Determination of Water Table Depth Using Geophysical Methods

Otavio Coaracy Brasil Gandolfo

Abstract


Water table (WT) depth is an important parameter in engineering and environmental studies. This information can be easily obtained through drilling boreholes. Some geophysical methods can also contribute to indirectly determine the WT depth. The methods that are effective in achieving this goal are GPR (ground penetrating radar) and electrical resistivity (ER). Other methods, such as FDEM (frequency domain electromagnetic method), seismic refraction, and seismic reflection, can also be employed to measure WT depth. This article presents a discussion on the use of some geophysical methods to determine WT depth, based on a brief literature review and analysis of some data obtained by the author.

Keywords


water table; geophysical methods; GPR; electrical resistivity; seismic methods.

Full Text:

PDF

References


Al-Heety, A.J.R., M. Hassouneh, and F.M. Abdullah, 2021, Application of MASW and ERT methods for geotechnical site characterization: A case study for roads construction and infrastructure assessment in Abu Dhabi, UAE: Journal of Applied Geophysics, 193, 104408, doi: 10.1016/j.jappgeo.2021.104408

Annan, A.P., S.W. Cosway, and J.D. Redman, 1991, Water table detection with ground-penetrating radar: SEG Technical Program Expanded Abstracts. Society of Exploration Geophysicists, 494–496, doi: 10.1190/1.1888793

ASTM D4428, 2007, Standard test methods for crosshole seismic testing, 11 pp.

ASTM D6431, 2005, Standard guide for using the direct current resistivity method for subsurface investigation, 14 pp.

Bano, M., 2006, Effects of the transition zone above a water table on the reflection of GPR waves: Geophysical Research Letters, 33, 13, doi: 10.1029/2006GL026158

Barker, R., and J. Moore, 1998, The application of time-lapse electrical tomography in groundwater studies: The Leading Edge, 17, 10, 1454–1458, doi: 10.1190/1.1437878

Bentley, L.R., and N.M. Trenholm, 2002, The accuracy of water table elevation estimates determined from ground penetrating radar data: Journal of Environmental & Engineering Geophysics, 7, 1, 37–53, doi: 10.4133/JEEG7.1.37

Boaga, J., 2017, The use of FDEM in hydrogeophysics: A review: Journal of Applied Geophysics, v. 139, 36-46, doi: 10.1016/j.jappgeo.2017.02.011

Bogoslovsky, V.A., and A.A. Ogilvy, 1973, Deformations of natural electric fields near drainage structures: Geophysical Prospecting, 21, 716–723, doi: 10.1111/j.1365-2478.1973.tb00053.x

Breusse, J.J. 1963, Modern geophysical methods for subsurface water exploration: Geophysics, 28, 4, 633–657, doi: 10.1190/1.1439240

Cardimona S.J., W.P. Clement, and K. Kadinsky-Cade, 1998, Seismic reflection and ground- penetrating radar imaging of a shallow aquifer: Geophysics, 63, 4, 1310–1317, doi: 10.1190/1.1444432

Davis, J.L., and A.P. Annan, 1989, Ground?penetrating radar for high?resolution mapping of soil and rock stratigraphy: Geophysical Prospecting, 37(5), 531–551, doi: 10.1111/j.1365-2478.1989.tb02221.x

Dobecky, T.L., 1988, Seismic shear waves for lithology and saturation: Proceedings of the Second National Outdoor Action Conference on Aquifer Restoration, Ground Water Monitoring and Geophysical Methods. vol.II. National Water Well Association, Dublin, Ohio, 677–695.

Fournier, C., 1989, Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: Case history of the Chaîne des Puys (Puyde- Dôme, France): Geophysical Prospecting, 37, 6, 647–668, doi: 10.1111/j.1365-2478.1989.tb02228.x

Gallas, J.D.F., 2020, Self-potential (SP) generated by electrokinesis - Efficiency and low cost dam safety: Journal of Applied Geophysics, 180, 104122, doi: 10.1016/j.jappgeo.2020.104122

Gandolfo, O.C.B., 2007, Um estudo do imageamento geoelétrico na investigação rasa: PhD Thesis, Instituto de Geociências, Universidade de São Paulo, SP, Brazil, 215 pp.

Gandolfo, O.C.B., 2014, A determinação da profundidade do nível d'água pelo método da refração sísmica: VI Simpósio Brasileiro de Geofísica, SBGf, Porto Alegre, RS, Brazil, doi: 10.22564/6simbgf2014.126

Grelle, G., and F.M. Guadagno, 2009, Seismic refraction methodology for groundwater level determination: "Water seismic index": Journal of Applied Geophysics, 68, 3, 301–320, doi: 10.1016/j.jappgeo.2009.02.001

Jardani, A, A. Revil, W. Barrash, A. Crespy, E. Rizzo, S. Straface, M. Cardiff, B. Malama, C. Miller, and T. Johnson, 2009, Reconstruction of the water table from self?potential data: A Bayesian approach. Groundwater, 47, 2, 213–227, doi: 10.1111/j.1745-6584.2008.00513.x

Johnson, D.G., 1992, Use of ground-penetrating radar for water-table mapping, Brewster and Harwich, Massachusetts. Water-Resources Investigations Report 90-4086. US Department of the Interior, US Geological Survey, 27 pp.

Kalinski, M., N. Duda, H. Donaghy, and H. Lissade, 2018, Groundwater mapping using DC resistivity in Leogane, Haiti. In: 2018 SEG International Exposition and Annual Meeting. OnePetro, doi: 10.1190/segam2018-2995143.1

Kirsch, R., 2006, Groundwater geophysics: a tool for hydrogeology. Springer Berlin Heidelberg. 493 pp.

Loke, M.H., J.E. Chambers, D.F. Rucker, O. Kuras, and P.B. Wilkinson, 2013, Recent developments in the direct-current geoelectrical imaging method: Journal of Applied Geophysics, 95, 135–156, doi: 10.1016/j.jappgeo.2013.02.017

Mahmoudzadeh, M.R., A.P. Francés, M. Lubczynski, and S. Lambot, 2012, Using ground penetrating radar to investigate the water table depth in weathered granites - Sardon case study, Spain: Journal of Applied Geophysics, 79, 17–26, doi: 10.1016/j.jappgeo.2011.12.009

McNeill, J.D., 1980, Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6. Geonics Limited. 15 pp.

McNeill, J.D., 1990, Use of electromagnetic methods for groundwater studies: Geotechnical and Environmental Geophysics. Society of Exploration Geophysicists (SEG), vol.1: Review and Tutorial, 191–218, doi: 10.1190/1.9781560802785.ch7

Miller, P.T., and R.B. Genau, 1991, A shallow seismic reflection study of the water table: 4th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems: European Association of Geoscientists & Engineers, p. cp-211, doi: 10.3997/2214-4609-pdb.211.1991_031

Monier-Williams, M.E., J.P. Greenhouse, J.M. Mendes, and N. Ellert, 1990, Terrain conductivity mapping with topographic corrections at three waste disposal sites in Brazil: Geotechnical an Environmental Geophysics. Society of Exploration Geophysicists (SEG), vol.2: Environmental and Groundwater, 41–56.

Nakashima, Y., H. Zhou, and M. Sato, 2001, Estimation of groundwater level by GPR in an area with multiple ambiguous reflections: Journal of Applied Geophysics 47, 241–249, doi: 10.1016/S0926-9851(01)00068-4

Oliva, A., and C.H. Kiang, 2004, Método da eletrorresistividade para mapeamento do lençol freático no município de Rio Claro (SP): I Simpósio Brasileiro de Geofísica, SBGf, cp-216, doi: 10.3997/2214-4609-pdb.216.I_SG_SBGf2004_EL_05

Pasquet, S., L. Bodet, A. Dhemaied, A. Mouhri, Q. Vitale, F. Rejiba, N. Flipo, and R. Guérin, 2015, Detecting different water table levels in a shallow aquifer with combined P-, surface and SH-wave surveys: Insights from VP/VS or Poisson's ratios: Journal of Applied Geophysics, 113, 38–50, doi: 10.1016/j.jappgeo.2014.12.005

Pestana R., and M.A.B. Botelho, 1997, Migração de dados de radar (GPR) com correção topográfica simultânea: Revista Brasileira de Geofísica, 15, 3–10, doi: 10.1590/S0102-261X1997000100001

Schumann, A.W., and Q.U. Zaman, 2003, Mapping water table depth by electromagnetic induction. Applied Engineering in Agriculture, 19, 6, 675–688, doi: 10.13031/2013.15663

Sherlock, M.D., and J.J. McDonnell, 2023, A new tool for hillslope hydrologists: spatially distributed groundwater level and soil water content measured using electromagnetic induction: Hydrological Processes, 17, 10, 1965–1977, doi: 10.1002/hyp.1221

Trenholm, N.M., and L.R. Bentley, 1998, The use of ground-penetrating radar to accurately determine water table depths. In: Symposium on the Application of Geophysics to Engineering and Environmental Problems. Society of Exploration Geophysicists, 829–838, doi: 10.3997/2214-4609-pdb.203.1998_086

Turesson, A., 2007, A comparison of methods for the analysis of compressional, shear, and surface wave seismic data, and determination of the shear modulus: Journal of Applied Geophysics, 61(2), 83–91, doi: 10.1016/j.jappgeo.2006.04.005

Ward, S.H., 1990, Resistivity and induced polarization methods. In: Geotechnical and Environmental Geophysics. Society of Exploration Geophysicists (SEG), vol.1: Review and Tutorial, 147–189, doi: 10.1190/1.9781560802785.ch6




DOI: http://dx.doi.org/10.22564/brjg.v40i5.2149

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons