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APPLICATION OF TIME-FREQUENCY DECOMPOSITION METHOD IN THE STUDY
OF GAS RESERVOIR IN THE SERGIPE-ALAGOAS BASIN

Alexandre de J. Pinho and Milton J. Porsani

ABSTRACT. The sedimentary basin of Sergipe-Alagoas, located on the Brazilian east bank, presents one of the most complete stratigraphic sections of the Brazilian
continental margin. Hydrocarbon exploration activities began more than 50 years ago. The recent discoveries of hydrocarbons (gas and oil of high API grade) in

turbiditic reservoirs of deep waters have further awakened the exploratory interest of the basin. Problems related to the processing and interpretation of seismic data
have always received great attention from the scientific community. Currently, the use of time-frequency decomposition methods of the seismic signal is of great interest.

Spectral decomposition has been widely used in reservoir characterization, such as determination of layer thickness, stratigraphic visualization with seismic attributes
and identification of low frequency anomalies associated with the presence of gas. The mechanism causing these anomalies is not yet well known, but they are often

attributed to the high attenuation of gas filled reservoirs. The approach used for spectral decomposition combines the maximum entropy method and the Wigner-Ville

distribution, based on the idea of the Burg method that uses the prediction error operator to extend the Wigner-Ville kernel sequences by applying the Fourier transform
to each extended sequence, thus allowing to obtain the Wigner-Ville distribution of maximum entropy.

Keywords: Sergipe-Alagoas Basin, Wigner-Ville distribution, maximum entropy, spectral decomposition, seismic attributes, low frequency anomaly.

RESUMO. A bacia sedimentar de Sergipe-Alagoas, localizada na margem leste brasileira, apresenta uma das mais completas seções estratigráficas da margem conti-

nental brasileira. As atividades exploratórias de hidrocarbonetos foram iniciadas há mais de 50 anos. As recentes descobertas de hidrocarbonetos (gás e óleo de elevado
grau API) em reservatórios turbidı́ticos de águas profundas despertaram ainda mais o interesse exploratório da bacia. Os problemas relacionados ao processamento e à

interpretação de dados sı́smicos sempre receberam grande atenção da comunidade cient́ıfica. Atualmente, desperta grande interesse o uso de métodos de decomposição
tempo-frequência do sinal sı́smico. A decomposição espectral tem sido bastante utilizada na caracterização de reservatório, como estimativa de espessura de camada,

visualização estratigráfica com atributos sı́smicos e identificação de anomalias de baixa frequência que podem estar associadas à presença de gás. O mecanismo cau-

sador dessas anomalias ainda não é perfeitamente conhecido, mas é frequentemente atribuı́do a atenuação das altas frequências nos reservatórios preenchidos com
gás. A abordagem utilizada para a decomposição espectral combina o método de máxima entropia e a distribuição de Wigner-Ville, com base na ideia do Método de

Burg que usa o operador de erro de predição para estender as sequências do kernel de Wigner-Ville aplicando a transformada de Fourier para cada sequência estendida,
permitindo assim, obter a distribuição Wigner-Ville de máxima entropia.
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188 TIME-FREQUENCY DECOMPOSITION METHOD IN THE STUDY OF GAS RESERVOIR

INTRODUCTION

The stratigraphic traps associated to the Calumbi turbidites
present high exploratory risks due to the absence of a structural
control that normally assists in the accumulation of petroleum.
The identification of these reservoirs using seismic attributes,
such as the instantaneous average frequency, can minimize the
uncertainties that are inherent to this type of trap.

Problems related to the processing and interpretation of seis-
mic data have always received great attention from the scientific
community. Currently, the use of time-frequency decomposition
methods of the seismic signal is of great interest. This important
and current topic is of great interest to the oil industry. The study
on the suitability and feasibility of the time-frequency represen-
tation method in the identification of hydrocarbon reservoirs in
the Sergipe-Alagoas Basin represents the main challenge to be
studied in this work.

In seismic exploration, spectral decomposition refers to any
method that produces a continuous time-frequency analysis of the
seismic data (Castagna, 2006). Therefore, for each sample of the
seismic time there is a frequency spectrum. There are a variety of
spectral decomposition methods, such as: Discrete Fourier Trans-
form, Fast Fourier Transform, Wigner-Ville Maximum Entropy,
Continuous Wavelet Transform (Zoukanéri & Porsani, 2015).

The temporal and frequency resolution of the time-frequency
decomposition is important for the application of the method.
Resolution is the ability to accurately map the time and frequency
of occurrence of an event.

The most popular of time-frequency representations is the
spectrogram. This type of representation is in general obtained
from the Short Time Fourier Transform (STFT) technique. A win-
dow is used to obtain temporal resolution. In contrast, in order to
obtain good resolution in frequency, a long window is required.
This process of window selection is the main limitation of STFT
due to Heisenberg’s uncertainty principle.

The S-transform and Gabor transform are other types of
transform that have been proposed in order to overcome such a
problem of resolution associated with the windows. There is also
the use of transformers based on the use of wavelet (continuous
and discrete wavelet transform) and others that use the projection
of the signal on a predefined dictionary (Matching-pursuit and
Basis-pursuit).

There are also other alternative methods that utilize a fam-
ily of functions (Cohen class functions) that are bilinear time-
frequency representation of the signal energy density (Cohen,
1989; Choi & Williams, 1989; Zoukanéri, 2014). The Wigner-Ville
Distribution (WVD) is the simplest and principal member of this

family and exhibits a large amount of mathematical properties that
are desired and, in addition, demonstrates good time-frequency
resolution.

THEORY

One way to accomplish the time-frequency decomposition is
through the so-called quadratic or bilinear functions. This classifi-
cation is due to the fact that the signal to be analyzed is introduced
twice in the decomposition generating a square matrix of energy
density. The set of techniques that make use of the quadratic func-
tion was summed up by Cohen (1989), reason why these de-
compositions are denominated bilinear functions of the class of
Cohen. The general formulation of Cohen’s class functions is
represented in the form:

C(t, f) =

∫∫∫ +∞
−∞

g1
(
t +
xo

2

)
g2
(
t− xo
2

)

×φ(t− ε, f − μ)e−jpfxodxodεdμ
(1)

where g1(.) and g2(.) are temporal or spatial series; xo is a dis-
placement of the variable t; f is the frequency and φ(., .) is the
kernel. ε and μ are the displacement of the variable associated
with the kernel.

Equation (1) is a convolution consisting essentially of two
parts: the first one is characterized by a covariance matrix and
can be expressed as:

∫ +∞
−∞

g1
(
t+
xo

2

)
g2
(
t− xo
2

)
dxo (2)

and the second part consists of a distribution kernel and given by:

∫ +∞
−∞
(t− ε, f − μ)e−jπfxodεdμ (3)

The time-frequency decompositions of the Cohen class can
be seen as a translation of the matrix covariance in time and fre-
quency convoked by a weight function constituted by the kernel.

The different expressions taken by the kernel characterize the
type or name of the distribution. If φ(t, f) = δ(t, f), the ex-
pression is equivalent to the Wigner-Ville distribution, explained
in the next section. This distribution constitutes the most basic of
the bilinear energy density distributions of the Cohen class.

In Equation (1), the signs of g1(.) and g2(.) may be
real or complex, same or different, but in the case of Wigner-
Ville they become analytical signs. In the strategy adopted by
Zoukanéri (2014), a single analytical signal was used.
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Distribution of Wigner-Ville
The Wigner-Ville Distribution (WVD) is a three-dimensional de-
composition of a time series (time-frequency and energy) intro-
duced by Eugen Wigner in 1932 (Wigner, 1932 apud Zoukanéri,
2014) to study the problem of static equilibrium in the area of
quantum mechanics. Wigner’s works were completed in 1948 by
J. Ville (Ville, 1948 apud Zoukanéri, 2014) and applied in signal
analysis.

The discrete form of WVD is a powerful tool for representing
and analyzing chirp signals. The obtained representation has a
high resolution in the time-frequency domain even in the case of
signals whose frequency changes rapidly with time. The Wigner
Ville distribution of a signal x(t) is given by:

W (t, f) =

∫ +∞
−∞

z
(
t+
τ

2

)
z∗
(
t− τ
2

)
e−iπfτdτ (4)

From Equation (4), it is noted that the WV distribution is the
Fourier Transform (FT) of the elements of the covariance function
z(t + t/2)z∗(t − t/2). Thus, as a consequence, the WV dis-
tribution satisfies the properties of FT, among others. The most
relevant properties are quoted below.

1. The WVD is always real since it always represents the
Fourier transform of the product of Hermitian functions
(real part even and odd part imaginary).

2. Integration over time results in the power spectrum of the
signal and is called the marginal frequency distribution.

∫ +∞
−∞

W (t, f)dt = |z(f)|2 (5)

3. Frequency integration results in the energy spectrum of
the signal and is called the time domain distribution.

∫ +∞
−∞

W (t, f)df = |z(t)|2 (6)

4. The integration along frequency and time represents the
total energy of the signal (this guarantees the conservation
of energy).

Ez =
1

2π

∫∫ +∞
−∞

W (t, f)dtdf (7)

A change in the time or frequency of the signal implies the
same change in distribution.

g(t) = f(t − to)Wg(t, f) =Wf (t− to, f) (8)

G(f) = F (f − fo)WG(t, f)
=Wf(t − to, f)

(9)

The WVD is fully invertible, that is, the covariance matrix
of the signal, given by the product z(t + τ/2)z∗(t −
τ/2) = rz(t, τ) can be retrieved through the inverse
Fourier transform

rz(t, τ) =
1

2π

∫ +∞
−∞

Wz(t, f)e
iπfτ df (10)

The matrix rz(t, τ) is Hermitian and of unit rank. Using
the first eigenvector and eigenvalue it is possible to recover
the input signal z:

Z(t) =
√
(λ1)u1(t) (11)

where λ1 is the first eigenvector and u1 the first eigen-
value.

The marginal properties 2 and 3 together with property 6
indicate whether a two-variable function satisfies the WV distri-
bution. Figure 1 shows the Wigner-Ville decomposition and the
marginal conditions represented by the instantaneous energy in
Figure 1b and the power spectrum in Figure 1d.

Attenuation of interference terms
WVD computing of a multicomponent function introduces inter-
ferences due to cross-terms. This is due to the fact that WVD is
a quadratic function. Several methods have been proposed to at-
tenuate the terms of interference and make WVD an efficient tool
for signal analysis. Attenuation has two objectives:

(i) Smoothing out interference terms;

(ii) Maintaining the concentration of components in the time
and frequency domain (i.e. maintaining the resolution of
the representation).

One method that proved capable of satisfying the two condi-
tions is the combination of the Discrete Wigner-Ville theory with
Burg’s Maximum Entropy method.

Maximum Entropy Method
In the estimation of the power spectrum, the Short Time Fourier
Transform (STFT) of the coefficients of the Autocorrelation
Function (ACF) is commonly used. However, the use of the
Fourier transform is limited by the effects of leakage when the
data are truncated. A solution to obtain a good resolution from
a limited series of data was formulated by Burg (1975 apud

Brazilian Journal of Geophysics, Vol. 36(2), 2018
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Figure 1 – Wigner-Ville decomposition and the marginal properties. (a) synthetic signal, (b) marginal property in frequency:
instantaneous energy, (c) Wigner-Ville distribution, (d) marginal property in time: power spectrum (Zoukanéri, 2014).

Zoukanéri 2014) by the Maximum Entropy Method. The entropy
of a Gaussian process is proportional to:

∫ +fN
−fN

logP (f)df (12)

where P (f) is the power spectrum, and fN is the Nyquist fre-
quency. Burg maximizes the entropy with the following condition:

Rn =

∫ +fN
−fN

P (f) exp(i2πfnΔt)df (13)

where Rn is the autocovariance, −N < n < N .
The solution is obtained using the Lagrange coefficients

λk, k = 1, . . . , N , such that

∂

∂P (f)

( ∫ +fN
−fN

logP (f)df

−λk
( M∑
−M
P (f) exp(i2πfnΔt

))
= 0

(14)

The solution to Equation (14) is given by:

P (f) =
ENc−1Δt

|∑Nc−1n=0 cne
−i2πfnΔt|2 (15)

where P (f) is the power spectrum, cn, n = 0, . . . , Nc −
1, (c0 = 1), represents the coefficients of the prediction error

operator (PEO) of orderNc,ENc is the energy error counterpart,
f is bounded by the Nyquist interval−1/2Δt ≤ f ≤ 1/2Δt.

Equation (15) is considered the basic expression of the Max-
imum Entropy Method. The power spectrum P (f) is completely
defined if the coefficients cn and the energy ENc are known.
Several methods can be used to determine the PEO coefficients
of orderNc and the corresponding energy. Among the most used
is the Burg algorithm (1967 apud Zoukanéri, 2014). This method
is based on the least squares criterion.

Maximum entropy method applied to WVD

The idea is to use the Burg method to compute the PEO and then
use the PEO coefficients to compute and extend each Wigner-Ville
kernel sequence. The spectrum obtained through this procedure
avoids the effects of the interference terms of the classic Wigner-
Ville representation.

To each sequence of K(n) it is possible to associate an
analytic signal z̃(n) whose boundaries will be defined by a
window L. The sequence of autocorrelation coefficients corre-
sponding to z̃(n) is:

z̃(n) =

{
z
(
n− L

2

)
, . . . , z(n), . . . , z

(
n+
L

2

)}
(16)

where L is an odd number representing a symmetric time win-
dow and centered at the point z(n). The window size L and the

Revista Brasileira de Geof́ısica, Vol. 36(2), 2018
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number of coefficients of theNc filter control the resolution of the
decomposition in the time-frequency plane.

The sequence of autocorrelation coefficients corresponding to
z̃(n) is:

K̃(n) =

{
k
(
n− L

2

)
, . . . , k(n), . . . , k

(
n+
L

2

)}
(17)

Using the Burg algorithm to obtain ACF coefficients asso-
ciated with the maximum entropy spectrum, one can apply the
K̃(n) by stating its coefficients as:

k̃n(j) = −
j−1∑
i=1

k̃n(j − i)c(j − 1, i)− c(j, j)Ej−1 (18)

From the Hermitian properties of the kernel we have
k̃n(−j) = k̃∗n(j). Using Equation (18), the terms k̃n(j), j =
1, . . . , Nc are calculated. The remainder of the termsNc < j ≤
N are obtained by imposing c(j, j) = 0. It is observed that
Equation (18) allows to estimate both the odd and even part of the
kernel. The instantaneous power density spectra of the Wigner-
Ville distribution is obtained by making the Discrete Fourier
Transform of Equation (18).

By shutting down the window and repeating the process for all
kernel sequences, the time-frequency representation of Wigner-
Ville Maximum Entropy Method (WV-MEM) is achieved without
the influence of the interference terms.

Extraction of instantaneous attributes
The instantaneous frequency is commonly estimated from the
complex trace, through the derivative of the instantaneous phase.
This estimate, however, is quite susceptible to noise. As a way of
overcoming the noise, the average instantaneous frequency can
be obtained by computing the first moment of the Wigner-Ville
distribution (Boashash, 1992 apud Zoukanéri, 2014). Its expres-
sion is given by:

f̂(t) =

∫+∞
−∞ fW (t, f)df∫ +∞
−∞ W (t, f)df

(19)

where f̂ is the instantaneous average frequency, f is the fre-
quency, W (f, t) is the Wigner-Ville distribution obtained with
the WV-MEM.

Equation (19) suggests that the instantaneous frequency is
the weighted average curve of the Wigner-Ville distribution. The
frequency thus calculated is more stable to noise. Equation (19)
also suggests that the Wigner-Ville spectrum is first computed in
the Fourier domain. However, using the Parseval theorem and the
symmetries of the power spectrum, is possible to compute the

instantaneous average frequency directly in the time domain as
presented in Zoukanéri & Porsani (2015).

f̂(n) =
2
∑l=(N−1)/2
l=1 q(l)K̂n(l)

NKn(0)

( 1

NΔt

)
(20)

where f̂(n) is the instantaneous average frequency, q(l) is the
imaginary part of the inverse Fourier transform of the sawtooth
function (Weber & Arfken, 2003), K̂n(l) = Imag(K̂n(l)) is
the imaginary part of the terms of the sequence k̃(n) obtained
from Eq. (18). The term 1/NΔt is required to convert to fre-
quency unit.

In addition to frequency, higher order attributes can also be
estimated. The second moment of WV-MEM is related to the local
deviation of the frequencies with respect to the average frequency.
This deviation is called the Instant Bandwidth and is given by:

σ2(t) =

∫ +∞
−∞ (f − f̂(t))2W (t, f)df∫ +∞

−∞ W (t, f)df
(21)

In the same way the third and fourth moments are related re-
spectively to the skewness and the attribute kurtosis. Skewness
describes the deviation of the density function with respect to nor-
mal and is given by the expression:

S(t) =

∫ +∞
−∞ (f − f̂(t))3W (t, f)df
σ3(t)

∫ +∞
−∞ W (t, f)df

(22)

It indicates the degree of asymmetry or distance from the nor-
mal measure, that is, it quantifies how symmetrical a distribution
is (Fig. 2). A symmetric (Gaussian) distribution, by default, has a
zero skewness. An asymmetric distribution with a long tail to the
right (values higher than normal) has skewness positive (inclina-
tion facing the negative side). Already an asymmetric distribution
with a long tail to the left will have a negative skewness (i.e., a
slope facing the positive side).

Figure 2 – Graphical representation of asymmetry distribution (skewness).

Meanwhile, kurtosis measures how sharp (peakness) is the
distribution. This attribute is computed from the WV-MEM as:

K(t) =

∫+∞
−∞ (f − f̂(t))4W (t, f)df
σ4(t)

∫ +∞
−∞ W (t, f)df

− 3 (23)

Brazilian Journal of Geophysics, Vol. 36(2), 2018
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where the term −3 causes K(t) to take zero value for a normal
distribution case.

The sharper the shape of the wavelet in the seismic trait, the
closer it is to the reflectivity. Therefore, it is called kurtosis to the
degree of flattening of a distribution with respect to the degree of
a normal (Gaussian) distribution that is taken as the standard.

Although it is common to explain kurtosis as the degree of
flattening of a frequency distribution, what the measures of kur-
tosis actually seek to indicate is the degree of concentration of
values of the distribution around the center of this distribution.

In a unimodal distribution, the greater the concentration of
values around the center of the same, the greater the value of
its kurtosis. Graphically, this will be associated with a curve
with the sharper central part, showing a more prominent, more
pointed peak frequency, characterizing the mode of distribution
more clearly (Fig. 3).

Figure 3 – Graphical representation of different flattening degrees of a distribu-
tion (kurtosis).

Low Frequency Anomaly
Low frequency anomalies have been observed since the late 1970s
(Taner et al., 1979). There are numerous examples of successes of
frequency analysis as indicative of hydrocarbon (Castagna, 2003;
Korneev et al., 2004; Sinha et al., 2005; Goloshubin et al., 2006).

The mechanism for generating low frequency shading zones
below gas reservoirs is still not well known. These anomalies are
usually associated with high attenuation of high frequencies in
gas-bearing reservoirs. However, this fact is difficult to explain in
thin reservoirs, where the propagation time of the wave along the
attenuating medium is small.

Tai et al. (2009) suggests for these cases that only the pres-
ence of low-speed zones would cause the low frequency zones
below the reservoirs. According to Goloshubin et al. (2006), there
are several types of low frequency anomaly. In some cases, these
anomalies are located in the reservoir itself, without a delay in
the seismic time in relation to the reflector corresponding to the
reservoir.

In other cases, the anomalies are located with a seismic de-
lay of more than a hundred milliseconds below the reservoir. For

Goloshubin et al. (2006), this delay is due to the conversion of
the fast-slow-fastP -wave into interlaminated (thickness less than
onem) and highly permeable reservoir.

The slow P wave is associated with the mobility of fluids rel-
ative to the porous framework. As this wave is greatly attenuated,
it is usually ignored in the exploration seismic, but for this geo-
logical model has to be considered.

Many authors use the attenuation concept to justify low fre-
quency because the phenomenon of attenuation is as if it were
operating a low pass filter that suppresses high frequencies pro-
portionally more than the low frequencies.

Some oil/gas reservoirs usually have a low value ofQ (quality
factor) than the surrounding rocks and thus exhibit an anomalous
zone of absorption (Tai et al., 2009). Even so, it is difficult to ex-
plain the anomalies observed on little thick reservoirs where there
is not enough time of travel of the waves on the reservoirs with
gas that justifies such anomaly (Castagna, 2003).

According to Tai (2009), if the low frequency anomaly is
caused simply by attenuation factors, then it is possible to com-
pensate the high frequency components within the anomaly by
applying a reverse filter ofQ. However, Wang (2007) showed that
the low frequency shadow zone continues to exist even after the
Q compensation.

The paper published by Tai (2009) seeks to explain the physi-
cal reasons for the correlation of the presence of gas in thin reser-
voirs and the low frequency anomaly. He classified the frequency
influence factors into two categories. The first, which he called
global factors, groups the frequency changes into every seismic
section and determines the background frequency. Wavelet, the
adopted flowchart of seismic data processing, and regional geo-
logical structures, for example, are part of this group.

The other category, which he classified as local factors, in-
cludes, for example, the variation of thickness, the variation of lo-
cal properties of litofacies and the presence of abnormal pressure
in the pores of the reservoir.

In the study of local factors, Tai (2009) found a relationship
between reservoir thickness, velocity and density with the low fre-
quency anomaly that can be summarized as follows: Reservoir
thickness and acoustic impedance are the main factors control-
ling the spectral response of the seismic signal in a and if the
thickness of the reservoir varies less than 20%, velocity is the
dominant factor that influences the frequency variation.

RESULTS

The objective of this work is the deep water reservoirs. They are
part of the supersequence that marks the beginning of the drift
phase of the basin. Sediment deposition occurred initially in a

Revista Brasileira de Geof́ısica, Vol. 36(2), 2018
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Figure 4 – Zoom in Section VB-24. Red arrow indicates reservoir position of the Calumbi Formation. Seismic reflectors
with high amplitude, around the time 5900 ms, represent the marine generating rock of Continguiba Formation.

restricted marine environment that later evolved into an open
sea environment as the oceanic crust set in. This supersequence
is composed by the Sergipe Group (Riachuelo and Contingui-
ba Formations) and Piaçabuçu Group (Calumbi, Marituba and
Mosqueiro Formations) (Araújo, 2009).

According to Feijó (1994), the Calumbi Formation consists
of gray to greenish argilite and shales, with intercalations of fine
and coarse sandstones. Argilite and shales would have been de-
posited on the slope and on the abyssal plain, while the sand-
stones are interpreted as being of currents of turbidity currents.

The turbidite sandstones are the reservoirs that were used in
the studies of the low frequency anomalies associated with the ac-
cumulation of gas. To test the effectiveness of the method on real
data we have used two seismic lines and drilled wells that pass
over the reservoirs. The anomaly was studied using the instanta-
neous average frequency obtained through WV-MEM. In addition,
we also analyzed the behavior of the attributes instantaneous en-
ergy, kurtosis and skewness.

The first line (called VB-24) has direction NW-SE (dip direc-
tion of the basin). It has about 58 km of extension. It passes
through a turbidite reservoir bearing gas in the seismic time of
approximately 5570 ms on the 5500 trace. The top of the reser-
voir is highlighted by a low acoustic impedance anomaly (white
peak in seismic) (Fig. 4). In this section is also possible to ob-
serve the marine generating rock of the basin represented by the
amplitude anomaly around the time 5900 ms.

An instantaneous average frequency profile of the trace pass-
ing over the reservoir is shown in Figure 5. Figure 5b represents

the time-frequency plane with the curve marking the variation of
the instantaneous average frequency of the trace. The instanta-
neous energy was plotted over frequency curve. The red peaks
on the frequency curve represent the points associated with the
high energy.

In Figure 5b, the black arrow indicates the top of the reservoir.
Therefore, it is possible to observe that this point of the reservoir
marks an anomaly of high instantaneous energy (associated to
the high amplitude) and that, along the reservoir, the frequency
decays, being the base of the reservoir represents a place of low
instantaneous average frequency.

Figures 6 and 7, respectively, represent the overlapping of
the instantaneous average frequency section over the seismic
amplitude and the instantaneous energy section also over the
seismic amplitude. The blue color reveals the low frequency sites
(ranging from 0 to 16 Hz). The low frequency anomalies asso-
ciated with the presence of gas occur just below the reservoir
(Fig. 6).

The attribute skewness establishes, as seen, the degree of
asymmetry of a distribution in relation to the Gaussian distribu-
tion. A positive skewness represents a distribution where its peak
is relatively close to the origin, i.e., the elements with the highest
frequencies are the ones with the lowest values of the distribution.

Figure 8 shows the behavior of skewness in the study section.
It is possible to verify that on the base of the gas-bearing reser-
voir is where the highest values of the attribute are recorded. The
higher the value of skewness, the more positive is the asymmetry.
A higher positive asymmetry is related, in our case, to the lower

Brazilian Journal of Geophysics, Vol. 36(2), 2018



�

�

“main” — 2018/9/19 — 19:08 — page 194 — #8
�

�

�

�

�

�

194 TIME-FREQUENCY DECOMPOSITION METHOD IN THE STUDY OF GAS RESERVOIR

Figure 5 – Section VB-24 showing the position of the profile of the instantaneous average frequency over the 5500 trace, (b) represents
the time-frequency plane of the trace showing the variation of frequency and high energy points (red peaks). The black arrow indicates
the top of the reservoir.

Figure 6 – Section VB-24 with the instantaneous average frequency (transparency of 50 percent) on the seismic amplitude. The black
arrow indicates the anomaly low frequency occurring below the gas reservoir.
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Figure 7 – Section VB-24 with the instantaneous energy (transparency of 50 percent) on the seismic amplitude. The gas-
carrying reservoir is a region where the highest instantaneous energy values occur (yellow and red).

Figure 8 – Section VB-24 with the attribute skewness (transparency of 50 percent) on the seismic amplitude. The arrow
indicates the base of the reservoir where marks a region of high skewness values associated with low frequencies.

frequency bands. That is, the skewness attribute is an indirect way
of studying, in this case, the behavior of the instantaneous average
frequency.

Kurtosis stipulates how pointy a distribution is compared to a
normal (Gaussian) distribution. The kurtosis measurements indi-
cate the degree of concentration of the values of the distribution.
So, a relatively high value indicates that there is concentration of
the values around the center. However, the smaller values indicate
a dispersion of the distribution around its center.

From the analysis of Figure 9, it is concluded that the base

of the Calumbi Formation reservoir is a region where high values
of kurtosis are concentrated, that is, below the reservoir the dis-
tribution is more pointed. This means that there is no dispersion
of distribution values in that region. This behavior was expected
since, based on the frequency investigation, the base of this is a
region of low frequency concentration, thus, this behavior is re-
flected in the high values of kurtosis. The kurtosis attribute is also
an indirect way of studying the behavior of the frequency.

The second line tested was SA232. It has direction (NE-SW)
parallel to the strike direction of the Basin. It has about 30 km
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Figure 9 – Section VB-24 with the attribute kurtosis (transparency of 50 percent) on the seismic amplitude. The arrow indicates the
base of the reservoir region of high kurtosis values associated distribution (concentration of the values of the near the center).

Figure 10 – (a) Section SA232 showing the position of the profile extraction of the frequency. (b) Time-frequency plot of the trace showing the
variation of the instantaneous average frequency curve. About this same curve was plotted the peaks of the instantaneous energy (red color).

of extension. This seismic line contains a well that drilled a tur-
biditic reservoir saturated with water (Fig. 10). It is noted, once
again, that the top of the reservoir is marketed by an anomaly of
low acoustic impedance (white peak in seismic).

Trace 2310 passes over the reservoir (Fig. 10b). This graph,
which represents the time-frequency decomposition of the trace,
does not show the low frequency anomaly associated with the
gas accumulations, i.e., there is no reduction in the value of

the characteristic instantaneous average frequency over the reser-
voir with its base being a local low frequency. The instantaneous
energy, which is plotted over frequency curve, apparently did not
indicate the top of the reservoir as a high energy point.

The frequency and energy behavior responses suggest the
absence of gas (Figs. 11 and 12). The attributes skewness
(Fig. 13) and kurtosis (Fig. 14) have different responses when
compared to the responses obtained in the reservoir with asso-
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Figure 11 – Section SA232 with the instantaneous average frequency (transparency of 50 percent) on the seismic amplitude.
The arrow indicates the region below the reservoir where there is no occurrence of low frequencies.

Figure 12 – Section SA232 with the instantaneous energy (transparency of 50 percent) over the seismic amplitude.

ciated gas. In the case of skewness, the positive asymmetry does
not correspond to the highest values of this attribute (above 0.6 in
the scale). The kurtosis also resulted in values different from those
obtained in the gas reservoirs, thus generating a distribution with
more values around the center (less pointed).

CONCLUSIONS

The approach used for spectral decomposition combines the
maximum entropy method and the Wigner-Ville distribution,
based on the idea of the Burg method that uses the prediction error
operator to extend the Wigner-Ville kernel sequences by apply-

ing, then, the Fourier transform to each extended sequence of the
kernel, thus allowing to obtain the Wigner-Ville distribution of
maximum entropy.

The instantaneous average frequency was obtained directly in
the time domain using the proposed method (WV-MEM). This
frequency is obtained with a derivative operator applied to the
Wigner-Ville Maximum Entropy Kernel. The high temporal and
frequency resolution are fundamental aspects that value it, be-
sides the robustness of the method against noise, compared to
traditional methods. The number of coefficients (the order of the
operator Nc) and the window L, used to estimate the prediction
operator, control the resolution of the method.
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Figure 13 – Section SA232 with the attribute skewness (transparency of 50 percent) on the seismic amplitude. The arrow indicates
the base where there is no characteristic presence of the highest values of asymmetry associated with lower frequency.

Figure 14 – Section SA232 with the attribute kurtosis (transparency of 50 percent) on the seismic amplitude. The arrow indicates the base of
the reservoir where low values are associated with a distribution less sharply (i.e. there is a dispersion of their central value).

The location of an exploratory well, when the main objective
is a stratigraphic trap, requires much more studies to minimize
the exploratory risks. The application of the instantaneous aver-
age frequency studies, in this case, has helped to minimize the
risks of prospecting by observing the low frequency anomalies
that are associated with the presence of gas.

The use of higher order attributes, such as skewness and
kurtosis, served as a criterion for quality control of the studied
anomalies. In addition, these attributes improved the resolution
of the anomalies studied (they more accurately marked the be-

havior of the anomaly below the reservoir) in a significant way
that is even possible to infer the extension of the reservoir more
precisely.
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FEIJÓ FJ. 1994. Bacias de Sergipe e Alagoas. Boletim de Geociências
da Petrobras, 8(1): 149–161.

GOLOSHUBIN G, KORNEEV V, VAN SCHUYVER C, SILIN D & VINGALOV
V. 2006. Reservoir imaging using low frequencies of seismic reflections.
The Leading Edge, 25(5): 527–531.

KORNEEV V, GOLOSHUBIN G, VAMSCHUYVER C & SILIN D. 2004.
Seismic low-frequency effects in monitoring of fluid-saturated reservoirs.
Geophysics, 69: 522–532.

SINHA SK, ROUTH PS, ANNO PD, PHILLIPS C & CASTAGNA JP. 2005.
Spectral decomposition of seismic data with continuous-wavelet trans-
form. Geophysics, 70: 19–25. doi: 10.1190/1.2127113.

TAI S, PURYEAR C & CASTAGNA JP. 2009. Local frequency as a direct
hydrocarbon indicator. In: SEG Houston 2009 International Exposition
and Annual Meeting, Houston, Texas, p. 2160–2164.

TANER MT, KOEHLER F & SHERIFF RE. 1979. Complex seismic trace
analysis. Geophysics, 44: 1041–1063.
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