Highlights of Solar Observations with Two Brazilian Radio Telescopes

Adriana Valio

Abstract


Solar radio emission originates from the solar atmosphere, and basically consists of emission from the quiet Sun, active regions, and flares. The slowly varying emission from the quiet solar atmosphere follows the periodicity of the 11 years Solar Activity Cycle. Active regions on the solar surface produce emission that varies on timescale of days or weeks, also known as the quiescent component. Finally, solar bursts are sudden increase of the emission on timescales of seconds to hours resulting from solar magnetic activity. These three components are produced by different emission mechanisms at distinct radio wavelengths. At microwave and millimeter wavelengths, the quiet Sun emission is produced by bremsstrahlung from thermal electrons. The height on the solar atmosphere where the submillimeter emission is mostly produced was determined to be ≤ 3000 km from center-to-limb observations at multiple radio frequencies. The quiescent radio emission from the active regions, usually brighter than the surrounding solar disk, is dominated by thermal gyro- resonance at microwaves and by optically thick thermal bremsstrahlung at millimetric and submillimetric waves. Lastly, gyro-synchrotron radiation from non-thermal electrons is responsible for the flare emission at high radio frequencies. In this review, the discoveries about the Sun obtained from two Brazilian radio telescopes installed at CASLEO (Argentina, the Submillimeter Solar Telescope (SST, 212 and 405 GHz) and the POlarization Emission of Millimeter Solar Activity (POEMAS, 45 and 90 GHz) are presented. The main result from SST was the discovery of a new spectral component increasing toward even higher frequencies.

Keywords


solar emission; radio observations; quiet Sun; solar active regions; solar flares

Full Text:

PDF

References


Alissandrakis, C.E., S. Patsourakos, A. Nindos, and T.S. Bastian, 2017, Center-to-limb observations of the Sun with ALMA. Implications for solar atmospheric models: Astronomy & Astrophysics, 605, A78, doi: 10.1051/0004-6361/201730953.

Bachurin, A.F., 1983, Variation in solar radio radius with the phase of the solar activity cycle at wavelengths of 2.25 and 3.5 CM: Izvestiya Ordena Trudovogo Krasnogo Znameni Krymskoj Astrofi zicheskoj Observatorii, 68, 68-75.

Bastian, T.S., M.W. Ewell, J., and H. Zirin, 1993, The Center-to-Limb Brightness Variation of the Sun at lambda = 850 Microns: The Astrophysical Journal, 415, 364, doi: 10.1086/173170.

Benz, A.O., 2008, Flare Observations: Living Reviews in Solar Physics, 5, 1, 1, doi: 10.12942/lrsp-2008-.

Benz, A.O., 2017, Flare Observations: Living Reviews in Solar Physics, 14, 1, 2, doi: 10.1007/s41116-016-0004-3.

Cliver, E.W., C.J. Schrijver, K. Shibata, and I.G. Usoskin, 2022, Extreme solar events: Living Reviews in Solar Physics, 19, 1, 2, doi: 10.1007/s41116-022-00033-8

Coates, R.J., J.E. Gibson, and J.P. Hagen, 1958, The 1954 Eclipse Measurement of the 8.6-MM Solar Brightness Distribution. The Astrophysical Journal, 128, 406, doi: 10.1086/146554.

Compagnino, A., P. Romano, and F. Zuccarello, 2017, A Statistical Study of CME Properties and of the Correlation Between Flares and CMEs over Solar Cycles 23 and 24: Solar Physics, 292, 1, 5, doi: 10.1007/s11207-016-1029-4.

Costa, J.E.R., J.L. Homor, and P. Kaufmann, 1986, Single-dish high sensitivity determination of solar limb emission at 22 and 44 GHz: In: Solar Flares and Coronal Physics Using P/OF as a Research Tool. pages 201-207.

Costa, J.E.R., A.V.R. Silva, V.S. Makhmutov, E. Rolli, P. Kaufmann, and A. Magun, 1999, Solar Radius Variations at 48 GHZ Correlated with Solar Irradiance: The Astrophysical Journall, 520, 1, L63-L66, doi: 10.1086/312132.

Cristiani, G., G. Martínez, C.H. Mandrini, C.G. Giménez de Castro, M.G. Rovira, Kaufmann, P., and Levato, H.2005, Submillimeter-wave and H? observations of the event on 28 November, 2001: Journal of Atmospheric and Solar-Terrestrial Physics, 67, 1744-1750, doi: 10.1016/j.jastp.2005.02.025.

Dulk, G.A., 1985, Radio emission from the sun and stars. Annual Review of Astronomy and Astrophysics, 23, 169- 224, doi: 10.1146/annurev.aa.23.090185.001125.

Efanov, V.A., A.G. Kislyakov, I.G. Moiseev, and A.I. Naumov, 1969, Observation of Solar Radio Emission by the 22-m Radio Telescope at the Crimean Astrophysical Observatory at 2.25 mm and 8.15 mm Wavelengths: Solar Physics, 8, 2, 331-340, doi: 10.1007/BF00155380.

Emslie, A.G., H. Kucharek, B.R. Dennis, N. Gopalswamy, G.D. Holman, G.H. Share, A. Vourlidas, T.G. Forbes, P.T. Gallagher, G.M. Mason, T.R. Metcalf, R.A. Mewaldt, R.J. Murphy, R.A. Schwartz, and T.H. Zurbuchen, 2004, Energy partition in two solar flare/CME events: Journal of Geophysical Research (Space Physics), 109, A10, A10104, doi: 10.1029/2004JA010571.

Fuerst, E., Hirth, W., and Lantos, P.1979, The radius of the sun at centimeter waves and the brightness distribution across the disk. Solar Physics, 63, 2, 257-270, doi: 10.1007/BF00174532.

Giménez de Castro, C.G., G.D. Cristiani, P.J.A.Simões, C.H. Mandrini, E. Correia, and P. Kaufmann, 2013, A Burst with Double Radio Spectrum Observed up to 212 GHz: Solar Physics, 284, 2, 541-558, doi: 10.1007/s11207-012-0173-8.

Giménez de Castro, C.G., G. Trottet, A. Silva-Valio, S. Krucker, J.E.R. Costa, Kaufmann, P. , E. Correia, and H. Levato, 2009, Submillimeter and X-ray observations of an X class flare: Astronomy & Astrophysics, 507, 1, 433-439, doi: 10.1051/0004-6361/200912028.

Gopalswamy, N., S. Yashiro, G. Michalek, H. Xie, P. Mäkelä, A. Vourlidas, and R.A. Howard, 2010, A Catalog of Halo Coronal Mass Ejections from SOHO: Sun and Geosphere, 5, 1, 7-16.

Hathaway, D.H., 2015, The Solar Cycle: Living Reviews in Solar Physics, 12, 1, 4, doi: 10.1007/lrsp-2015-4.

Heyvaerts, J., E.R. Priest, and D.M. Rust, 1977, An emerging flux model for the solar phenomenon. The Astrophysical Journal, 216, 123-137, doi: 10.1086/155453.

Hidalgo Ramírez, R.F., A. Morosi, D. Silva, P.J.A. Simos, and A. Valio, 2019, Center-to-Limb Variation of Solar Bursts Polarization at Millimeter Wavelengths: Solar Physics, 294, 8, 108, doi: 10.1007/s11207-019-1503-x.

Horne, K., G.J. Hurford, H. Zirin, and T. de Graauw, 1981, Solar limb brightening at 1.3 millimeters: The Astrophysical Journal, 244, 340-344, doi: 10.1086/158711.

Hudson, H.S., and R.C. Willson, 1983, Upper Limits on the Total Radiant Energy of Solar Flares: Solar Physics, 86, 1-2, 123-130, doi: 10.1007/BF00157181.

Kahler, S., 1987, Coronal mass ejections. Reviews of Geophysics, 25, 663-675, doi: 10.1029/RG025i003p00663.

Kamide, Y. and A. Chian, 2007, Solar Radio Emissions: Springer Berlin Heidelberg, Berlin, Heidelberg. p. 133-151.

Kaufmann, P., J.E.R. Costa, E. Correia, A. Magun, K. Arzner, N. Kämpfer, M. Rovira, and Levato, H. 1997, Recent Developments of the Solar Submm-Wave Telescope (SST), in Trottet, G., editor, Coronal Physics from Radio and Space Observations, volume 483, pages 202, doi: 10.1007/BFb0106459.

Kaufmann, P., J.-P. Raulin, C.G.G. de Castro, H. Levato, D.E. Gary, J.E.R. Costa, A. Marun, P. Pereyra, A.V.R. Silva, and E. Correia, 2004, A New Solar Burst Spectral Component Emitting Only in the Terahertz Range: The Astrophysical Journal, 603, 2, L121-L124, doi: 10.1086/383186.

Kerr, G.S., 2022, Interrogating solar flare loop models with IRIS observations 1: Overview of the models, and mass flows: Frontiers in Astronomy and Space Sciences, 9, 1060856, doi: 10.3389/fspas.2022.1060856.

Kislyakov, A.G., I.I. Kulikov, L.I. Fedoseev, and V.I. Chernyshev, 1975, Observations of the sun at 1.4 and 4.1 MM wavelength with 13-arcsecond and 40-arcsecond resolution: Soviet Astronomy Letters, 1, 79.

Klopf, J.M., P. Kaufmann, J.-P. Raulin, and S. Szpigel, 2014, The Contribution of Microbunching Instability to Solar Flare Emission in the GHz to THz Range of Frequencies: The Astrophysical Journal, 791, 1, 31, doi: 10.1088/0004-637X/791/1/31.

Krüger, A., 1979, Introduction to solar radio astronomy and radio physics., volume 16, doi: 10.1007/978-94-009-9402-7

Kundu, M.R., 1965, Solar radio astronomy.

Kundu, M.R., 1970, Solar Active Regions at Millimeter Wavelengths: Solar Physics, 13, 2, 348-356, doi: 10.1007/BF00153556.

Labrum, N.R., J.W. Archer, and C.J. Smith, 1978, Solar brightness distribution at 3 mm wavelength from observations of the eclipse of 1976 October 23: Solar Physics, 59, 331-343, doi: 10.1007/BF00951837.

Lee, J.-O., Y.J. Moon, K.-S. Lee, and R.S. Kim, 2014, Dependence of Geomagnetic Storms on Their Associated Halo CME Parameters: Solar Physics, 289, 6, 2233-2245, doi: 10.1007/s11207-013-0466-6.

Loukitcheva, M.A., K. Iwai, S.K. Solanki, S.M. White, and M. Shimojo, 2017, Solar ALMA Observations: Constraining the Chromosphere above Sunspots: The Astrophysical Journal, 850, 1, 35, doi: 10.3847/1538-4357/aa91cc.

McLean, D.J., and N.R. Labrum, 1985, Solar radiophysics : studies of emission from the sun at metre wavelengths.

Melrose, D.B. 1990, Particle acceleration processes in the solar corona: Australian Journal of Physics, 43, 6, 703-752, doi: 10.1071/PH900703.

Menezes, F., C.L. Selhorst, C.G. Giménez de Castro, and A. Valio, 2021, The Subterahertz Solar Cycle: Polar and Equatorial Radii Derived from SST and ALMA: The Astrophysical Journal, 910, 1, 77, doi: 10.3847/1538-4357/abe41c.

Menezes, F., C.L. Selhorst, C.G. Giménez de Castro, and A. Valio, 2022, Subterahertz radius and limb brightening of the Sun derived from SST and ALMA: Monthly Notices of the Royal Astronomical Society, 511, 1, 877-885, doi: 10.1093/mnras/stab3501.

Pelyushenko, S.A., and V.I. Chernyshev, 1983, The Radio Radius of and Brightness Distribution Over the Solar Disk at Wavelengths of 6.3 and 8.6 mm: Soviet Astronomy, 27, 340.

Ramaty, R., 1969, Gyrosynchrotron Emission and Absorption in a Magnetoactive Plasma: The Astrophysical Journal, 158, 753, doi: 10.1086/150235.

Ramaty, R., R.A. Schwartz, S., Enome, and H. Nakajima, 1994, Gamma-Ray and Millimeter-Wave Emissions from the 1991 June X-Class Solar Flares: The Astrophysical Journal, 436:941, doi: 10.1086/174969.

Raulin, J.P., V.S. Makhmutov, P. Kaufmann, A.A. Pacini, T. Lüthi, H.S. Hudson, and D.E. Gary, 2004, Analysis of the impulsive phase of a solar flare at submillimeter wavelengths: Solar Physics, 223, 1-2, 181-199, doi: 10.1007/s11207-004-1300-y.

Raulin, J.-P. and A. Pacini, 2005, Solar radio emissions: Advances in Space Research, 35, 5, 739-754. Fundamentals of Space Environment Science, doi: 10.1016/j.asr.2005.03.138.

Raulin, J.P., G. Trottet, G. Giménez de Castro, T. Lüthi, and P Kaufmann, 2014, Joint Measurements of Flare Flux Densities at 210 - 212 GHz by Two Different Radio Telescopes: Solar Physics, 289, 4, 1227-1237, doi: 10.1007/s11207-013-0390-9.

Selhorst, C.L., Costa, J.E.R., Giménez de Castro, C.G., Valio, A., Pacini, A. A., and Shibasaki, K. 2014, The 17 GHz Active Region Number: The Astrophysical Journal, 790, 2, 134, doi: 10.1088/0004-637X/790/2/134.

Selhorst, C.L., A.V.R. Silva, and J.E.R. Costa, 2004, Radius variations over a solar cycle: Astronomy & Astrophysics, 420, 1117-1121, doi: 10.1051/0004-6361, 20034382.

Selhorst, C.L., A. Silva-Válio, and J.E.R. Costa, 2008, Solar atmospheric model over a highly polarized 17 GHz active region: Astronomy & Astrophysics, 488, 3, 1079-1084, doi: 10.1051/0004-6361,20079217.

Silva, A.V.R., T.F. Laganá, C.G. Gimenez Castro, P. Kaufmann, J.E.R. Costa, H. Levato, and M. Rovira, 2005, Diffuse Component Spectra of Solar Active Regions at Submillimeter Wavelengths: Solar Physics, 227, 2, 265-281, doi: 10.1007/s11207-005-2787-6.

Silva, A.V.R., G.H. Share, R.J.Murphy, J.E.R. Costa, C.G.G. de Castro, J.P. Raulin, and P. Kaufmann, 2007, Evidence that Synchrotron Emission from Nonthermal Electrons Produces the Increasing Submillimeter Spectral Component in Solar Flares: Solar Physics, 245, 2, 311-326, doi: 10.1007/s11207-007-9044-0.

Silva, D.F., P.J.A. Simões, R.F. Hidalgo Ramírez, and A. Válio, 2020, Inferring the Magnetic Field Asymmetry of Solar Flares from the Degree of Polarisation at Millimetre Wavelengths: Solar Physics, 295, 6, 73, doi: 10.1007/s11207-020-01632-0.

Silva, D.F. and A. Valio, 2021, Broken Power-law Energy Spectra of the Accelerated Electrons Detected in Radio and Hard X-Rays during the SOL2013-05-13 Event: The Astrophysical Journal Letters, 915, 1, L1, doi: 10.3847/2041-8213/ac0726.

Simões, P.J.A., and J.E.R. Costa, 2006, Solar bursts gyrosynchrotron emission from three-dimensional sources: Astronomy & Astrophysics, 453, 2, 729-736, doi: 10.1051/0004-6361, 20054665.

Swanson, P.N., 1973, The Radio Radius of the Sun at Millimeter and Centimeter Wavelengths: Solar Physics, 32, 77-80, doi: 10.1007/BF00152730.

Takeda, A., L. Acton, and N. Albanese, 2019, Solar Cycle Variation of Coronal Temperature, Emission Measure, and Soft X-Ray Irradiance Observed with Yohkoh Soft X-Ray Telescope: The Astrophysical Journal, 887, 2, 225, doi: 10.3847/1538-4357/ab53e3.

Tanaka, H. and T. Kakinuma, 1959, Polarization of bursts of solar radio emission at microwave frequencies: In: Bracewell, R. N., editor, URSI Symp. 1: Paris Symposium on Radio Astronomy, volume 9. pages 215, doi: 10.1017/S0074180900050877.

Tapping, K.F., and C. Zwaan, 2001, Sources of the Slowly-Varying Component of Solar Microwave Emission and their Relationship with their Host Active Regions: Solar Physics, 199, 2, 317-344, doi: 10.1023/A, 1010342823034.

Thuillier, G., J. Claudel, D. Djafer, M. Haberreiter, N. Mein, S.M.L. Melo, W. Schmutz, A. Shapiro, C.I. Short, and S. Sofia, 2011, The Shape of the Solar Limb: Models and Observations: Solar Physics, 268, 1, 125-149, doi: 10.1007/s11207-010-9664-7.

Trottet, G., J.P. Raulin, G. Giménez de Castro, T. Lüthi, A. Caspi, C.H. Mandrini, M.L. Luoni, and P. Kaufmann, 2011, Origin of the Submillimeter Radio Emission During the Time-Extended Phase of a Solar Flare: Solar Physics, 273, 2, 339-361, doi: 10.1007/s11207-011-9875-6.

Tsuchiya, A. and K. Takahashi, 1968, Spectrum of Slowly Varying Component of Solar Radio Emission on Millimeter Wavelengths: Solar Physics, 3, 2, 346-348, doi: 10.1007/BF00155168.

Valio, A., P. Kaufmann, C.G. Giménez de Castro, J.P. Raulin, L.O.T. Fernandes, and Marun, A. 2013, POlarization Emission of Millimeter Activity at the Sun (POEMAS, New Circular Polarization Solar Telescopes at Two Millimeter Wavelength Ranges: Solar Physics, 283, 2, 651-665, doi: 10.1007/s11207-013-0237-4.

Valio, A., E. Spagiari, M.Marengoni, and C.L. Selhorst, 2020, Correlations of Sunspot Physical Characteristics during Solar Cycle 23: Solar Physics, 295, 9, 120, doi: 10.1007/s11207-020-01691-3.

Valle Silva, J.F., C.G. Giménez de Castro, C.L. Selhorst, J.P. Raulin, and A. Valio, 2021, Spectral signature of solar active region in millimetre and submillimetre wavelengths: Monthly Notices of the Royal Astronomical Society, 500, 2, 1964-1969, doi: 10.1093/mnras/staa3354.

Vestrand, W.T., D.J. Forrest, E.L. Chupp, E. Rieger, and G.H. Share, 1987, The Directivity of High-Energy Emission from Solar Flares. II. Solar Maximum Mission Observations: The Astrophysical Journal, 322, 1010, doi: 10.1086/165796.

Wagner, W.J., 1984, Coronal Mass Ejections: Annual Review of Astronomy and Astrophysics, 22, 267-289, doi: 10.1146/annurev.aa.22.090184.001411.

Wannier, P.G., G.J. Hurford, and G.A. Seielstad, 1983, Interferometric observations of solar limb structure at 2.6 millimeters: The Astrophysical Journal, 264:660-666, doi: 10.1086/160639.

Webb, D.F., and T.A. Howard, 2012, Coronal Mass Ejections: Observations: Living Reviews in Solar Physics, 9, 1, 3, doi: 10.1294 2/lrsp-2012-3.

White, S.M., A.O. Benz, S. Christe, F. Fárník, M.R. Kundu, G. Mann, Z. Ning, J.P. Raulin, A.V.R. Silva-Válio, P. Saint-Hilaire, N. Vilmer, and A. Warmuth, 2011, The Relationship Between Solar Radio and Hard X-ray Emission: Space Science Reviews, 159, 1-4, 225-261, doi: 10.1007/s11214-010-9708-1.

Wrixon, G.T., 1970, Solar Eclipse Measurements at 16 and 30 GHz: Nature, 227, 1231-1232, doi: 10.1038/2271231a0.




DOI: http://dx.doi.org/10.22564/brjg.v40i5.2150

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons