Ground Penetrating Radar applied to asphaltic pavements – a study in a controlled site
Abstract
ABSTRACT. The major challenges in road infrastructure studies are related to the evaluation of the road pavement quality in a practical, non-destructive, and low-cost way. Information about the thickness of the layers is fundamental to pavement repairing. In this study, the applicability of the ground penetrating radar (GPR) method in the delimitation of the pavement layer is tested at the Shallow Geophysical Test Site Applied to Engineering of Universidade Estadual de Goiás (UEG). The ground penetrating radar presents satisfactory results, identifying the top and bottom of the first five layers by the 270, 400, and 900 MHz antennas. The 2 GHz antenna was able to only delimit the top and bottom of the Hot Rolled Asphalt (HRA). The geomembrane with geotextile set and the concrete layer were not identified in the radargrams. The resolution of each antenna is 9.8 cm for 270 MHz; 6.0 cm for 400 MHz; 2.9 for 900 MHz; and 1.6 cm for 1600 MHz. Concerning layer thickness estimates, the antennas had an efficiency percentage of 83 % (270 and 1600 MHz), 83.29 % (400 MHz), and 84.40 % (900 MHz). Layer thickness estimates obtained by GPR antennas were compared with true thickness using a paired t-test (α= 0.05). No significant differences in layer thickness were observed for the GPR antennas versus the actual pavement thickness.
Keywords: GPR; geosynthetics; road investigation; shallow geophysical test site; non-destructive testing.
Full Text:
PDFReferences
Annan, P.A., 2003, Ground Penetrating Radar Principles, Procedures & Applications: Sensors & Software Inc., Book Manual, 286 pp.
Aragão, R.C., J.G. Luiz, and P.R.C. Lopes, 2010, Metodologia geofísica aplicada ao estudo arqueológico dos sítios Bittencourt e Jambuaçu, Estado do Pará: Revista Brasileira de Geofísica, 28, 2, 249–263, doi: 10.1590/S0102-261X2010000200009.
Borges, W.R., 2007, Caracterização geofísica de alvos rasos com aplicações no Planejamento urbano e Meio ambiente: Estudo sobre o sítio controlado do IAG/USP: PhD Thesis, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, SP, Brazil, 265 pp.
Brasil, D.L., 2013, Investigação Geofísica Forense e Antropológica com o método GPR no cemitério do Tapanã e no cemitério Perdido de Mosqueiro (Belém, Pará): Master Dissertation. Programa de Pós-graduação em Geofísica. Universidade Federal do Pará, Brazil, 94 pp.
Canata, R.E., F.J. Ferreira, W.R. Borges, and F.A.S. Salvador, 2020, Analysis of 2D and 3D GPR responses in the Federal University of Paraná Forensic Geophysics Controlled Site – A Case Study: Brazilian Journal of Geophysics, 38, 2, 17 pp, doi: 10.22564/rbgf.v38i2.2045.
Cassidy, N.J., 2009, Ground Penetrating Radar Data Processing, Modelling, and Analysis, in JOL, H.M., Ground Penetrating Radar: Theory and Applications: Elsevier Science, chapter 5, p. 141–176, doi: 10.1016/B978-0-444-53348-7.00005-3.
Cavalcanti, M.M., 2017, Estudo da Resposta Geofísica em diferentes cenários de sepultamento: PhD Thesis, Programa de Pós-graduação em Geociências Aplicadas e Geodinâmica, Universidade de Brasília, DF, Brazil, 197 pp.
Cunha, M.R., W.R. Borges, and L.S. Cunha, 2019, Concrete Pavement Layers Investigation with GPR in the BR-101 Highway: Anuário do Instituto de Geociências, UFRJ, 42, 1, 308–316, doi: 10.11137/2019_1_308_316.
Davis, J.L., and P.A. Annan, 1989, Ground-Penetrating Radar for high-resolution Mapping of soil and rock stratigraphy: Geophysical Prospecting, 37, 531–551, doi: 10.1111/j.1365-2478.1989.tb02221.x.
Grandjean, G., J.C. Gourry, and A. Bitri, 2000, Evaluation of GPR techniques for civil-engineering applications: study on a test site: Journal of Applied Geophysics, 45, 141–156, doi: 10.1016/S0926-9851(00)00021-5.
Olhoeft, G.R., 2000, Maximizing the information return from Ground Penetrating Radar: Journal of Applied Geophysics, 43, 175–187, doi: 10.1016/S0926-9851(99)00057-9.
Orfanos, C., and G. Apostolopoulos, 2012, Analysis of different geophysical methods in detecting an underground opening at a controlled test site: Journal of the Balkan Geophysical Society, 15, 1, 7–18.
Paniagua, J., M. Del Rio, and M. Rufo, 2004, Test site for the analysis of subsoil GPR signal propagation: Tenth International Conference on Ground Penetrating Radar, 21-24 June, 2004, Delft, The Netherlands.
Porsani, J.L., W.R. Borges, S.I. Rodrigues, and F.Y. Hiodo, 2006, O Sítio Controlado de Geofísica rasa do IAG/USP: Instalação e Resultados GPR 2D-3D: Revista Brasileira de Geofísica, 24, 1, 49–61, doi: 10.1590/S0102-261X2006000100004.
Sandmeier, K.J., 2014, REFLEXW: Version 7.5, Windows 9x/2000/NT, Program for the Processing of Seismic, Acoustic or Electromagnetic Reflection, Refraction, and Transmission Data: Karlsruhe, Germany, 209 pp.
Santos, A.L.F., T.C. Maia, W.R. Borges, E. Nishi, and E.X. Seimetz, 2019, Implantação do Sítio Controlado de Geofísica Rasa Aplicado a Engenharia da UEG, Campus Henrique Santillo, Anápolis-GO: Revista Mirante, 12, 95–111.
Stratton, J.A., 1940, Electromagnetic theory: McGraw-Hill Book Company, Inc., N.Y. and London, 648 pp.
DOI: http://dx.doi.org/10.22564/brjg.v40i1.2133
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.