures 11 and 12 confirming
the numerical results.

CONCLUSIONS

Simple models based on the mineral content can explain sat-
isfactorily the thermal conductivity variations of igneous, ortho-

derived and metasedimentary rocks. Among the five tested mod-
els, the KE-model presented the best performances for the crys-
talline rocks. The adequacy of the KE-model is good enough to
allow one to estimate the thermal conductivity of a rock based
on its classification on the Streckeisen diagram, a fact that may
be of value for expeditious classification of rock samples used
in civil engineering, for example. In particular, for igneous and
ortho-derived rocks, the performances of the models based on just
two phases (CM and MW-models) were quite reasonable. This
result is in accordance with the well-known fact that the quartz
content is the dominant factor in explaining the thermal conduc-
tivities of crystalline rocks. Because of the strong dependence on
the quartz content, even estimates derived from the silica percent
weight can satisfactorily account for conductivity variations of ig-
neous rocks, a result that could be of value for gross estimates of
thermal conductivity of rocks based on their fragments.

Departures from these general conclusions occur basically in
two cases: the first one is when the rock conductivity is either
too high or too low; the second case occurs when the rock is
rich in platy-minerals, as schist for example. For both cases, it is
necessary to take into account other factors besides the observed
mineral content.
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solution.
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