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MULTISCALE FULL WAVEFORM INVERSION USING A FILTERING APPROACH
AND GRADIENT PRECONDITIONING

Rafael Abreu de Cristo and Milton J. Porsani?

ABSTRACT. The full waveform inversion (FWI) multiscale approach in data domain produces better results because it gets closer to the overall minimum avoiding
the local minima. The method works solving the problem in different scales, avoiding the interference of the initial velocity model choice as well as the cycle skipping.
The multiscale approach was done after choosing frequency bands using Wiener filter and SVD filter trace by trace, both in data domain. The trace by trace SVD filter
assembles each trace of the gradient onto the shifted matrix traces and do the decomposition from low to high frequencies. In addition this multiscale approach in data
domain was compared to another multiscale approach using damping filters on the objective function (MDFOF). Due to the geometrical spreading, during the propagation
of the wave field, the deeper regions of the model are not well illuminated, hence the preconditioning of the gradient was done in order to eliminate this issue and allow
the deeper regions to be compared.

Keywords: SVD filter, pseudo-Hessian diagonal, geometrical spreading, Wiener filter.

RESUMO. A abordagem multiescala na inversdo da forma de onda completa (FWI) produz melhores resultados pois consegue convergir para o minimo global,
evitando o problema do minimo local. O método funciona em diferentes escalas, evitando a interferéncia da escolha do modelo inicial de velocidades, bem como o efeito
de salto de ciclo. A abordagem multiescala foi realizada escolhendo-se bandas de frequéncias usando-se os filtros de Wiener e de SVD trago a trago, ambos no dominio
do dado. O filtro SVD trago a trago insere cada trago do gradiente na matriz de tragos deslocados e faz a decomposicdo das baixas as altas frequéncias. Outra abordagem
multiescala usando filtros atenuantes foi comparada com a anterior, no dominio do dado. Devido a divergéncia esférica, durante a propagagdo da onda, as regioes mais
profundas do modelo ndo sdo corretamente imageadas, portanto faz-se necessario o precondicionamento do gradiente com intuito de eliminar esse problema e permitir
a comparagdo das duas abordagens nas regioes mais profundas do modelo.
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INTRODUCTION

From the physical properties of the rocks in subsurface it is pos-
sible to estimate the presence of hydrocarbons in an indirect
way. Seismic velocity measurements of density and impedance,
for example, are physical properties of the rocks which may
assist in the determination of oil and gas plays. One strategy
used to estimate these physical properties of rocks was the CDP
(Yilmaz, 2001) technique which is a product from the velocity
field, obtained from an NMO correction for hyperbolic events. In
this technique the subsurface geology was considered flat and
stratified. Because the layers are not stratified and have a very
large lateral variation precluding a coherent velocity analysis can
generate some challenge problems.

The development of imaging techniques allowed achieve seis-
mic velocity models more accurately according the subsurface
geology, allowing a greater accuracy in the determination of reser-
voirs, source rocks that previously those structures were unde-
tectable. Regarding these new technologies, the seismic tomog-
raphy (Stork, 1992) is a technique used to estimate the field of
optimized seismic velocities, from a travel time table. The inver-
sion is performed only by the travel time without taking into ac-
count the amplitude and the phase. On the other hand, other tech-
niques using travel time are used as pre-migration seismic veloc-
ity analysis which can also be obtained by a seismic velocity field
(Lambaré et al., 2007).

Since the development of high performance computing,
Tarantola (1984) in its series of papers proposed a linearised
inversion using the full wave equation as the forward problem
solution. The inversion of the waveform arises from this initial
idea of Tarantola, and the main objective is not only to make an
inversion considering the travel time, but the phase and amplitude
of the propagated wave field. Nowadays, the FWI technique has
been widely used in 2-D and 3-D problems producing fields of
high-resolution seismic velocities in order to estimate more accu-
rately subsurface geological structures (Virieux & Operto, 2009).

FWI is a non-linear and ill posed problem, i.g, there are more
parameters to be determined than observed data taking into ac-
count, of course, because the limited surface geometry. The wave-
form inversion can be solved by minimizing the objective function
with respect to the parameters of the model to be determined.

Due to the high non-linearity of the objective function, the
FWI might converges to local minima producing unreal models
of seismic velocities. The absence of low frequency content in the
observed data is also one of the reasons for the objective function
may converges to local minima. Some assumptions are made try
to overcome this problem, for example, to use an initial model

relatively close to the true model (Shin & Cha, 2008), or adopt-
ing the multiscale approach (Bunks et al., 1995), using different
frequencies bands. In the multiscale approach using frenquen-
cies band, a fixed number of iterations is adopted for each fre-
quency band and the inversion is performed until the entire fre-
quency spectrum of the observed data is scanned (Bunks et al.,
1995). The multiscale approach in this article has been described
by Boonyasiriwat et al. (2009) using the Wiener filter. Besides
that, the multiscale approach was performed using the SVD filter
trace by trace to overcome the local minimum problem. The big
picture using the SVD filter trace by trace method is, basically,
create a matrix with shifted traces using the entire trace of the ob-
served data. Hence, the SVD decomposition is performed in this
matrix creating from low to high frequency traces containing the
entire frequency band of the data. Another multiscale approach
also was performed. This multiscale approach uses damping fil-
ters (Chen et al., 2015) on the objective function (MDFOF) and
recover the shallower parts of the model until it reaches the deeper
parts. Performing the inversion through this way the error on the
shallow part is not carried over to the deeper parts, providing a
more stable inversion.

Although avoiding convergence to the local minima the mul-
tiscale approach did not perform very well, due to geometrical
spreading, at the deeper regions of the model; to avoid this prob-
lem, the gradient precoditioning was done using the main diago-
nal of the pseudo-Hessian (Dai & Chen, 2016).

The gradient preconditioning is one of most important fac-
tor determining the convergence rate of the non-linear inversion.
The precondition factor can remove the effect of geometric spread-
ing from source position to the deep part of model, rebalance the
deep and shallow scatterers contribution to gradient, and make the
inversion converge faster. Shin et al. (2001) proposed a virtual-
source preconditioning, which is constituted by the reverse of the
diagonal of the pseudo-Hessian matrix. Shin et al. (2001) applied
virtual-source preconditioning in Laplace domain and Laplace-
Fourier domain FWI, and achieved a better result. This precondi-
tioning was tested in FWI gradient (Dai & Chen, 2016).

THEORY
Full Waveform Inversion

The waveform inversion is a minimization problem between ob-
served data (seismograms) and the data synthesized from a
model. The synthetic data is generated from a seismic velocity
model and this model is updated iteratively as long as the misfit
function of the current iteration is necessarily smaller than the last
iteration (Wolfe, 1969). The misfit function, L2 norm, is written
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as follow: )
E(m) = Z||d ~ Gm][?, (1)

d is the observed data, Gm is the synthetic data and E is
the misfit function. The Taylor series expansion of the objective
function around the neighbourhood of mg, we get:

E(m) = E(mo + Am)
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Taking the derivative with respect to the parameter m.; we obtain:
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imposing that the objective function is minimal, we can deter-
mine Am
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Om?

~! 9E(my)
om (5)

=_-H 'VE,,.

Where VE,,, is the gradient vector and can be represented
by:

aE(mO)]T. 6)
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We have, my
tion for the model is:

= my, + Am, therefore the update equa-

my . =my — H'VE,, (7)

or

My = My + apPk. (8)

Equation (7) would update the model accurately if it was pos-
sible to calculate exactly the inverse value of the Hessian. Equa-
tion (8) refers to a generic update, considering the py, the search

3The n index is related to the time discretization.
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direction. In the steepest descent method the search direction is
the gradient vector, the inverse of the Hessian is approximately
the identity and Eq. (7) looks like:

mg41 = mMg — OékVEm. (9)

Forward Problem
In the case of constant density, the acoustic wave equation is
specified by:
1 0°P
v2 o2
where P is the pressure figld and S is the source, v is the ve-
locity field. Solving the acoustic wave equation using the finite
difference method, iteratively:

P+ 2ALPVZP + S(x,t), (1)

= V2P + S(x, 1), (10)

Pt = 2p" —

The time discretization® was 2nd order and in space was 8th
order.

Numerical Stability Criteria and Numerical Dispersion

Whenever the medium is discretized by the Eq. (11) two prob-
lems arising from this discretization of the continuous problem:
instability and numerical dispersion. The solution should be un-
stable numerically when its values grows indefinitely, generat-
ing spurious results (dos Santos, 2013). To avoid instability At
needs to satisfy the equation below:

A< — L (12)

v E e
numerical dispersion occurs when the phase velocity of the nu-
merical wave is different from the propagation velocity of the
medium, damaging the results obtained by numerical modelling.
This problem arises due to the spatial discretization of the
wave equation, therefore the phase and group velocities become
a function of the spacing between the points of the mesh, the fre-
quency and the angle of propagation (Arajo, 2009). To overcome
this difficulty, a relation must be respected which depends on the
frequency source, the mesh and the velocity field, which is de-
scribed below,
min(v)
Jmax < Fmax(Az, Ax)’
where F' depends on the finite difference operator in space. For
example if the operator is of 2nd order F = 10, if the operator is
8th order £ = 2. In the Fourier domain F' = 2 always, since in
the Fourier method the discretization is more precise.

(13)
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Gradient Computation

The adjoint method (Plessix, 2006) computes the gradient from a
reverse time migration (RTM) from the residue between the cal-
culated data and the observed data. The gradient computation is
done by the following equation:

VEm =
nr ns T 2 (14)
oP L Xs
3 / MPT” (xr, 13 %5)dt,
v 2 ot
() p=1 s=1

where ns represents the number of shots, nr represents the
number of receivers/geophones and v is the seismic velocity
field, d,..s is residue backward propagation. For each FWI it-
eration, the gradient is computed cross correlating the second
derivative of the calculated and data with the residue for all times
therefore sums up for all shots and for all receivers. The misfit
function is also done in the same way,

nr mns

T
E(m) = %ZZ/O' |Pcalc - Pobs|2dt' (15)

r=1s=1

The residue backward propagation is obtained from the wave
equation, using as source, the residue between the synthetic
data and the observed data and can be obtained by doing the
reverse modelling of the residue, represented by the following
equation:

residue

1 2P7’es
0 = VzPres + (Pcalc - Pobs) . (16)

vz ot2

Backtracking Line Search Method

Somehow whether the objective function of the current iteration is
higher than the previous one the method enters into a line search
method in order to allow FWI to converge to the global mini-
mum. This method works decreasing the step length and keep-
ing the current model and the search direction constant. The
line search method finishes if the objective function is reduced
compared to the previous one. The pseudo code shows how the
line search method works. In this paper the stability of the FWI
was measured by the number of iterations of the backtracking line
search method.

Algorithm 1: Backtracking line search method.

1 begin

2 a <+ @, 1e(0,1)

3 if
E(my, + apy) < E(my) + c;aVE(m])pg
then

4 ap = o

5 end

6 else

7 a4+ Ta

8 end

9 end

10 returmn ag, = a

MULTISCALE APPROACH

The presence of local minima at all scales in the waveform inver-
sion prevents a reasonable convergence to the global minimum
(Bunks et al., 1995). The multiscale approach decomposes the
waveform inversion problem into scales. At large scales there are
fewer local minima, so for each iteration the problem is taken from
the large scales to the small scales then the final result is closer
to the global minimum.

Convergence to local minima is basically due to many prob-
lems but the mainly is: the choice of the initial velocity model. A
good initial velocity model close to the true model, makes the FWI
converge to the global minimum. The problem in the choice of the
initial model lies in the cycle skipping problem (Virieux & Operto,
2009); the signals propagated in subsurface are at times different
from the modelled data. When the time lag between the model
data is greater than half of the period, the model data cycle n will
fit with the (n. — 1) observed data cycle generating problems in
the velocity model, also another problem is the presence of high
frequencies in the wavelet components.

Intime domain, one of each multiscale approach is performed
by the selection of a frequency band, which must be done on the
data and on the source. The choice of a frequency band is re-
lated to how much detail should be recovered. It is necessary,
strictly, the frequency band of the source be equal to the band of
the data. Several filters can be used to select the frequency band
for the data and for the sources, the one used in this paper was
the Boonyasiriwat et al. (2009) filter. The equation that defines
the filter is:

_ Wtarget(w)WT

) original ((U)
szener(w) - |Woriginal |2 + 62 ) (17)
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where fuiener 1S the filter that will be applied on the data,
w is the temporal frequency, Worigina: iS the wavelet of the
data, Wiarger IS the wavelet with limited frequency content,
is the multiscale approach operator of complex conjugate and e
is a small number used to stabilize the result. Boonyasiriwat et
al. (2009) showed how the Wiener filter can obtain better results
than conventional filters, such as Hanning, when the original
wavelet is known.

SVD Filter Trace by Trace in Multiscale Approach

SVD filtering was also used to filter the source and data from the
low frequencies to the high frequencies. The SVD decomposition
methodology is simple and uses the standard approach of SVD
decomposition. Considering d = (dy ...das)T the seismic
traces and the matrix of the shifted traces D , it is possible
to construct a matrix with the seismic shifted traces (Silva et al.,
2016) intime of 7 = 0, ..., N — 1, defined below.

d 0 0
0o d --- 0
Dy=|: : : (18)
0 0 -0
0o 0 - d]

using SVD decomposition (Golub & Van Loan, 2012; Silva et al.,
2016), we obtain:

N-1 N-1 R
Dy = Z O—TuTvZ = DN7'7 (19)
=0 =0

the matrix D represent the eigenimage of the trace. To obtain the
original trace is necessary to use a linear operator J will recover
the original trace decomposed in your eigenimage,

N-1

N-1
J{Dy} =Y J[Dn]| =D d (20)
=0 =0

Algorithm 2: SVD decomposition trace by trace.

1 begin
2 do«+d
3 forr=1,N -1
4 do
5 d,_ 1+ D,
6 computes the first eigenimage Dy + oougvE
; computes the first eigentrace D0 + J {]5,0}
8 update the low frequency components
d, < D,0
9 end
10 end
1 return Low  frequency trace dn_1
12 return

High frequency trace dy_1 +d—dy_;

In order to explain better how the method works, one-shot fil-
tering using the SVD filter is shown in Figure 1. The decomposi-
tion a trace of the seismogram is represented in Figure 2 and the
amplitude spectra of the low frequency component, the original
data and the high frequency component Figure 3.

Multiscale Approach using Damping Filters on the Objective Function (MDFOF)

The wave field recorded at the receivers is basically influenced by the diving waves or by the first reflections on the surface of the velocity
model (Klimm, 2013). The wave field recorded at the receivers for long travel times correspond to the reflections in the deeper parts of
the model or even multiple reflections. The problems occurred in the superficial reflections are carried over to the deeper parts, causing
a barely update of the velocity model in the deeper parts. So it is reasonable to update first the shallower parts of the model and later
the deeper parts, in this case the overall update is better than the update performed globally (Klimm, 2013). One way to do this is to set
up an attenuation factor on the gradient (Klimm, 2013):

nr ns

admlc X, t; xs)

Vhm = ot?

dres(X,, t; %) exp F dt, (21)

$) r= 1 s= 1
where & is the attenuation parameter. The problem is solved starting from high values for & until it reaches zero. With large values the
model is updated only on the shallower parts and throughout the iterations & reduces until becomes zero allowing the complete update.
This method using an attenuation parameter is called inversion in the Laplace domain, since the Laplace transform of p is (Klimm,
2013), but does not require the low frequency information in the seismic data:

T
p(k) = /0 p(t) exp ' dt. (22)
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Figure 2 — (a) original trace, (b) low frequency component, (c) high frequency component.

Another approach using time-attenuation filters can be applied over the objective function (Chen et al., 2015):

nr mns

1 T -
E(m) = 522 /0 P eate — Pops|? exprt dt. (23)

r=1s=1
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Figure 3 — The frequency spectrum of the original data and the decompositions in low and high frequency.

These two approaches try to reduce the possibility to the
convergence a local minimum. First of all, as mentioned, the er-
ror in updating shallow parts will not be carried over to the deeper
parts and in addition the set of parameters to be inverted will be
smaller, due to the attenuation parameter increasing the immu-
nity with respect to the local minimum (Chen et al., 2015). In this
paper the second approach, using the decay factor in the objec-

tive function, was adopted.

Virtual-Source in the Preconditioning of the Gradient
The gradient preconditioning is one of the most important fac-
tors determining the convergence rate of the non-linear inversion.
The precondition factor can remove the effect of geometric spread-
ing from source to the deep part of model, rebalance the deep
and shallow scatterers contribution to gradient, and make the in-
version converge faster (Dai & Chen, 2016). Shin et al. (2001)
proposed virtual-source precondition, which is constituted by
the reverse of the diagonal of the pseudo-Hessian matrix. For this,
they considered the use of the virtual-source in the calculation
of the pseudo-Hessian. Shin et al. (2001) estimated the virtual-
source using the time domain wave equation. In the Laplace do-
main, the virtual-source can be calculated as (Dai & Chen, 2016):

0Z
- _(9v(z,a:)p7 (24)

where Z is the impedance matrix, v is the velocity field and p is
the wave field. The pseudo-Hessian matrix for the Gauss-Newton

method is:

H~ 7T, (25)

in the time domain the virtual-source preconditioning is found
by the derivative of the wave equation with respect to the velocity
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(Dai & Chen, 2016):

- a(l o*P —VQP—S(x,t)>7

v2 ot2
ov

considering that the wave field does not vary with velocity, we find
the virtual-source equation:
2 0°P

TV a2

(26)

f (27)

then the Hessian’s diagonal in the time domain is written as fol-

lows: )
2 0°P
:{ﬁaﬂ, (28
summing for all over shots:
X ns D) 82P 2

=1
where (3 is a stabilizing factor. The preconditioned gradient using
the pseudo-Hessian can be written by:

T

nr mns

T DDIDIE L
VE(m)* = —~2r=l=10 . (30)
Y H
i=1t=0
NUMERICAL EXAMPLE

The comparison between the multiscale approaches was done
initially by comparing the Wiener filter and the SVD filter trace
by trace. The velocity model used to the FWI was the Marmousi
which try to simulate a complex geological structure. The inver-
sion input parameters are in the Table 1.
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Table 1 — Input inversion parameters of the Marmousi
model in multiscale approach.

Input Value
dt (sampling interval) 0.001s
nz (depth sample) 375
nx 369
Number of shots 62
nt 3201
dx 25m
dz gm
Distance between shots 6m
Number of border points 40
Iterations 100
Initial frequency 3Hz
Interval between frequencies 3Hz
Number of iterations per frequency 20

In the multiscale approach using the SVD filter trace by trace
there is no interval between frequencies, being valid only for the
multiscale approach using the Wiener filter. The frequency band
used in each method was compared, therefore is a fair compari-
son. The initial model and the inverted model using the Wiener
filter and SVD filter is represented in the Figure 4.

The Wiener filter showed to be little better in the deeper re-
gions of the model compared to the new SVD filter trace by trace.
This is going to be more evident in the seismic velocity profile.
The comparison between the objective functions, Figure 5, using
the two filters are represented in 5 figures since every 20 itera-
tions the FWI changes the frequency band, therefore a new in-
verse problem. The normalized error of the model was defined to
estimate which of the two methods is the best. The equation that
defines it is:

7y (mi-mi )2

NRMS = max(m) — min(m)’ S

the comparison of two filters using a velocity profile is in the
Figure 6.

The number of iterations of the backtracking line search
method, showed that the SVD filter was more stable in the first
iterations than Wiener filter and the last iterations the Wiener fil-
ter proved to be better as shown in the Figure 7. The comparison

between the deeper parts of the velocity model was damaged due
to geometrical spreading, so the preconditioning of the main di-
agonal of the pseudo-Hessian improved the deeper regions of the
model represented by the Figure 9, and the velocity profile on the
deeper regions became better and showed the supremacy of the
Wiener filter. The model error with the preconditioning showed
the superiority of the Wiener filter in relation to the SVD filter even
in the deeper regions of the model as presented in Figure 11.

Multiscale Approach in Data Domain x Multiscale
Approach using Damping Filters on the Objective
Function (MDFOF)

The same parameters were adopted in the two multiscale ap-
proach comparison, as well as the initial velocity field and the
true model field. The multiscale in data domain was compared
using the two filters: Wiener and SVD trace by trace and also was
compared to multiscale approach with damping filters in objec-
tive function. The estimated model was in Figure 12. The MD-
FOF results were worse than the multiscale approach results in
data domain, because the immunity to the local minima is greater
when the multiscale is performed on data domain. The model
error prove multiscale in data domain is better than MDFOF
showed in the Figure 13. A velocity profile comparing the re-
sults show the supremacy of the multiscale approach in data do-
main using represented by the Figure 14. The result shown in the
profile only assure the benefits using multiscale approach in the
data domain.

CONCLUSION

The full waveform inversion using the SVD filter and Wiener fil-
ter produced good results, however the Wiener filter showed up
more efficient in terms of the achieved model. Although in terms
of stability the SVD filter was more stable on the first iterations
than the Wiener filter. The gradient preconditioning is essential to
show the filters work even in deeper parts of the model. Com-
paring multiscale approaches in the data domain and MDFOF,
the multiscale approach in data domain produced a better esti-
mated model in comparison with MDFOF, but MDFOF was more
stable than multiscale approach in data domain.
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Figure 8 — Number of iterations of the line search method stacked. This figure shows SVD filter is better in the first iterations and get worse in the last iterations.
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Figure 9 — (a) preconditioned velocity field using Wiener filter, (b) preconditioned velocity field using SVD filter. It is evident
that the anomaly of the syncline became more prominent after preconditioning. The Wiener filter shows better.

6000 T
5000
% 4000 \ If]
£ A
= N
3 L
> ’r {p= |
MV v’ W
2000 £ f/\/\/
A A . P M/"\" True ——
N)!‘ww 7 SVD filter with precoditioning ——
K Wiener filter with precoditioning ——
Initial model ——
SVD filter without precoditioning
1000 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500

Depth (m)

Figure 10 — Velocity profile found using the two filters: SVD and Wiener. The region of the high depths closely approximates to
the initial data because of the geometrical spreading.The problem was overcame using the preconditioning diagonal Hessian.
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Figure 11 — The behavior of the misfit function comparing both SVD and Wiener preconditioned filters.
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Figure 12 — (a) estimated model by Wiener filter, (b) estimated model by SVD filter, (c) estimated model by MDFQOF.
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Figure 13 — Model error MDFOF x Multiscale approach in data domain.
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Figure 14 — Velocity profile found using the two multiscale approach.
SVD filter -
Wiener filter
4 L
rF—
o
(0]
£
N
g 2T
g
1
0 1 1 1 1 1 1

10

20 30 40

50

Iteration

60

70

80

90

100

Figure 15 — Number of iterations of the line search method by regression comparing the two multiscale approach.
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Figure 16 — Number of iterations of the line search method stacked. This figure shows greater MDFOF stability.
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