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DETERMINATION OF THE STACKING VELOCITY FIELD VIA OPTIMIZATION METHODS

Danian Steinkirch de Oliveira1, Milton José Porsani2 and Paulo Eduardo Miranda Cunha3

ABSTRACT. We developed a strategy for automatic Semblance panels pick, that uses Genetic Algorithm optimization method. In conjunction with restrictions and
penalties set from a priori information it’s obtained as a result a nonlinear fit of time interval velocities, that when converted at root mean square (RMS) velocity, better

maximizes the sum of the Common Mid Point (CMP) group, corrected with normal moveout (NMO). Currently, a good imaging of deep reflectors, especially in Brazilian
basins, below the salt layer, has proved to be a major challenge. Obtaining a seismic velocity field corresponding to the subsurface geology and resulting in a focused

seismic image is the main target of seismic processing. In the last decade, the reflection tomography has established itself as one of the main methods of velocity model
construction for seismic data migration. On the other hand the full waveform inversion (FWI), taken forward due to recent advances in computing, become feasible in

inversion of 2D and 3D velocity models. Despite the stacking velocity analysis be, among these, the less accurate method for generating velocity fields, it is still used on

a large scale by the oil and seismic processing companies, because of its low cost and can provide a good initial velocity field for tomography and FWI.
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RESUMO. Foi desenvolvida uma estratégia de pick automático dos painéis de Semblance , que usa o método de otimização Algoritmo Genético. Em conjunto com
restrições e sanções estabelecidas a partir de uma informação a priori, foi obtido como resultado um ajuste não-linear de velocidades intervalares em tempo, que quando

convertidas em velocidade RMS, melhor maximiza a soma do grupo CMP, corrigida de NMO. Atualmente, provou ser um grande desafio a geração de uma boa imagem
de refletores profundos, especialmente em bacias brasileiras abaixo da camada de sal. A obtenção de um campo de velocidades sı́smica correspondente à geologia do

subsolo, resultando em uma imagem sı́smica focada é o principal alvo de processamento sı́smico. Na última década, a tomografia de reflexão estabeleceu-se como um
dos principais métodos de construção de modelo de velocidade de migração de dados sı́smicos. Por outro lado, a inversão de onda completa (FWI) tomou a frente,

devido aos seus excelentes resultados de inversão de modelos de velocidade 2D e 3D, que se tornaram viáveis somente pelos recentes avanços na computação. Apesar

da análise de velocidade de empilhamento ser, entre estes, o método menos preciso para gerar campos de velocidade, ainda é utilizada em larga escala pelas companhias
de petróleo e processamento sı́smico, por causa do seu baixo custo e por poder proporcionar um bom campo de velocidade inicial para tomografia e FWI.
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INTRODUCTION

Obtaining the seismic velocity field became the main target of
subsurface imaging in oil exploration. Seismic data migration is
the process of depropagation of the wave field recorded in the re-
ceivers, in order to recover it at the exact moment of the scattering
occurred during acquisition.

It can be understood as a mapping of the data recorded in time
for a seismic section in time or in depth, with the correct position
and amplitude of the reflectors. A good velocity field is able to
focus seismic reflectors. With a good image the geophysicist can
interpret the geological features of an oil field.

The objective of this research is to analyze the response of
differents optimization methods, global and local, facing the in-
verse problem of the velocity model estimation which better cor-
rects the NMO (normal moveout) and stacks CMP (Common Mid
Point) groups. It will be shown a strategy of inversion that per-
forms automatic pick of Semblance panels and generates an ini-
tial model of interval velocities in time. This strategy was based
on Lumley (1997), which used the Monte Carlo method for gen-
erating random velocity field models. The global search method,
Genetic Algorithm, used in this work, proved to be superior than
purely statistical methods such as Monte Carlo method by us-
ing a rule of probability to guide their search among the models
parameters (Sen & Stoffa, 1995).

Although the stacking velocity analysis be the less accurate
among the methods of inversion of the velocity field, it is still
used on a large scale by major petroleum and seismic process-
ing companies because it is cheap and can provide a good initial
velocity field.

THE SEISMIC VELOCITY FIELD

The good imaging of subsurface using seismic reflection is essen-
tial for the correct interpretation of geological features and con-
struction of the reservoir model that will be the target of exploita-
tion in oil industry.

However, the imaging is attached to the velocity field, in other
words, a good image can be obtained only with a knowledge of
the seismic velocity model. A good strategy for determining the
subsurface velocity becomes essential (Kosloff et al., 1996). The
seismic velocities play two major roles in exploration geophysics
(Gao et al., 2007). The first one, as mentioned above, says that
the fields obtained by migration or stack velocity analysis, are
used to enhance the images of the subsurface seismic reflectors.
However, these generally do not represent the true velocity in the
subsurface, especially in areas with complex structures.

The velocity field used for depth migration in 3D should be
identical to the subsurface geology, or unless a low pass filtered
version of it. The second function of velocity fields requires that
models, wich approximate the true velocity distribution in the
subsurface, contains important information about the lithology
and location of fluids.

This idea is supported by Rowbotham & Pratt (1997) who
argues that the velocity models are essential in detecting subtle
changes in lithology, porosity and permeability.

The subsurface information that we possess are basically
transit times and amplitudes. The transit time of the wave
fronts generally provide information of low frequency components
(background) parameters of the medium, while the amplitudes of
the wave fronts carry information of high frequency components
(Clayton & Stolt, 1981). It is important to use both information
contained in the seismic data to have a velocity model as complete
as possible, with the low and high frequency components. There
are two main techniques used in the construction of the velocity
field, the seismic tomography and FWI (Full Waveform Inversion).
The first is based on geometrical optics, while the second uses
the wave equation.

The tomography technique consists in picking the transit
times of seismic events, which constitute the observed data. Ray
tracing methods are used then to predict the transit times of can-
didates velocity models (Varela et al., 1998). In the last decade,
the reflection tomography has established itself as one of the main
methods of velocity model construction for time or depth migra-
tion of seismic data and tomography of first arrival, applied to
large-aperture seismic data, proved to be a interesting tool in the
investigation of the Earth’s interior structures (Delost et al., 2008).

In the last decade the FWI has gained increasing attention
due to its success in geologically complex scenarios (Pratt et al.,
1998; Jaiswal et al., 2009), where conventional processing has
shown limited results. The FWI is an extremely powerful tech-
nique capable of constructing high-resolution images whose aim
is to estimate the velocity model that most closely approximates
the true wave field recorded (Valenciano et al., 2009), making an
adjustment of real seismic data (seismograms) and the data ob-
tained by modeling the wave field. This nonlinear inverse prob-
lem is solved comparing the data recorded with the seismic data
modeled by the wave equation, and through various iterations,
improve the initial velocity model (Charara et al., 2000). Recent
advances in high-performance computing allow the feasibility of
this technique in 3D acoustic models (Virieux & Operto, 2009).
The knowledge of the optimization methods solution of linear
systems stands as central point to understanding these two in-
version techniques.
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BASIC CONCEPTS OF THE INVERSION THEORY

A key role of geophysics is to make quantitative inference of the
physical properties of the Earth’s interior from surface data and
indirect measurements, which is an inverse problem or a process
of inductive reasoning. The seismic inversion extracts informa-
tion about the subsurface by adjusting the model parameters and
predicted data, by direct modeling (simulation), with the observed
data on the surface or in the pit (Symes et al., 2011). Most geo-
physical problems are nonlinear problems that may be expressed
by the operator

d = F (m), (1)

where m is some function (or vector) describing the model pa-
rameters, d is a data set which can also be characterized as a
function of the observation point (in the case of continuous ob-
servations) or a vector (in the case of discrete observations) and
F a function that relates m with d. For now, we will discuss
linear discrete version of the inverse problem

d = Gm, (2)

where d andm are, respectively, characterized by vectors

d =

⎡
⎢⎢⎣
d1
...
dM

⎤
⎥⎥⎦ m =

⎡
⎢⎢⎣
m1

...
mN

⎤
⎥⎥⎦

and G is a matrixM × N which relates the model space with
observed data space, also called the system geometry.

G =

⎡
⎢⎢⎣
g11 · · · g1N

...
. . .

...
gM1 · · · gMN

⎤
⎥⎥⎦

Solving an inverse problem is to determine a estimated model,
used in direct modeling, that has a minimum error when com-
pared the predicted data with the observed data (Sen & Stoffa,
1995).

Φ(mest) =

M∑
i=1

(dobsi − dprevi )2 (3)

Take for example the Φ function in equation (3) with L2 norm,
where the observed and predicted data can be described as

dobs = Gmverd (4)

and
dprev = Gmest. (5)

The true model of the Earth, where the observed data was
recorded is calledmverd whilemest is the model used to calcu-
late the predicted data. This function has several names, including
the name of the objective function is the most common. This func-
tion can also purchase other forms with standard Lp (Porsani et
al., 2000), for example.

Φ(mest) = 1−
2
∑M
i=1

∣∣∣∣ dobsi − dprevi

∣∣∣∣
p

[∑M
i=1

∣∣∣∣ dobsi + dprevi

∣∣∣∣
p

+
∑M
i=1

∣∣∣∣ dobsi − dprevi

∣∣∣∣
p
] (6)

If we consider mest = m̃ and dprev = d̃, the vector e
become a representation of the error between the observed data
and the predicted data [dobs − dprev] or simply [d− d̃]

e = [d− d̃]. (7)

The error is measured according to the norm used. The L1 norm
is more robust because it is less sensitive to measures that are
very nonstandard (outliers). AL2 norm, also called the Euclidean
norm, tries to adjust the models to these measures (outliers), but
when you’re close to the solution, the L2 norm is better because
it is infinitely differentiable (Menke, 1989).

OPTIMIZATION METHOD – GENETIC ALGORITHM

The inverse problem consists in recover the model parameters by
fitting the observed seismic data with the synthetic modeled data.
However, the data predicted by the solution of the direct problem
are generally different from observed data. So the strategy is to
use iterative methods that minimize the error between observa-
tions and predictions by adjusting the parameters of the models
at each iteration (Amundsen & Ursin, 1991).

The optimization methods for solving inverse problems are
recursive methods, which aim at each iteration k, compute a new
modelmk, whose error ek = [d−dk] is less than the error in
the previous iteration (ek < ek−1).
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A major goal of the inversion is to find the minimum of an er-
ror function or the maximum of a correlation function. Due to the
fact that such functions may have several minima and maxima of
different heights, a linear gradient-based method may not be the
most appropriate inversion technique, unless the reference model
be adequately close to the true solution.

The local scope optimization methods does not prevent
the convergence of function due to the limited accuracy of
the initial model, the lack of low frequencies, the presence of
noise and approximations made during direct modeling (Virieux
& Operto, 2009).

Thus, in order to avoid non-convergence of the local scope
optimization methods, we choose a gobal search method or a ran-
dom search technique, such as the Monte Carlo method (Sen &
Stoffa, 1995). Other methods based on random search but using
a probability rule to guide their search parameters among mod-
els, such as Simulated Annealing and Genetic Algorithm, instead
purely statistical methods such as Monte Carlo.

The Genetic Algorithm (GA) is a technique used in functions
defined in spaces of models with large dimensions. It simulates
the biological processes of evolution by crossing, selection and
mutation, to improve performance (fitness) of a given population
models (Hong & Sen, 2009). The performance (ϕ) of a model
can be calculated in different ways (Sen & Stoffa, 1995; Porsani,
2008), for example

ϕ(mk) =
dTdk

(dTd)
1
2
(
d(k)Tdk

) 1
2

, (8)

where, if d = dk −→ ϕ(m) = 1. The performance or fit-
ness for a particular model quantifies how good is the fit of the
observed data, d, with calculated data, dk, from a given model
mk under the F operator,

dk = F (mk).

The first step is to randomly select the parameters that will gen-
erate a population of models. To illustrate the GA method, let us
consider the hypothetical example with three parameters, velocity
v, the gradient layer α and depth of the interface h. The parame-
ters are vectors that have a minimum, a maximum and a sampling
interval value, defined based on prior knowledge of the geological
and geophysical of the area of interest.

{m1k}Nvk=1 = {vk}Nvk=1 = {v1, . . . , vNv}
{m2k}Nak=1 = {αk}Nak=1 = {α1, . . . , αNa}
{m3k}Nhk=1 = {hk}Nhk=1 = {h1, . . . , hNh}

We may relate the position k of the vector with the parameter
valuemjk, through

mjk = mjMin + (k − 1) ∗Δmj, (9)

wheremjMin is the initial value and Δmj is the sampling in-
terval of the model mj . A unique feature of Genetic Algorithm
is that it is able to work simultaneously with a population with
various models coded. The next step consists in designing a bi-
nary encoding scheme (Sen & Stoffa, 1995), that represents mod-
els. Thus, each bit corresponds to a gene, and each model in the
population is described by a bit string or chromosomes. Conven-
tionally, the chromosomes in the GA method has a fixed size. The
size of the binary string is equal to

Nj = 2
nbits − 1 (10)

where Nj is the total number of samples of model’s parameter
vectormj . There are several ways to code models. Tables 1 and
2 exemplify the encoding used in this research where the binary
values are always related to the position k on the parameter vector
(Sen & Stoffa, 1995)

The initial models with binary coding are gradually optimized
by maximizing the fitness function, with the three evolutionary
operators until the best model is obtained. In Selection step, mod-
els will be chosen to replace the current population. The proba-
bility of model being selected is proportional to its performance.
Thus models with higher performance are more likely to be se-
lected. This is followed by crossing, where some models are
paired and information is exchanged between each pair based on
a probability function. Finally, the mutation operator disturbs all
parameters with a low probability. The mutation causes diversity
in models which prevents premature convergence and helps to
jump out of the local optimum. The probability of mutation must
be very low, otherwise good models can be destroyed.

At the end of the mutation step, the new generation candidates
are accepted or rejected based on the Metropolis algorithm, which
is followed by a new cycle of genetic operations until a certain
convergence criterion is satisfied. The GA is quite robust, and its
main advantage is that it always converges to models with higher
performance with a reasonable number of crossover and mutation
(Hong & Sen, 2009).

Genetic Algorithm Steps (Porsani, 2008).

1. Generate an initial population at iteration k = 0.

2. Evaluate the fitness of the population.

3. Apply the genetic operator.

Revista Brasileira de Geof́ısica, Vol. 33(3), 2015
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Table 1 – Binary encoding example of a parameter with 3 values.

Parameter Value Position in vector Binary value

v
1500 m/s 1 00
2000 m/s 2 01

Nv = 3 2500 m/s 3 11

Table 2 – Binary encoding example of a parameter with 5 values.

Parameter Value Position in vector Binary value
5◦ 1 000
10◦ 2 001

α 15◦ 3 011
20◦ 4 100

Na = 7 25◦ 5 101
30◦ 6 110
35◦ 7 111

3.1. Randomly select two parents.

3.2. Make crossing.

3.3. Compare the child with the worst fitness model.

4. Generate a new population descending

5. Set k = k + 1, go to step 2 and repeat until reach
a stopping criterion which is satisfied by the descendant
population.

Inversion example using Genetic Algorithm
To better exemplify the Genetic Algorithm optimization method for
solving nonlinear inverse problem, we take the analytical solution
of the transit times for a simple model with a sloping interface
of inclination θ to the horizontal, and depth h on the zero-offset
position. The time travel (srxi) from a particular source posi-
tioned at the point s whose wave propagates in the layer V1 (we
will call it v), reflects in the interface V1/V2 and is received in
the geophones x, are calculated by

t(h, v, θ,Δx) =
1

v

{[
2hcos(θ)

]2
+

[
Δx+ 2hsen(θ)

]2} 12
(11)

whereΔx is the difference between the position of receivers (xi)
and the position of the source (s).

Δx = (xi − s) (12)

It can be seen from equation (11) that the geometry (s,x) can not
be separated from model m(h, θ, v), as it was done earlier in
the linear problem. Then, to describe this problem, we use the
equation (1) modified

t = F (x,m) (13)

where

m =

⎡
⎢⎣ vθ
h

⎤
⎥⎦ =
⎡
⎢⎣ m1m2
m3

⎤
⎥⎦ . (14)

Through a modification of equation (3) it is possible to generate

the objective function for all space models

φ(mest) =

M∑
i=1

[
d(xi)

obs − F (mest, xi)
]2
, (15)

where d(xi)obs is the observed data vector in the xi position
and the error vector is equal to

Δd =

[
d(x)obs − F (mest,x)

]
(16)

or

Δd(m̃,x) = Δd̃

=

[
F (m,x)− F (m̃,x)

]
. (17)

The reflection travel times calculation of various source-receiver
pairs, simulating a common group of shooting were done us-
ing equation (11). An acquisition was simulated with 100 shots

Brazilian Journal of Geophysics, Vol. 33(3), 2015
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spaced 25 meters. The first shot has coordinated x equal to 3025
meters. Each group has 241 channels also spaced 25 meters,
disposed in a split-spread arrangement.

The travel times were used as observed data for inversion.
The model to be inverted has three parameters, the slope, the ve-
locity and depth of the initial layer, defined by the equation (13).
It was made a inversion of the parameters that define the model
described above. Details of the binary encoding of the model can
be seen in Table 1. We used the objective function of equation (6)
with Lp and p = 1/2. It was set to the true model the following
parameters:

• v0 = 1500 m/s

• z0 = 100 m

• α = 6 degrees

The parameters are vectors that have a minimum, a maximum and
a sampling interval value, which suggests the need for a prior
knowledge of the geological and geophysical properties of the
true model. The global search method Genetic Algorithm, does
not need that the candidate model be in the local minimum, just
close to it, contained in an interval (P min : P max, δP ), as
shown by the parameterization below. So the best model could be
contemplated during the iterations of the GA.

• v0 = [1200:18000,100] (m/s)

• z0 = [80:120,100] (m)

• α = [4:8,1] (degrees)

The inverted model

• v0 = 1500 m/s

• z0 = 105 m

• α = 6 degrees

had a premature convergence due to the number of parameters
that define the model space, contrasted with the large number of
individuals (models) of the initial population. The depth initial z0
assumed this value due to the regularization parameters for the
binary encoding.

SEISMIC PROCESSING IN VELOCITY ANALYSIS

During the stage called direct modeling, which calculates the
predicted data for the inversion strategy used in this study, was

applied several techniques that are quite common in seismic
processing.

One technique used in this work is the conversion of interval
velocity fields in depth to time and to RMS (root mean square).
The relationship between the interval velocity field in depth and
interval velocity field in time is given only by a change of vari-
ables, where

Vint(t) = Vint(z) (18)

and
t =

z

V(z)
(19)

The equation that relates time interval velocity field with the time
RMS velocity (Thomas, 2001) is given by

VRMS(tn) =

√∑n
i=1Vint

2(ti)∑n
i=1 ti

(20)

The seismic data organized in CMP groups are used to make
the stacking velocity analysis and construction of the zero-offset
section, where the position of the shot is the same of the re-
ceptor. To generate the zero-offset section, CMP groups are cor-
rected from normal moveout (NMO) time and stacked toward the
receivers. Normal moveout times are calculated by the formula
(Castle, 1994)

Δtnmo = tnmo − t0, (21)

where

tnmo = t0

√
1 +

(
Δx

vt0

)
, (22)

An undesirable event of NMO correction is the stretching of the
wavelet. The stretching can be automatically muted, giving a
maximum value in percentage for the ratio between the period of
the stretched pulse (T ) and the original pulse (T0):

T

T0
=
Δtnmo
t0

(23)

After NMO correction, the traces of the CMP group are summed
toward the receiver, according to the equation

d(g0)
prev =

M∑
i=1

[c(gi)] (24)

where d(g0)est is the seismic trace at offset equals to zero,
generated from the stacking of seismic traces d(gi)obs of a CMP
group corrected with the NMO (c(gi)), andM is the number of
traces of the CMP group.

Revista Brasileira de Geof́ısica, Vol. 33(3), 2015
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(a) 04 layer model

(b) 16 layer model

Figure 1 – Synthetic CMP group.
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Semblance panels are generated by normal moveout cor-
rection and stacking of CMP groups with different constant ve-
locities. These amplitudes values are normalized by Semblance
equation (Key & Smithson, 1990),

NE =
1

m

∑
n=1

(∑
i=1 fi,n

)2√∑
n=1

∑
i=1 f

2
i,n

(25)

Semblance panels are widely used in seismic processing, in the
stacking velocity analysis step for constructing an initial velocity
model.

LINEAR AND NONLINEAR SEMBLANCE FIT

Although there are more advanced techniques to build the velocity
model for migration, the stacking velocity analysis, by interpreting
the Semblance panels, is still widely used because it is a method
of low computational cost. But picking the Semblance panels still
require a huge human effort.

Where the geology is not to complex it is assumed that the
stacking velocity is the RMS velocity, used for migration of seis-
mic data. An algorithm capable of automatic interpretation of the
stacking velocity of Semblance panels can minimize the cost of
this processing step.

The main problem to be solved is around Semblance panels.
The global search optimization method, Genetic Algorithm, used
for the automatic interpretation of Semblance, randomly generates
an initial population of time interval velocities models and con-
verts the values of the parameters of model space in binary, where
the number of bits of the binary string has a relation (equation 8)
with the number of model parameters.

On the initial models, is applied three GA procedures, which
aims to generate descendants models better than the previous
population. Therewith, a rapid convergence to the solution was
obtained. The three processes are: selection, crossover and mu-
tation. To validate the strategy of Semblance fit using the Genetic
Algorithm, this methodology was applied in two synthetic CMP
groups (Figs. 1a and 1b).

The evaluation of the models of the initial population as well
as descendants of the models is called fitness. This value corre-
sponds to the sum of the values of the Semblance that cross the
RMS velocity curve, and controls whether a descending model is
accepted or rejected. Therefore, it was necessary to convert the
time interval velocity models for RMS. This procedure was used
in two steps called linear and nonlinear fit of RMS velocity.

Linear fit

A first step, called linear inversion, adjusts a function of RMS ve-
locities (equation 26) that maximizes the Semblance integration.

vRMS = v0 + αt
β (26)

The values to be inverted are v0, which is the initial or the
water surface velocity, the gradient of the velocity (α) and β,
which can be understood as the curvature of the velocity function.
The initial parameterization

• v0 = [1450:1550,25] (m/s)

• α = [100:1000,100] (m/s2)

• β = [100:2000,100]

defines the space of models. From this space is generated a pop-
ulation of RMS velocities. The initial population was evaluated
(fitness calculation for each model) and passed through the pro-
cesses of selection, crossover and mutation. The best models are
used as parents of the next generation. After n iterations we will
have a linear fit of Semblance, represented by Figures 2a and 2b.

The black curves represent the RMS velocities, adjusted in
the process of inversion and the red curves represent the time
interval velocities generated by the RMS conversion. This step
is very important because the velocity obtained becomes the
guide function that defines the boundaries of the model space for
nonlinearfit.

Nonlinear fit
The second step of the inversion performs nonlinear fitting
(Figs. 4a and 4b). The inverted RMS velocity in the first step
sets the guide function of this nonlinear step. Along this prior
information, maximum and minimum limits are defined. After
that, models are generated to compose the initial population,
which can be seen both in the RMS and interval domain. The RMS
shows the main values of the Semblance that are being contem-
plated for the model space, while the interval consider whether the
velocity are consistent with the geological reality of the area.

Clapp et al. (1998) makes an interpolation of the velocity
field RMS interpreted in the conventional way, using Semblance
as weights for valuing the consistent events. Similarly, Semblance
was used as the guide function conditioner to restrict the num-
ber of null space solutions to this nonlinear inverse problem. If
the function guide is near the high values of Semblance, model
space size is decreased (Figs. 3a and 3b).

From this space, multiple random models of time interval
velocities are generated. These models has restrictions defined

Revista Brasileira de Geof́ısica, Vol. 33(3), 2015
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(a) 04 layer model

(b) 16 layer model

Figure 2 – Linear fitting of RMS velocity in Semblance panels using Genetic Algorithm.
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(a) 04 layer model

(b) 16 layer model

Figure 3 – Space models weighted by Semblance, defined by the limits blue curve (minimum) and red (maximum) and the guide function of

RMS velocity in time (green).
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(a) 04 layer model

(b) 16 layer model

Figure 4 – Nonlinear fit RMS velocity function in time (black curve) of the maximum values of Semblance using Genetic

Algorithm. The red curve represents the best model of interval velocities in time.

a priori that maintains the geological consistency. It was made
the conversion of these interval models for RMS and measure
the initial population fitness. Then, these models suffer the pro-
cesses of Genetic Algorithm in n iterations until some stopping
criterion is satisfied. The result is a nonlinear fit of RMS velocities
under the maximum values of the Semblance panel.

The nonlinear fit performed in these models (Fig. 4) uses
two a priori information: the time of zero-offset reflection of the
seafloor and basement (last event of reflection) and the number
of interval velocities that want to invert. To better compare the in-
verted velocities with the true ones was maintained the real num-
ber of layers as input parameter.
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The time interval velocities inverted (red line on Fig. 4) can
be directly compared with the true velocities (Fig. 5). The con-
vergence curves of Figure 6 show the normalized fitness of the
population generated in each iteration. The red curve represents
the best models while the blue curve, the lower fitness models,
and the green curve is the average of the previous two, conducted
throughout 400 iterations (generations).

Jequitinhonha’s Basin real seismic data

At this stage of the work we perform the automatic velocity anal-
ysis in real 2D seismic data of Jequitinhonha’s Basin. The Jequi-
tinhonha’s Basin is located on the east bank of the Brazilian

coast. It occupies an area of approximately 25,685 km2, of which
only 5,535 km2 are emerged. It lies between Almada basins on
north and Cumuruxatiba on south. It comprises a rift basin that
evolved into a typical passive margin (Rangel & Caixeta, 2007).

The seismic line used was acquired by the team 214 under
the number 2660. Was acquired 1577 shots spaced 25 meters,
with almost 40 km long. Each shot has 120 channels spaced 25
meters, with a 150 meters of minimum offset and maximum of
3125 meters, recorded in 1571 samples with sampling interval of
4 milliseconds, totaling 7 seconds of recording time.

Reordering of the data for the CMP domain was performed.
There are 1517 CMP groups with 120 traces in maximum mul-

(a) 04 layer model

(b) 16 layer model

Figure 5 – True interval velocity function in time.
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(a) 04 layer model

(b) 16 layer model

Figure 6 – Convergence curve of nonlinear fitting.
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Figure 7 – 1061 CMP group of Jequitinhonha’s Basin seismic line.

tiplicity, spaced 25 meters, whose position of the first CMP cor-
responds to shot number 60. All the pre-processing was carried
out in software LANDMARK SEISSPACE ®, which includes seis-
mic data loading, geometry and deconvolution. We selected the
106 CMP group as an example for displaying the Semblance fit
through the proposed method.

1061 CMP group

In this example we used the 1061 CMP group (Fig. 7) to per-
form the linear fit (Fig. 9a), which selects the best model of RMS
velocity. This model is the guide function that defines the RMS
space models (Fig. 9b). The guide function and the limits of space
models are converted to interval, in which these last two, are con-
ditioned by Semblance. It’s set the model space for nonlinear fit
whose result is expressed in Figure 10a.

The convergence curve (Fig. 8) shows a maximum fitness
of 34%, in a total of 500 generations. This group has deep re-
flexion events almost horizontals (slightly hyperbolic) with high
values of Semblance. This leads to relatively low overall fitness.
The 1061 CMP group embraces important reflectors in the middle
portion of the seismic section.

Jequitinhonha’s 2D seismic section

After analyzing the individual CMP to find the best parameteri-
zation, we apply the methodology across the 2D line. The best
model time interval velocities for each CMP, the final result of
automatic nonlinear fit of Semblance panels is represented by
Figure 12.

The conversion of the time interval velocity field to RMS
was done. The result is a stacking velocity field obtained by au-
tomatic nonlinear fit of Semblance panels (Fig. 11). This field
is used to make the NMO correction and stacking of 1517
CMP groups to generate stacked section of Jequitinhonha’s
Basin (Fig. 13).

CONCLUSIONS

We presented a methodology for automatic generation of stack-
ing velocity field through nonlinear fit of Semblance panels. The
inverted velocity can be compared with the true velocity functions.

Despite the limitations of the method, the results show that
the algorithm used are robust and efficient to achieve the pro-
posed objective. The 2D model inversion of Jequitinhonha’s Basin
totaled 1517 Semblance panels interpreted.
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(a) The RMS velocity in black line and the interval in red line.

(b) Upper bound in red, lower bound in blue and guide function in red.

Figure 8 – 1061 CMP of Jequitinhonha’s Basin linear fit of Semblance (a) and space model generated from the guide function RMS (b).
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(a) The RMS velocity in black line and the interval in red line.

(b) Upper bound in red, lower bound in blue and guide function in red.

Figure 9 – 1061 CMP of Jequitinhonha’s Basin linear fit of Semblance (a) and space model generated from the

guide function RMS weigthed by the Semblance (b).
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Figure 10 – Convergence curve of 1061 CMP group of Jequitinhonha’s Basin.

Figure 11 – Jequitinhonha’s Basin inverted time interval velocity.
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Figure 12 – Jequitinhonha’s Basin inverted RMS velocity.

Figure 13 – Zero-offset section of Jequitinhonha’s Basin generated with inverted RMS velocity.
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In the initial population, 200 models and 800 iterations, or
generations were used. This counterpoised the computational
cost by the quality of the inverted interval velocity.

We can allow us to infer that the estimated velocity is close to
the true result, or at least close to the global minimum.
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