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REVERSE TIME MIGRATION IN THE FREQUENCY DOMAIN BY THE RAPID EXPANSION METHOD

Protásio N. Andrade1,2, Reynam C. Pestana2 and Daniel E. Revelo3

ABSTRACT. This paper proposes and describes the implementation of a new depth migration method in the frequency domain. The method, based in the reverse time
migration (RTM) technique, extrapolates wavefields from the source and receivers to obtain migrated seismic images that are built directly into the frequency domain.
In the proposed method, wavefields are propagated in the time domain and are then transformed into the frequency domain at each time extrapolation step through the
discrete Fourier transform. Neither the forward nor backward wavefield is needed to be stored in memory or read from disk storage. To speed up the migration algorithm,
the discrete Fourier transform kernel for each frequency is computed and salved before the time extrapolation procedure. At the imaging condition phase, both source
and receiver wavefields are at the same frequency, so that, the construction of the image occurs by multiplying the forward source propagated wavefield with the backward
propagated of the receivers wavefield for each frequency component. Subsequently, saving the source field at each step to later correlate it with the back propagated
receiver wavefield, usually done in conventional RTM, becomes unnecessary. Nor is it necessary to invert a matrix for each frequency component, which is done in the
migration technique that uses the Helmholtz equation solution in the frequency domain. Thus, the migration procedure in the frequency domain being proposed is more
efficient from a computational point of view, and can also produce high quality migrated images as those produced by conventional RTM. The rapid expansion method
(REM) is used for seismic forward modeling, which extrapolated data with good precision and free of numerical dispersion. Thus, with the transformed data at each step
in the frequency domain, it is possible to construct high quality, in-depth seismic images at a lower computational cost. Moreover, this frequency domain migration with
REM is an atractive strategy to design robust inverse algorithms, especially for 3D problems. To demonstrate the efficiency and applicability of the proposed method, two
synthetic models were used and their results showed high quality images equivalent to those obtained by conventional RTM and thus proving the vality of the method.

Keywords: wave equation migration, depth migration, imaging condition, frequency domain migration.

RESUMO. Um método de migração em profundidade no domı́nio da frequência é proposto e implementado. O método consiste na extrapolação dos campos de
ondas da fonte e dos receptores e baseia-se na técnica de migração reversa no tempo (da sigla em inglês, RTM), obtendo imagens sı́smicas migradas, construı́das
diretamente no domı́nio da frequência. No método que estamos propondo, os campos de ondas são propagados no domı́nio do tempo e a cada passo de extrapolação
são transformados para o domı́nio da frequência, através da transformada de Fourier discreta (do inglês, on-the-fly transform ). Para acelerar o algoritmo de migração,
o kernel da transformada de Fourier é calculado fora do loop do tempo. Além disso, na etapa de condição da imagem, os campos de onda, tanto da fonte como dos
receptores, são calculados no mesmo instante de tempo, ou seja, a construção da imagem se dá através da multiplicação do campo de onda da fonte com o campo
retropropagado dos receptores, para cada componente de frequência. Portanto, não precisamos salvar o campo da fonte a cada passo no tempo para posteriormente
correlacionar com o campo de onda retropropagado dos receptores, como é usualmente feito na RTM convencional, nem é preciso inverter uma matriz para cada
componente de frequência, como é realizado normalmente pela técnica de migração no domı́nio da frequência, utilizando a solução da equação de Helmholtz. Desta
forma, o procedimento de migração no domı́nio da frequência que estamos propondo se torna mais eficiente do ponto de vista computacional, podendo produzir imagens
migradas de alta qualidade, quando comparadas às obtidas através da RTM convencional no domı́nio do tempo. Para a extrapolação dos campos de ondas no tempo
foi empregado o método de expansão rápida (da sigla em inglês, REM), que permite a extrapolação dos dados com boa precisão e livres de dispersão numérica.
Desta forma, com os dados transformados para o domı́nio da frequência, a cada passo no tempo, é possı́vel a construção de imagens sı́smicas em profundidade de
boa qualidade e a um menor custo computacional. Para demonstrar a eficiência e aplicabilidade do método proposto, dois modelos sintéticos foram usados e seus
resultados apresentaram imagens de alta qualidade equivalentes às obtidas pela RTM convencional.

Palavras-chave: equação de migração da onda, migração, condição de imagem, migração no domı́nio da frequência.
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INTRODUCTION

Reverse time migration (RTM) using the two-way acoustic wave
equation is not a new concept. It was introduced in the late 1970’s
by Hemon (1978), and has the advantage of handling multipath
and steeply-dipping reflectors (Baysal et al., 1983; Whitmore,
1983; McMechan, 1983; Loewenthal & Mufti, 1983). However,
at the beginning this method was not commonly used in the seis-
mic exploration industry because it required a great amount of
computer memory and computing time. Instead, the Kirchhoff in-
tegral method and the one-way wave equation (OWE) methods
were widely used because of the low computational cost and lower
memory demand. With the rapid growth of computer technology,
3D prestack RTM is being used to address the imaging challenges
posed by sub salt and other complex subsurface targets.

By using the full wave equation, RTM implicitly includes mul-
tiple arrival paths and has no dip limitation, thus enabling the
imaging of complex reflectors. For post-stack seismic data, RTM
is performed by propagating the recorded wavefield backward in
time into the subsurface with half the velocity of the medium. At
time t = 0, the back propagated wavefield provides the subsur-
face image. For prestack data, the RTM uses a time-coincidence
imaging condition (Claerbout, 1971). Typically in prestack RTM,
each shot is forward propagated and the recorded data is back
propagated. The migrated section is obtained by applying the
imaging condition, where the source and receiver wavefields are
cross-correlated, with zero-lag, managing to correctly position
the reflectors in depth and collapse diffractions. RTM can also be
considered the inverse operation of forward modeling, where the
same numerical modeling code used for forward modeling can
be used for RTM.

RTM is currently computationally feasible even in 3D
prospects, but still requires a high computational demand. A
common RTM implementation, for example, uses small steps in
time to avoid numerical instability and low frequency content in
order to reduce numerical dispersion in the migrated data. This
is implied in the resampling of data and primarily in the filtering
to remove high frequency components in 3D dataset, as the RTM
algorithm in large seismic surveys has a high computational de-
mand that requires unacceptably long run times, even with a com-
puter cluster. Recently however, many new algorithms have been
developed to overcome this problem related with the time step.

Soubaras & Zhang (2008) introduced a two-step marching
method that permits data extrapolation with a larger time step.
Zhang & Zhang (2009) proposed a one-step extrapolation method
that is implemented on the basis of the optimized separable ap-
proximation (OSA) (Song, 2008). Pestana & Stoffa (2009) intro-

duced RTM using recursive time stepping based on the rapid ex-
pansion method (REM) (Tal-Ezer et al., 1987). Thus, it is possible
to perform migration with longer time steps in a stable manner
and without numerical noise caused by numerical dispersion.

Migration of seismic data is commonly carried out in the
time domain. The classic RTM algorithms in the time domain
are known to be computationaly I/O intensive, because the for-
ward and back propagation wavefields have to be computed and
stored. If the correlation between these fields is carried out during
the time-reversed computation of the receiver data, only snap-
shots of the forward source wavefield have to be stored. To re-
duce the overhead of storing snapshots, severals strategies have
been proposed and applied with success.

Another alternative is to perform seismic migration in the fre-
quency domain, where the most common form results from the
solution of the Helmholtz equation. In the simplified matrix form
for direct modeling, we have: S p = f , where: p is the pres-
sure field, f is the source, and S is the direct modeling operator.
The inverted matrix, S−1 , for example, can be applied to each
source, p = S−1 f , providing the source wavefield for each
frequency component (Shabelansky, 2007). Thus, the forward
and backward propagation are computed and there is no need to
store the wavefields in disk.

Migration in the frequency domain requires the selection of
a set of frequencies that avoids spatial aliasing. The seismic
data and the source signature are transformated into frequency
domain. For each frequency the Helmholtz is solved. An impor-
tant advantage of migration in the frequency domain is that the
cross-correlation needed for imaging condition becomes a sim-
ples multiplication of the wavefields at each frequency, followed
by a summation over selected frequencies.

One of the problems with the migration in the frequency
domain is the necessity to solve a sparse indefinite linear system
of equations, which arise from the discretization of the Helmholtz
equation, whereas in the time domain, the discretization of the
wave equation in space and time leads to an explicit time march-
ing scheme.

Methods that make the matrix less sparse together with ef-
ficient computational software such as MUMPS (Multifrontal
Massively Parallel Sparse Direct Solver) have been used to solve
this problem. Furthermore, the RTM in the frequency domain with
a direct solver executes much more efficient for multiple-shot
than time domain RTM does for a 2D case. However, for the 3D
application of frequency domain RTM, the direct method decom-
position has a weakness of taking dramatic memory an calcu-
lation amount because aside from inverting the matrix for each

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017



�

�

“main” — 2018/9/4 — 13:41 — page 289 — #3
�

�

�

�

�

�

ANDRADE PN, PESTANA RC & REVELO DE 289

frequency, matrices L and U must be stored for each frequency in
order to calculate the wavefield (Operto et al., 2007) and makes
it difficult to run on full scale problem efficiently. Alternatively,
the iterative solvers are employed to lessen the memory the oc-
cupation, but this will considerably weaken the advantage of fre-
quency domain RTM because multi-shot modeling cannot be per-
formed simultaneously with one decomposed matrix just as the
direct solver did. The iterative solutions do not consume a great
amount of memory, however they do suffer from high frequencies,
showing poor convergence rates. An alternative to this problem
is the multi-scale approach, which attempts to solve the prob-
lem by dividing the data into frequency bands, improving the
convergence.

Despite the many approaches in addressing the 3D prob-
lem in frequency domain, it remains a great challenge due to its
high computational demand (Operto et al., 2007). New alterna-
tives have been proposed to solve the 3D problem, one of which
is transforming time domain data into frequency. This transfor-
mation is generally implemented during propagation in time by
applying the discrete Fourier transform (DFT) for each wave-
field snapshot, also known as on-the-fly transform (Furse, 2000;
Nihei & Li, 2007; Sirgue et al., 2008). More recently, Chu &
Stoffa (2012) used this technique by applying the REM method
in its non-recursive form, then applying the discrete Fourier
transform during data modeling.

Usually in the time domain, the most common methods
for seismic forward modeling are finite-difference or pseudo-
spectral methods. In our work we use the REM (Pestana & Stoffa,
2010) method because it is numerically stable and free of nu-
merical dispersion, generating better wavefield propagation re-
sults (Tessmer, 2011). The REM method developed by Pestana
& Stoffa (2010) calculates the wave propagation for each step in
time, whereas the method Chu & Stoffa (2012) use computes the
wavefield through non-recursive REM. In the method proposed
for this study, wavefield propagation is done through the non-
recursive REM in time, and a discrete Fourier transform is done
at each time step.

The imaging condition in the frequency domain is generated
by taking the real value of the source wavefield multiplied by the
receiver wavefields. In our implementation, we do not need to
save the source wavefield for all instances of time and correlate
it with the receivers wavefield during back propagation. As we
move through time, the direct propagation of the source wavefield
and the back propagation of the receiver wavefield are performed
inside the same loop in time. Moreover, the Fourier transform
kernel is calculated outside the time loop, thus allowing a greater

computational efficiency for the algorithm.
In the following theory section, we present the development

relative to the imaging condition based on the scattering theory
with Born approximation, as well as the procedure used to cal-
culate the wavefields in the frequency domain where the discrete
Fourier transform was applied at each extrapolation step in time.
Finally, we show some numerical examples and compare the com-
putational performance on a 2D example of our proposed fre-
quency domain RTM with the convention time domain RTM us-
ing checkpointing strategy that only save the source wavefield at
predefined checkpoints in time and recomputing the wavefields at
other instances from theses checkpoints.

THEORY
The conventional migration approach proposed by Claerbout
(1971) provides a subsurface image by applying the adjoint
modeling operator to the seismic data. This procedure can be
considered the first iteration of the full waveform inversion method
(FWI) (Ren et al., 2013).

To determine the migration operator, we start from the direct
propagation representation from the complete acoustic wave in
the frequency domain via the Helmholtz equation solution, then
employ the Born approximation.

Helmholtz equation can be written as follows:

[∇2 + ω2m2(x)] P(x,xs, ω) = F(x, ω) , (1)

where

∇2 =
(
∂2

∂x2
+
∂2

∂y2
+
∂2

∂z2

)
,

ω is the angular frequency, x = (x, y, z) the vector position
and the parameter model is the slowness, defined as: m(x) =
1/v(x). P is the pressure field, xs is the source position
and x is the listening location. The source term is given by
F(x, ω) = −δ(x − xs)A(ω), where A(ω) is the source
spectrum.

We can represent the slowness model as being composed
of a background model plus a disturbance, that is, m(x) =
mo(x) + δm(x) and, consequently, the wavefield in the same
way, P = Po + δP, wheremo is the background model and
Po is the propagated field in background model, δm is the per-
turbation and δP and scattered wavefield.

Our goal is to get an expression for δP, which can be
used to simulate the observed data (dobs). Figure 1 exemplifies
the propagation of the source wavefield and the scattered wave-
field, recorded along the receptors due to a disturbance in the
slowness model.

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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Figure 1 – Seismic wave scattering scheme: The source wavefieldPo propagates at con-
stant background velocity, co = 1/mo, until it interacts with a scatterer (slowness pertur-
bation, δm) which acts as a secondary source and scatterers the incoming wavefield. The
scattered wavefield δP propagates at the background c0 and is recorded by receivers xr .

In order to obtain a solution to Eq. (1), we can write that:

P(x,xs, ω) = A(ω)G(x,xs, ω) , (2)

whereG(x,xs, ω) is the Green’s function that satisfies the following Helmholtz equation:

[∇2 + ω2m2(x)]G(x,xs, ω) = −δ(x − xs) . (3)

For the background field we have that:
Po(x,xs, ω) = A(ω)Go(x,xs, ω) , (4)

whereGo(x,xs, ω) is the Green’s function for the background model that satisfies the following equation:

[∇2 + ω2m2o(x)] Go(x,xs, ω) = −δ(x − xs) , (5)

Substituting m2(x) by (mo(x) + δm(x))2 in Eq. (1), expanding the squared term and neglecting the term δm2, we have:

[∇2 + ω2m2o(x)]P(x,xs, ω) = F(x, ω) − 2 ω2 mo(x) δm(x) P(x,xs, ω) . (6)

According to Green’s theorem, multiplying both sides of the Eq. (6) byGo(x,x′, ω) and integrating over the whole volume containing
the x′ index, gives the the Lippmann-Schwinger equation, which is an integral equation with unknown P(x,xs, ω) on both sides
and r(x′) = 2mo(x′) δm(x′) representing the reflectivity model. Applying the Born’s approximation, that is, G(x′,xs, ω) =
Go(x

′,xs, ω), we obtain the scattered wavefield that is given as:

P(x,xs, ω)−Po(x,xs, ω) = ω2
∫
r(x′)A(ω)Go(x′,xs, ω)Go(x,x′, ω)dx′ . (7)

In Eq. (7), evaluating the field along the receivers, that is, x = xr, and having δP = P−Po we get:

δP(xr,xs, ω) = ω
2

∫
r(x′)A(ω)Go(x′,xs, ω)Go(xr.x′, ω) dx′ . (8)

Aside from this, Eq. (8), which represents the direct problem, can be rewritten in its linearized form through the following relation:

δP(xr,xs, ω) = L(x,xr,xs, ω) r(x) . (9)

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017
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Thus the forward modeling operator is explicitly given by:

L(x,xr,xs, ω) = ω
2A(ω)Go(x,xs, ω)Go(xr,x, ω) , (10)

whereGo(x,xs, ω) is the Green’s function of the source at position xs to the scattering position x, andGo(xr,x, ω) is the Green’s
function in position x to receiver xr.

Therefore, by applying the adjoint of L to the observed data, δP = dobs, and taking into account the reciprocity relation of the
Green’s function, Go(xr,x, ω) = Go(x,xr, ω), we have:

r(x) = L†δP , (11)

which can be rewritten as:

r(x) = Re

⎛
⎜⎜⎝∑
ω

ω2
∑
xs

∑
xr

forward propagated wavefield︷ ︸︸ ︷
A(ω)† G†o(x,xs, ω)

back propagated wavefield︷ ︸︸ ︷
G†o(x,xr, ω) δP(xs,xr, ω)

⎞
⎟⎟⎠ , (12)

where † represents the transposed conjugation.
The Eq. (12) expresses the imaging condition for frequency migration, where the image is constructed from the sum of all frequencies

and sources, which is attained by multiplying the directly propagated source field with the observed data field back propagated to the
same frequency.

The above Eq. (12) is the same one presented in the works of Pan (2006) and Maaref et al. (2008) which also uses Born approxi-
mation, as well as in the works of Dai et al. (2012); Ren et al. (2013).

Although the deduction presented above requires the Green’s function G†o(x,xr, ω) to be calculated for each receiver indepen-
dently, we will show below that these Green’s functions can be calculated simultaneously for all receptors (Hammad, 2010), as the sum
of these Green’s functions is valid because of the linearity of the wave equation.

To simplify the notation, we remove the dependence of the source position xs from the observed data δP(xr,xs, ω), in Eq. (12),
and fix for the frequency and the shot. We start by showing the calculations for two receivers and then extend to other receivers. After
these simplifications, Eq. (12) can be rewritten as:

r(x) = ω2A(ω)G†o(x,xs, ω)δP(xr1, ω)G
†
o(x,xr1, ω) + ω

2A(ω)G†o(x,xs, ω)δP(xr2, ω)G
†
o(x,xr2, ω) . (13)

Now, using the following Green’s function property, we can also write that:

P(x,xr1, ω) = δP(xr1, ω)G
†
o(x,xr1, ω) . (14)

Based on the Eq. (2), we have that δP(xr1, ω) exercises the same role as the source term, A(ω). Now, for the second receiver we
have:

P(x,xr2, ω) = δP(xr2, ω)G
†
o(x,xr2, ω) . (15)

Considering Eqs. (14) and (15), Eq. (13) can be rewritten as:

r(x, ω) = ω2A(ω)Go(x,xs, ω) [P(x,xr1, ω) +P(x,xr2, ω)] . (16)

Introducing wavefield P̃(x,xr1,xr2, ω), which is obtained by adding the fields defined in Eqs. (14) and (15).

P̃(x,xr1,xr2, ω) = [P(x,xr1, ω) +P(x,xr2, ω)] , (17)

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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and finally extending to all other receivers, we obtain the following wavefield:

P̃(x,xr1,xr2, . . . ,xrn, ω) = [P(x,xr1, ω) +P(x,xr2, ω) + · · ·+P(x,xrn, ω)] . (18)

In this way, the wavefield P̃, defined in the Eq. (18), represents the back propagated wavefield of all receivers and Eq. (13) is rewritten
as follows:

r(x, ω) = ω2A(ω)Go(x,xs, ω)P̃(x,xr1,xr2, . . . ,xrn, ω) . (19)

In order to show that the receiver wavefields can be back prop-
agated just one time, we can rewrite the Helmholtz equation as
follows:

LP(x,xr1, ω) = −A(ω) δ(x − xr1) , (20)

where
L = [∇2 + ω2m2(x)] , (21)

represents the impedance matrix of the system.
Thus, the scattered and recorded wavefield at receiver xr1

satisfies the following equation:

LP(x,xr1, ω) = −δP(xr1, ω)δ(x − xr1) . (22)

Likewise, for the receiver xr2, we also have:

LP(x,xr2, ω) = −δP(xr2, ω)δ(x − xr2) . (23)

Adding Eq. (23) and Eq. (22) results in:

L [P(x,xr1, ω) +P(x,xr2, ω)] =
−δP(xr1, ω)δ(x− xr1)
−δP(xr2, ω)δ(x − xr2) .

(24)

Now, considering the Eq. (22) for each receiver, taking the
sum of all receivers, then substituting wavefield P̃, defined in the
Eq. (18), we obtain the following result:

L P̃(x,xr1,xr2, . . . ,xrn, ω) =
−δP(xr1, ω)δ(x− xr1)
−δP(xr2, ω)δ(x− xr2)

− . . . δP(xrn, ω)δ(x − xrn) .

(25)

Therefore, Eq. (25) demonstrates that the wavefield at all re-
ceivers can be simultaneously back propagated, injecting all re-
ceivers recorded data as sources. In other words, it is not nec-
essary to back propagate each receiver wavefield separately, re-
ducing the back propagation of all receivers at each shot to one

simple back propagation where all receivers are contemplated at
once.

Wavefield extrapolation by REM

To calculate the receiver and source wavefields, we use REM
proposed by Pestana & Stoffa (2010), which is implemented
through Eq. (26).

In this method, the wavefield is recursively extrapolated in
time, unlike the original REM in its non-recursive form, initially
proposed by Tal-Ezer et al. (1987) and modified by Kosloff et
al. (1989). Using this approach, the extrapolation in time can be
made within longer time intervals in a stable manner with bet-
ter accuracy, and without presenting a numerical dispersion when
compared to finite-difference and pseudo-spectral methods.

The solution of the wave equation, according to Pestana &
Stoffa (2010), using the REM is given by:

P(t+Δt) +P(t−Δt) =

2

M∑
k=0

C2kJ2k(RΔt)Q2k

(
iL

R

)
P(t) ,

(26)

whereJ2k are the Bessel’s functions andQ2k
(
iL
R

)
are the mod-

ified Chebyshev polynomials. The value of R, used to normalize
the polynomials of Chebyshev, is given by Tal-Ezer et al. (1987):

R = πcmax

√(
1

Δx

)2
+

(
1

Δy

)2
+

(
1

Δz

)2
, (27)

where cmax is the maximum velocity, Δx,Δy and Δz are the
spatial samplings, based on velocity model discretization.

For REM, according to Tal-Ezer et al. (1987), the Eq. (26) con-
verges exponentially. And for each extrapolation step in timeΔt,
the maximum number of termsM is given byM > ΔtR/2

(Pestana & Stoffa, 2010).
The change from time domain to frequency domain occurs

throughout each extrapolation step in time, through the discrete
Fourier transform, as suggested in the works of Furse (2000);
Nihei & Li (2007); Sirgue et al. (2008).

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017
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The wavefield at each step in time, starting from Eq. (26), is
transformed to the frequency domain through the following dis-
crete Fourier transform:

P(x, ω) =

nt∑
n=1

eiωnΔtP(x, nΔt) , (28)

where Δt is the time extrapolation interval, and nt is the
number of time intervals given by nt = tmax/Δt.

To perform the reverse migration in time in its conventional
form, we have to model the source field and save its snapshots.
The data recorded along the receivers are then back propagated.
As the field is back propagated at every step in time, the imag-
ing condition, which is zero-lag cross-correlation of the source
and receiver wavefields, is applied, thus obtaining the migrated
seismic section.

RTM in its conventional form, as described above, must save
the modeled source fields, that is, each snapshot of the propaga-
tion. In 3D cases, or even 2D for large models, extensive compu-
tational time will be required to read and write data to disk, mak-
ing it problematic for RTM implementation. In some cases, this
problem can be partially solved through the checkpoint technique,
where some snapshots of the source propagation are saved, not
necessarily all snapshots, and as the data is back propagated, the
source field is reconstituted from the recorded snapshots.

In the proposed method, the kernel calculation of the discrete
Fourier transform is done outside the time extrapolation loop, sav-
ing these kernels for each frequency component and time interval,
then applying them to both source and receiver wavefields at each
time step and frequency, thus generating their respective wave-
fields in frequency domain.

The imaging condition is applied after transforming the
source wavefield (direct propagation) and the receivers field (re-
verse propagation) to the frequency domain using the Fourier
transform kernel and multiplying these fields at each frequency.
Thus, the migration of each common shot section is performed
and at the end of the extrapolation process of all shots the final
migrated image is generated from the sum of the partial images of
each common shot section.

Algorithm 1 shows the pseudo-code for the RTM procedure
described above. In our implementation, the forward and back-
ward propagations are computed in parallel for each shot an there
is no need to store the wavefields on disk. Basically, for each
time step, source and receivers wavefield are forward and back-
ward propagated by REM and for each frequency are then multi-
plied with each other. Only two wavefields are kept in memory,

whereas in time, all consecutive wavefields for the forward prop-
agation need to be stored. The flowchart the proposed RTM in the
frequency domain algorithm is presented in Figure 2.

RESULT

To verify the efficiency of the proposed algorithm, two synthetic
models were used to test it. First, a simple model with four-layers
with velocities of 2000 m/s, 3000 m/s, 4000 m/s and 2000 m/s,
respectively, is shown in Figure 3. The spatial sampling is 10 m
in both directions and the model is discretized and represented
by a 315 × 195 mesh. A Ricker pulse was used to model the
data, with a peak frequency of 25 Hz, producing 62 shots with
each shot having 315 traces and each trace having 1500 samples
with a time sampling interval of 1 ms.

To test the proposed method, in Figure 4 we show a snap-
shot obtained from the modeling of a source positioned in the
center of the model, using the velocity model shown in Figure 3.
Figure 4(a) shows the wavefield propagated in the time domain,
snapshot at 0.84 s, and Figures 4(b-f) show the real part of the
wavefield (snapshot at same time) obtained by a summation over
the selected frequency bands of 0-10 Hz, 0-30 Hz, 0-60 Hz,
0-90 Hz and 0-120 Hz, respectively, computed using the pro-
posed method.

From these results we can verify that as the frequency band is
increased, and all the corresponding wavefields at each frequency
are summed together, we obtain a result equivalent to that ob-
tained from time directly (Fig. 4(a)). Therefore, using this simples
experiment, we have demonstrated that wavefields can be decom-
posed into its frequency components through the discrete Fourier
transform for each step in time, followed by summation over all
frequencies we were able to recover the snapshot generated in the
time domain.

In order to test the frequency domain RTM algorithm, a sim-
pler model was used, shown in Figure 5, where a migrated image
was obtained from RTM using the data in the time domain, and
in Figure 6 the result of the migration in the frequency domain
was obtained through the proposed method. It was also observed
that our method using the frequency domain shows better delin-
eated reflectors, especially in the deeper parts of the image, when
compared to the conventional RTM image.

The second model is the Marmousi dataset, which is con-
structed on the basis of a real geological profile, making it a com-
plex geological structure. The dataset generated from this model
therefore became a popular choice for advanced migration method
tests (Bevc, 1995; Audebert et al., 1997).

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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Algorithm 1 – The pseudo-code for the proposed frequency domain migration method. Source and receiver wavefiels are extrapolated in
time using rapid expansion method (REM) and afterwards they are converted to the frequency domain by the discrete Fourier transform
(DFT). The migration is finalized by multiplication of forward and backward wavefields, followed by summation. There is no need to
store the wavefields on disk.

Read: Δx,Δz,Δt, nx, nz, nt, nx, fpeak , v(x, z), shotdata � parameters
Calculate: R,M , df , nw,w
initialization of all parameters

1: for iw ← 1, nw do � frequency vector
2: w(iw) = 2. ∗ pi ∗ ((iw − 1) ∗ df) ∗Δt
3: end for
4: for it← 1, nt do � computing Fourier transform kernel
5: for iw ← 1, nw do
6: Kernel R(iw, it) = cos(w(iw) ∗ (it − 1)) � real part of the kernel
7: Kernel I(iw, it) = sin(w(iw) ∗ (it− 1)) � imaginary part of the kernel
8: end for
9: end for

call source(src) � generate source signature
10: loopit = 1, nt � Initialize time looping
11: call propaga REM(PS, PPS) � source wavefield extrapolation
12: PPS = PS + src(it) � insert source in wavefield
13: call propaga REM(PR, PPR) � backward extrapolation of receivers
14: PPR = PR+ shotdata(nt− it + 1) � depropagate data from receivers

15: loopiw = 1, nw � calculate wavefields in frequency
16: PSR = PSR+Kernel R(iw, it) ∗ PS � source real part
17: PSI = PSI +Kernel I(iw, it) ∗ PS � source imaginary part
18: PRR = PRR+Kernel R(iw, it) ∗ PR � receiver real part
19: PRI = PRI +Kernel I(iw, it) ∗ PR � receiver imaginary part
20: Imf = Imf + PSR ∗ PRR− PSI ∗ PRI � Image condition
21: end loop

updating wavefield from receivers and source
22: Aux = PPS; PPR = PS; PS = Aux
23: Aux = PRR; PPR = PR; PR = Aux
24: end loop � End time looping

The velocity field of the Marmousi model, showed in Fig-
ure 7, has 369 points in the horizontal direction (x) and 375 in
the vertical direction (z) and the spacings areΔx = 25 m and
Δz = 8 m. The velocities vary from 1500 m/s to 5500 m/s.
The Marmousi dataset used here has 240 shots, each shot with
96 traces, each trace with 725 samples where the time sampling
interval is 4 ms.

To understand the computational performance of the pro-
posed migration method in frequency domain, the result from
conventional RTM will be compared. In conventional RTM, with-
out using the checkpoint technique, it is necessary to record all
snapshots from the source wavefield, having to save on disk or
in memory a data cube of dimensions (nx, nz, nt). To do the
back propagation of the receivers there is another time loop in

which the data are injected in a reverse way, and at each step in
time, the source data of the direct propagation must be accessed
to construct the migrated image, which is obtained through the
zero-lag cross-correlation of the source and receiver wavefields.

For the proposed method, it is not necessary to use two loops
in time, one for direct propagation and one for reverse propa-
gation. In our implementation, the recorded data is back prop-
agated while the source wavefield is propagated using only one
time loop, therefore propagating the source and back propagating
the receivers at the same time loop and then transforming both
wavefields to the frequency domain.

For each step in time, the wavefields must be stored in four
arrays, one for the real part and one for the imaginary part for each
complex wavefield, as shown in the pseudo-code (Algorithm 1).

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017
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Read
parameters

Computing Fourier
transform kernel

Generate
source

Propagate source
wavefield and back

propagate receiver data
in the time domain

Time loop

Compute source and
receivers wavefield in
the frequency domain

Frequency loop

Apply imaging condition
(multiply the source and

receivers wavefields)

Update source and
receivers wavefields

Sum up migration
section of all shot

Figure 2 – Flowchart of the proposed frequency domain RTM. For each shot gather forward and backward propagated wavefields are transformed to frequency domain
by the discrete Fourier transform. The imaging condition in the frequency domain consists of a simple multiplication of the wavefields at each frequency, followed by
summation of all selected frequencies.

Comparing the two methods, taking as an example the Marmousi
data, where: nt = 750, dt = 0.004 s and fpeak = 20 Hz,
we have nf = 120, since nf = fmax/df , where fmax =
2×fpeak , and df = 1/(nt×dt). Thus, the amount of memory
used to save the (nx, nz, 725) cube data of source snapshots

is approximately 34% greater than when compared to the four ar-
rays (nx, nz, 120) used for the real and imaginary parts of the
source and receiver wavefields. This represents a substantial im-
provement in terms of memory occupation when compared to the
computational memory the conventional RTM in time requires.

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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Figure 3 – Depth velocity model used for forward modeling and reverse time – from Tessmer (2011).

For 3D data, RTM typically demands a great amount of mem-
ory to store all snapshots of the source wavefield, or when using
the checkpoint technique, aside from memory, a large amount of
disk space must also be used both to write and read the data.

In the proposed method for 3D data, a large amount of mem-
ory will also be required. However, the proposed method uses a
significantly reduced amount of memory when compared to time
domain RTM methods.

The corresponding pseudo-code is shown in Algorithm 1 and
an algorithm description is also presented through the flowchart
shown in Figure 2.

To verify the efficiency of the proposed method in time reverse
migration, the data presented below were processed in a cluster
using 121 nodes under the same hardware configuration.

For the propagation in the time domain we use the check-
point methodology, where some snapshots of the source wave-
field are recorded (saved in disk), and within the back prop-
agation process, propagation of the source wavefield is done
for the snapshots that were not saved to disk. Then, a cross-
correlation of the wavefields is done to obtain the migrated image.
If there are a large number of checkpoints, these snapshots should
be recorded on disk and accessed during migration. Otherwise,
they can also be stored in the memory (RAM) of the nodes that
will be used.

In order to simulate the RTM migration processing with-
out using the checkpoint methodology, we present the result of
Figure 8 where the RTM image is obtained through the conven-
tional method, that is, writing all the wavefields from the source
to disk, totaling 725 snapshots, and later accessing them for the
construction of the migrated image. For this migration in time the

frequency band used was from 0 to 40 Hz in order to compare with
the frequency migration results from the proposed method.

To reduce the overhead of storing snapshots, checkpointing
strategy will be used. In this case, the variable N-check indi-
cates the number of wavefield snapshots recorded, to be later ac-
cessed, recomputed the missing snapshots by forward time step-
ping and correlated with the back propagated field to construct
the migrated image.

In Figures 9 and 10 we present the results using the check-
point strategy. Figure 9 with N-check=290 source field snapshots,
and Figure 10 with N-check=58 source field snapshots. The pro-
cessing time decreases as the number of snapshots recorded de-
creases, which can be observed in Table 1. But after 58 recorded
fields, the final image begins to lose quality, shown in the result
of Figure 11 where only N-check=16 snapshots of the source
wavefield were recorded.

Figure 12 shows the RTM result without the use of the check-
point again, that is, by recording all the source fields in the node
RAM, and thus providing the best result in processing time.

The result using our proposed method is shown in Figure 13,
where the image is constructed from the frequency domain data.
When we look at the best result obtained in the time domain pre-
sented in Figure 12, we can see that the data migration in the
frequency domain shows an image with more delineated reflec-
tors and a higher resolution than the image obtained with con-
ventional RTM.

Using the proposed method allows for migration in a spe-
cific frequency band, varying the steps within this same band, like
for example, taking larger steps at lower frequencies and shorter
steps at higher frequencies, which allows for a smaller matrix to
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(a) (b)

(c) (d)

(e) (f)

Figure 4 – Snapshot for the four-layer model at time 0.84 s shown in the Figure 3. Figure 4(a) in time domain, all other images are wavefield decompositions and
frequency sums at intervals (b) 0 to 10 Hz, (c) 0 to 30 Hz, (d) 0 to 60 Hz, (e) 0 to 90 Hz, (f) 0 to 120 Hz.

store the wavefield in the frequency domain. Figure 14 shows the
migration result in the frequency range 0 to 40 Hz, with varying
steps in the frequency, beginning with longer steps that decrease
as the frequency increases, with a greater concentration at the high
frequency components. Therefore, we can decrease the migration
time processing in the frequency domain by decreasing the num-

ber of frequencies, but maintaining the data frequency band.
The time sets spent to obtain the migrated images are pre-

sented in Table 2, which shows that when we compare the pro-
posed method to any of the time results with checkpointing, that
is, where the source snapshots are written to disk, it showed a
better perform in terms of computational processing time. When

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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Figure 5 – Migration result in the time domain for the model shown in Figure 3.
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Figure 6 – Migration result in the frequency domain for the model shown in Figure 3.

Table 1 – Processing time of RTM in time domain for Marmousi
dataset with a parallel code using a cluster with 121 nodes.

N-check Time (min) Result in figure
725 144 8
290 48.7 9
58 20.5 10
16 20.5 11

No checkpoints 15.2 12

Revista Brasileira de Geof́ısica, Vol. 35(4), 2017
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Figure 7 – Subsurface Marmousi velocity model used for forward modeling and reverse time migration.
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Figure 8 – Reverse time migration using time domain, zero-lag cross-correlation imaging condition and without using checkpoint
methodology. All source snapshots were writing to disk and later accessing them for the construction of the migrated image.

we compare the method to the case where source snapshots are
saved to memory (RAM), the frequency method presents a little
higher result in processing time. However, the frequency domain
RTM result presents the reservoir target (in the deeper part of the
image) with a greater image contrast in comparison with the mi-
gration result in the time domain.

The Marmousi data is relatively small and the time spent
writing/reading the data on the disk, that is, when no checkpoint-
ing strategy is used, has produced a significant effect on the whole
migration method in terms of processing time. In case check-
points are implemented in the RTM in time domain the com-
putational time decrease but we still need to used a reasonable

Brazilian Journal of Geophysics, Vol. 35(4), 2017
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Figure 9 – Migration in time domain for Marmousi using checkpointing strategy where N-check=290 snapshots were saved in disk. During the reverse time computa-
tions and correlation, the missing snapshots are recomputed by forward time stepping from stored snapshots.
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Figure 10 – Migration in time domain for Marmousi, with checkpointing strategy where N-check=58 snapshots saved to disk. The missing snapshots are recomputed
during the reverse time computations and correlation by forward time stepping from stored snapshots.

number of checkpoints to guarantee the quality of the final mi-
gration image. Differently, our proposed method of migration in
the frequency domain requires less computational memory and
no checkpoints. From Figure 2 we can notice that it is more

efficient when compared with the RTM in time domain imple-
mented here.

The proposed method can be applied using varying step
lengths in the frequency within of migration band, making this
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Figure 11 – Migration in time domain for Marmousi using checkpointing strategy where only N-check=16 snapshots were saved in disk. During the reverse time
computations and correlation, the missing snapshots are recomputed by forward time stepping from stored snapshots.
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Figure 12 – Migration in time domain for Marmousi without the use of checkpointing saving all source snapshots in the memory (RAM) of each compute node.

a favorable method for the application of the complete wave-
field inversion (FWI) process, where the gradient calculation is
equivalent to an RTM migration, permitting gradient optimiza-

tion and making the process of updating the model parameters
an efficient process, specially when applied for a large volume of
seismic data.
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Figure 13 – Migration in frequency domain for Marmousi using the proposed method with a band of frequency from 0 to 40 Hz with a number of frequency sampled
equal to 118.
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Figure 14 – Migration in frequency domain for Marmousi in the range of 0 to 40 Hz band, with varying steps in the frequency, beginning with longer steps that decrease
as the frequency increases, with a greater concentration at the high frequency components. In this case was migrated 55 frequency components.

Real Data Result

The Gulf of Mexico is one of the regions with the highest oil and
gas productivity worldwide and the presence of salt structures in
this region is related to the trapping of hydrocarbons in several

ways and must be taken into account for the correct interpretation
of reservoirs (Chowdhury et al., 2007). Here we use real 2D-data
from the Gulf of Mexico, obtained along a marine canyon of the
Mississippi delta located south of Louisiana (USA) in the central
gulf area. The diek features a central salt pad with horizontal rock
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Table 2 – Processing time of RTM in frequency domain for Marmousi dataset with a parallel code using a cluster with 121 nodes.

Frequency band (Hz) Number of frequencies Time (min) Result in figure
0-40 118 18.5 13
0-40 55 16.5 14
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Figure 15 – Gulf of Mexico velocity model.

layers above and below as shown in the Gulf of Mexico speed field
(Fig. 15). For this figure, the horizontal grid has 1185 points in
the horizontal direction (x), while the vertical grid has 1000 in
the vertical direction (z), spacings isΔx = 26.6 m and Δz =
6.7 m, respectively. In this model, velocity range from 1500 m/s
to 5500 m/s. The data has 1000 shots, with 180 traces, each trace
with 1501 samples of time.

The presence of a salt structure make it hard to image deep
layers, since it is a high-velocity barrier, which prevents waves
scattered by deep reflectors from reaching the surface receivers.
This is the ideal situation to test the proposed frequency domain
migration algorithm.

The result of the migration in the time domain is shown in
Figure 16, as well as the result of the migration in the frequency
domain Figure 17. Both results well image the salt cushion. This
result for the proposed method is very significant, since the com-
plexity of processing a real data is much greater when compared
to a synthetic data, because in the actual marine data we have
the presence of coherent noises due to the infrastructure of the

ship itself and the presence from others, from random noise from
the waves and from the tow of acquisition cables, among others,
which are not present in the synthetic data.

The signature of the seismic source used is another factor that
can influence the quality of the migration of the seismic data, since
in the modeling we use a pulse of the type Ricker different from
the pulse of the seismic source if the difference between the pulse
used in the modeling and the generated pulse because the seis-
mic source is large, the migration result will change. In this way,
our result with real data quantifies the proposed algorithm as a
suitable method for the processing of real data.

CONCLUSIONS

We proposed an alternative procedure to generate seismic migra-
tion data in the frequency domain using rapid expansion method
to extrapolate wavefields. During extrapolation, the source and
receiver wavefields are transformed into the frequency domain
through the efficient implementation of the discrete Fourier trans-
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Figure 16 – Migration result in time domain for Gulf of Mexico, with the processing time of 8 h and 24 min, icheck = 4, ncheck = 752, fmax = 27 Hz,
processed in 101 nodes.
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Figure 17 – Migration result in frequency domain for Gulf of Mexico, with the processing time of 9 h and 9 min, nw = 164, fmax = 27 Hz.

form. In this way, the migrated image is obtained simply by mul-
tiplying of the extrapolated fields for each frequency component.

In our method, the extrapolation of source and backward
propagation of receivers are performed in a single time loop,
transform to the frequency domain and thus producing a signifi-
cant reduction of memory requiments and removing the need to
write/read the source wavefield on disk. Furthermore, the pro-

posed method does not need to use the checkpoint strategy for
the source snaspshots and becomes a more effcient method in
comparison with the standard RTM.

The alternative migration procedure, based on a time-to-
frequency domain transformation, applied in this work can pro-
duce accurate results with a high quality, especially for complex
geologies, as shown in our results, which considers the real data
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of the Gulf of Mexico. Moreover, our tests with the Marmoussi
dataset showed that our method is more computationally effi-
cient when compared to conventional RTM method. The results
obtained it can be concluded that the computational efficiency
of the proposed method in relation to the conventional method
using the checkpoint would be better for the 3D case.

The proposed method shown in this work, that can be used
to construct Green’s functions optimally, where it is not neces-
sary to calculate the Green function of the source with each re-
ceiver separately as the standard, and the function of Green from
the source with all the receivers at one time, making its applica-
tion wide for the various forms of operators of migration in the
frequency domain.
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