Earthen Dam Monitoring using Passive Seismic: A Forward Modeling Study

Guilherme Zakarewicz de Aguiar, Susanne Tainá Ramalho Maciel


Internal erosion caused by infiltration and piping is the main cause of earthen dams’ failures. Traditional methods of inspection are not representative and are unable to cover the entire structure. The seismic interferometry emerges as an alternative for continuous monitoring earthen dams from the detection of variations in seismic velocities caused by water saturation. The objective of this study is the geophysical investigation of the Paranoá’s dam (Brasília, DF, Brazil) in hypothetical infiltration scenarios. To obtain a geological model that represents the expected structure, we performed an acquisition with active sources in the region and applied inversion techniques to retrieve the seismic velocities. We simulated acquisitions in a simple geological model of two horizontal layers for better understanding the behavior of the retrieved seismograms. The results show that more recording time and a wide receiver coverage improves the signal-to-noise ratio. We simulated a layer saturation by varying the velocities and noticed that the method was able to detect such variations. We noticed alterations in the reflection hyperbola asymptotes and in the first arrival time through the seismograms. The method also verified velocity changes in a more complex geological model. Our results suggest that the traffic energy is sufficient to image the dam’s structure, even not satisfying the theoretical diffuse wave field condition. Furthermore, we implemented a technique to monitor velocity variations using the semblance calculation. The method detected variations in the structure Vp in the order of 10%.


seismic noise; interferometry; passive seismic monitoring; dam; forward models

Full Text:



Albuquerque, R., M. A. Braga, L. A. Oliveira, L. S. de Oliveira Dias, L. A. P. Almeida, A. H. de Oliveira, and S. Brandão, 2019, Caracterização de barragens de rejeito usando Geofísica Rasa: aplicação na Barragem B1 de Cajati, São Paulo: Anuário do Instituto de Geociências, 42, 567–579.

Bakulin, A., A. Mateeva, K. Mehta, P. Jorgensen, J. Ferrandis, I. S. Herhold, and J. Lopez, 2007, Virtual source applications to imaging and reservoir Braz. J. Geophys., 40, 2, 2022 186 Earthen Dam Monitoring using Passive Seismic monitoring: The Leading Edge, 26, 732–740, doi: 10.1190/1.2748490.

Berkhout, A. G., 2017, Utilization of multiple scattering: the next big step forward in seismic imaging: Geophysical Prospecting, 65, 106–145, doi: 10.1190/tle34070744.1. Brantut, N., and E. C. David, 2019, Influence of fluids on Vp/Vs ratio: increase or decrease?: Geophysical Journal International, 216, 2037–2043, doi: 10.1093/gji/ggy518.

Brenguier, F., P. Boué, Y. Ben-Zion, F. Vernon, C. Johnson, A. Mordret, O. Coutant, P.-E. Share, E. Beaucé, D. Hollis, and T. Lecocq, 2019, Train traffic as a powerful noise source for monitoring active faults with seismic interferometry: Geophysical Research Letters, 46, 9529–9536, doi: 10.1029/2019GL083438.

Brenguier, F., N. M. Shapiro, M. Campillo, V. Ferrazzini, Z. Duputel, O. Coutant, and A. Nercessian, 2008, Towards forecasting volcanic eruptions using seismic noise: Nature Geoscience, 1, 126–130, doi: 10.1038/ngeo104.

Calvet, J. D. M., 2018, Modelagem numérica para o estudo do subsolo em regiões urbanas através do método da interferometria sísmica: Master Dissertation (Civil Engineering, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia), Universidade Federal do Rio de Janeiro - UFRJ, Brazil, 106 p. (URL:

Clements, T., and M. A. Denolle, 2018, Tracking groundwater levels using the ambient seismic field: Geophysical Research Letters, 45, 6459–6465, doi: 10.1029/2018GL077706.

Cohen, J. K., and J. J. W. Stockwell, 2013, CWP/SU: Seismic Un*x Release No. 43r5: an open-source software package for seismic research and processing: Center for Wave Phenomena, Colorado School of Mines.

Diaz, J., M. Schimmel, M. Ruiz, and R. Carbonell, 2020, Seismometers within cities: a tool to connect Earth Sciences and society: Frontiers in Earth Science, 8, 9, doi: 10.3389/feart.2020.00009.

Draganov, D., X. Campman, J. Thorbecke, A. Verdel, and K. Wapenaar, 2009, Reflection images from ambient seismic noise: Geophysics, 74, A63–A67, doi: 10.1190/1.3193529.

Fell, R., P. MacGregor, D. Stapledon, and G. Bell, 2005, Geotechnical Engineering of Dams: CRC Press.

Flores-Berrones, R., M. Ramírez-Reynaga, and E. J. Macari, 2011, Internal erosion and rehabilitation of an earth-rock dam: Journal of Geotechnical and Geoenvironmental Engineering, 137, 150–160, doi: 10.1061/(ASCE)GT.1943-5606.0000371.

Foti, S., F. Hollender, F. Garofalo, D. Albarello, M. Asten, P.-Y. Bard, C. Comina, C. Cornou, B. Cox, G. Giulio, T. Forbriger, K. Hayashi, E. Lunedei, A. Martin, D. Mercerat, M. Ohrnberger, V. Poggi, F. Renalier, D. Sicilia, and V. Socco, 2018, Guidelines for the good practice of surface wave analysis: A product of the interpacific project: Bulletin of Earthquake Engineering, 16, 2367–2420, doi: 10.1007/s10518-017-0206-7.

Gardner, G., L. Gardner, and A. Gregory, 1974, Formation velocity and density—the diagnostic basics for stratigraphic traps: Geophysics, 39, 770–780, doi: 10.1190/1.1440465.

Hussain, Y., M. Cardenas-Soto, R. Uagoda, S. Martino, J. Rodriguez-Rebolledo, O. Hamza, and H. Martinez-Carvajal, 2019, Monitoring of Sobradinho landslide (Brasília, Brazil) and a prototype vertical slope by time-lapse interferometry: Brazilian Journal of Geology, 49, e20180085, 11, doi: 10.1590/2317-4889201920180085.

Knight, R., and R. Nolen-Hoeksema, 1990, A laboratory study of the dependence of elastic wave velocities on pore scale fluid distribution: Geophysical Research Letters, 17, 1529–1532, doi: 10.1029/GL017i010p01529.

Lindsey, N. J., S. Yuan, A. Lellouch, L. Gualtieri, T. Lecocq, and B. Biondi, 2020, City-scale dark fiber DAS measurements of infrastructure use during the COVID-19 pandemic: Geophysical Research Letters, 47, e2020GL089931, doi: 10.1029/2020GL089931.

Maciel, S., and R. Biloti, 2020, A statistics-based descriptor for automatic classification of scatterers in seismic sections: Geophysics, 85, O83–O96, doi: 10.1190/geo2018-0673.1.

Mainsant, G., E. Larose, C. Brönnimann, D. Jongmans, C. Michoud, and M. Jaboyedoff, 2012, Ambient seismic noise monitoring of a clay landslide: Toward failure prediction: Journal of Geophysical Research: Earth Surface, 117, F01030, 12, doi: 10.1029/2011JF002159.

Martini, R. J., T. R. Caetano, H. d. A. Santos, and P. R. A. Aranha, 2016, Deposição de rejeitos de minério de ferro em reservatórios: uma aplicação do método GPR: Revista Ambiente & Água, 11, 878–890, doi: 10.4136/ambi-agua.1831.

Mordret, A., H. Sun, G. A. Prieto, M. N. Toksöz, and O. Büyüköztürk, 2017, Continuous monitoring of high-rise buildings using seismic interferometry: Bulletin of the Seismological Society of America, 107, 2759–2773, doi: 10.1785/0120160282.

Moser, T. J., and C. B. Howard, 2008, Diffraction imaging in depth: Geophysical Prospecting, 56, 627–641, doi: 10.1111/j.1365-2478.2007.00718.x.

Nakata, N., L. Gualtieri, and A. Fichtner, eds., 2019, Seismic Ambient Noise: Cambridge University Press. (doi: 10.1017/9781108264808).

Neidell, N. S., and M. T. Taner, 1971, Semblance and other coherency measures for multichannel data: Geophysics, 36, 482–497, doi: 10.1190/1.1440186.

Olivier, G., F. Brenguier, M. Campillo, R. Lynch, and P. Roux, 2015, Body-wave reconstruction from ambient seismic noise correlations in an underBraz. J. Geophys., 40, 2, 2022 Zakarewicz and Maciel 187 ground mine: Geophysics, 80, KS11–KS25, doi: 10.1190/geo2014-0299.1.

Olivier, G., F. Brenguier, R. Carey, P. Okubo, and C. Donaldson, 2019, Decrease in seismic velocity observed prior to the 2018 eruption of K¯?lauea Volcano with ambient seismic noise interferometry: Geophysical Research Letters, 46, 3734–3744, doi: 10.1029/2018GL081609. Olivier, G., F. Brenguier, T. de Wit, and R. Lynch, 2017, Monitoring the stability of tailings dam walls with ambient seismic noise: The Leading Edge, 36, 350a1–350a6, doi: 10.1190/tle36040350a1.1.

Osazuwa, I., and A. Chinedu, 2008, Seismic refraction tomography imaging of high-permeability zones beneath an earthen dam, in Zaria area, Nigeria: Journal of Applied Geophysics, 66, 44–58, doi: 10.1016/j.jappgeo.2008.08.006.

Park, C. B., R. D. Miller, and J. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808, doi: 10.1190/1.1444590.

Planès, T., M. Mooney, J. Rittgers, M. Parekh, M. Behm, and R. Snieder, 2016, Time-lapse monitoring of internal erosion in earthen dams and levees using ambient seismic noise: Géotechnique, 66, 301–312, doi: 10.1680/jgeot.14.P.268.

Planès, T., J. B. Rittgers, M. A. Mooney, W. Kanning, and D. Draganov, 2017, Monitoring the tidal response of a sea levee with ambient seismic noise: Journal of Applied Geophysics, 138, 255–263, doi: 10.1016/j.jappgeo.2017.01.025.

Riahi, N., and P. Gerstoft, 2015, The seismic traffic footprint: Tracking trains, aircraft, and cars seismically: Geophysical Research Letters, 42, 2674– 2681, doi: 10.1002/2015GL063558.

Sjödahl, P., T. Dahlin, S. Johansson, and M. Loke, 2008, Resistivity monitoring for leakage and internal erosion detection at Hällby embankment dam: Journal of Applied Geophysics, 65, 155–164, doi: 10.1016/j.jappgeo.2008.07.003.

Thorbecke, J. W., and D. Draganov, 2011, Finitedifference modeling experiments for seismic interferometry: Geophysics, 76, H1–H18, doi: 10.1190/geo2010-0039.1. Verschuur, D. J., and A. J. Berkhout, 2015, From removing to using multiples in closed-loop imaging: The Leading Edge, 34, 744–759, doi: 10.1190/tle34070744.1.

Wapenaar, K., D. Draganov, R. Snieder, X. Campman, and A. Verdel, 2010, Tutorial on seismic interferometry: Part 1 — Basic Principles and Applications: Geophysics, 75, 75A195–75A209, doi: 10.1190/1.3457445.

Wegler, U., and C. Sens-Schönfelder, 2007, Fault zone monitoring with passive image interferometry: Geophysical Journal International, 168, 1029– 1033, doi: 10.1111/j.1365-246X.2006.03284.x.

Xia, J., R. D. Miller, and C. B. Park, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves: Geophysics, 64, 691–700, doi: 10.1190/1.1444578.

Yates, A., M. Savage, A. Jolly, C. Caudron, and I. Hamling, 2019, Volcanic, coseismic, and seasonal changes detected at White Island (Whakaari) Volcano, New Zealand, using seismic ambient noise: Geophysical Research Letters, 46, 99–108, doi: 10.1029/2018GL080580.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons