Igneability feature: an effective, easy and low-cost way to identify basic igneous rocks using wireline well logs in open hole wells

Filipe V. C. Santa Rosa S. Oliveira, Ricardo Tepedino Martins Gomes, Lidia Waltz Calonio, Krishna Milani Simões Silva, Isabela de Oliveira Carmo, Bruno Tosta Bittencourt, Bruna Maia Imbuzeiro, Carla Semirais Silveira, Cleverson Guizan Silva, Antonio Fernando Menezes Freire


The correct identification of igneous rocks is of fundamental importance during drilling and to the quality of the initial assessment of their role in the petroleum systems. These rocks show characteristics in geophysical well logs that are distinct from those of sedimentary rocks. After calibrating with laboratory data, we propose a method to identify and characterize igneous rocks using basic geophysical logs. This method consists of a crossover between bulk density and photoelectric factor logs to identify basic igneous rocks in sedimentary sections, named "igneability feature". This log feature consists in using the bulk density log on the scale 2.0 to 3.0 g/cm³ in the same track as the photoelectric factor log on the inverted scale, from 12 to 2 b/e. Then, when the density log is to the right of the photoelectric factor, it denotes the presence of basic igneous rocks.Acid igneous rocks were also studied and characterized by a complementary method, which consists in a crossover between the gamma ray log and a factor calculated from the bulk density and photoelectric factor log curves. Thus, this method covers most of the varieties of igneous rock found in the Brazilian basins, such as Santos, Parnaíba and Paraná.  


igneous rocks; well logs; petrophysics; basalts; igneability feature

Full Text:



Bellieni, G., P. Brotzu, P. Comin-Chiaramonti, M. Ernesto, A. Melfi, I.G. Pacca, and E.M. Piccirillo, 1984, Flood basalt to rhyolite suites in the southern Parana Plateau (Brazil): palaeomagnetism, petrogenesis and geodynamic implications: Journal of Petrology, 25, 3, 579–618, doi: 10.1093/petrology/25.3.579.

Brewer, T. S., P.K. Harvey, M.A. Lovell, S. Haggas, G. Williamson, and P. Pezard, 1998, Ocean floor volcanism: constraints from the integration of core and downhole logging measurements: Geological Society, London, Special Publications, 136, 1, 341–362, doi: 10.1144/GSL.SP.1998.136.01.28.

Bücker, C.J., H. Delius, and J. Wohlenberg, 1998, Physical signature of basaltic volcanics drilled on the northeast Atlantic volcanic rifted margins: Geological Society, London, Special Publications, 136, 1, 363–374, doi: 10.1144/GSL.SP.1998.136.01.29.

De Luca, P.H.V., H. Matias, J. Carballo, D. Sineva, G. A. Pimentel, J. Tritlla, M. Esteban, R. Loma, J.L. A. Alonso, R.P. Jiménez, M. Pontet, P.B. Martinez, and V. Vega, 2017, Breaking barriers and paradigms in presalt exploration: the Pão de Açúcar discovery (offshore Brazil) in Merrill, R.K., and C.A. Sternbach, Giant fields of the decade 2000–2010: AAPG Memoir, 113, chapter 11, 177–194, doi: 10.1306/13572007M1133686.

De Miranda, F.S., A.L. Vettorazzi, P.R. da Cruz Cunha, F.B. Aragão, D. Michelon, J.L. Caldeira, E. Porsche, C. Martins, R.B. Ribeiro, A.F. Vilela, J.R. Corrêa, L.S. Silveira, and K. Andreola, 2018, Atypical igneous-sedimentary petroleum systems of the Parnaíba Basin, Brazil: seismic, well logs and cores: Geological Society, London, Special Publications, 472, 1, 341–360, doi: 10.1144/SP472.15.

De Oliveira, F.V.C.S.R.S., R.T.M. Gomes, and K.M.S. Silva, 2018, Identificação de Basaltos e Diabásios em Poços Exploratórios de Petróleo Utilizando Perfis de Densidade e Fator Fotoelétrico: 49º Congresso Brasileiro de Geologia: VII Simpósio de Vulcanismo e Ambientes Associados, Rio de Janeiro, RJ, Brazil.

De Oliveira, F.V.C.S.R.S., R.T.M. Gomes, and K.M.S. Silva, 2019, Log Features for the Characterization of Igneous Rocks in the Pre-Salt Area of Santos Basin, SE Brazil: AAPG International Conference & Exhibition. Buenos Aires, Argentina.

De Oliveira, F.V.C.S.R.S., B.M. Imbuzeiro, L.F. Ribeiro, and A.F.M. Freire, 2021, Identification of the intrusive events Mosquito and Sardinha in the Parnaíba Basin based on wireline logs, detailed description of cuttings and x-ray fluorescence analysis: 17th International Congress of the Brazilian Geophysical Society & Expogef, Rio de Janeiro, RJ, Brazil.

Dos Anjos, C.W.D., and E.M. Guimarães, 2008, Metamorfismo de contato nas rochas da Formação Irati (Permiano), norte da Bacia do Paraná: Brazilian Journal of Geology, 38, 4, 629–641, doi: 10.25249/0375-7536.2008384629641.

Duraiswami, R.A., G. Dole, and N. Bondre, 2003, Slabby pahoehoe from the western Deccan Volcanic Province: evidence for incipient pahoehoe-aa transitions: Journal of Volcanology and Geothermal Research, 121, 3–4, 195–217, doi: 10.1016/S0377-0273(02)00411-0.

Duraiswami, R.A., N.R. Bondre, and S. Managave, 2008, Morphology of rubbly pahoehoe (simple) flows from the Deccan Volcanic Province: Implications for style of emplacement: Journal of Volcanology and Geothermal Research, 177, 4, 822–836, doi: 10.1016/j.jvolgeores.2008.01.048.

Duraiswami, R.A., P. Gadpallu, T.N. Shaikh, and N. Cardin, 2014, Pahoehoe-a?a transitions in the lava flow fields of the western Deccan Traps, India-implications for emplacement dynamics, flood basalt architecture and volcanic stratigraphy: Journal of Asian Earth Sciences, 84, 146–166, doi: 10.1016/j.jseaes.2013.08.025.

Ellis, D.V., and J.M. Singer, 2007, Well logging for earth scientists: Dordrecht: Springer, 692 pp, doi: 10.1007/978-1-4020-4602-5.

Fornero, S.A., G.M. Marins, J.T. Lobo, A.F.M. Freire, and E.F. de Lima, 2019, Characterization of subaerial volcanic facies using acoustic image logs: Lithofacies and log-facies of a lava-flow deposit in the Brazilian pre-salt, deepwater of Santos Basin: Marine and Petroleum Geology, 99, 156–174, doi: 10.1016/j.marpetgeo.2018.09.029.

Freire, A.F.M., G.F.R. Santos, C.F. Silva, H.C. Pequeno, I.P.M. Leal, W.M. Lupinacci, and R. Ávila, 2019, High resolution stratigraphy using well logs to identify turbidite stages in the Massapê oil field, Recôncavo Basin, Brazil: 16th International Congress of the Brazilian Geophysical Society, Rio de Janeiro, RJ, Brazil, doi: 10.22564/16cisbgf2019.302.

Gill, R., 2010, Igneous rocks and processes: a practical guide: John Wiley & Sons, 427 pp.

Imbuzeiro, B.M., 2021, Caracterização de eletrofacies e quimiofacies em soleiras de diabásio da bacia do Parnaíba: Monografia, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil. 96 pp.

Jerram, D.A., 2015, Hot Rocks and Oil: Are Volcanic Margins the New Frontier?: Elsevier R&D Solutions for Oil & Gas. Geofacets, 12 pp.

Jerram, D.A., J.M. Millett, J. Kück, D. Thomas, Planke, S., E. Haskins, N. Lautze, and S. Pierdominici, 2019, Understanding volcanic facies in the subsurface: a combined core, wireline logging and image log data set from the PTA2 and KMA1 boreholes, Big Island, Hawaii: Scientific Drilling, 25, 15–33, doi: 10.5194/sd-25-15-2019.

LaFemina, P.C., 2015, Plate tectonics and volcanism, in Sigurdsson, H., The Encyclopedia of Volcanoes: Academic Press, 2nd ed., chapter 3, p. 65–92, doi: 10.1016/B978-0-12-385938-9.00003-1.

Le Maitre, R.W., A. Streckeisen, B. Zanettin, M.J. Le Bas, B. Bonin, P. Bateman, G. Bellieni, A. Dudek, S. Efremova, J. Keller, J. Lameyre, P.A. Sabine, R. Schmid, H. Sørensen, and A.R. Woolley, 2002, Igneous rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2nd ed., 236 pp. Cambridge, England: Cambridge University Press.

Lima, E.F.D., R.P. Philipp, G.C. Rizzon, B.L. Waichel, and L.D.M.M. Rossetti, 2012, Sucessões vulcânicas, modelo de alimentação e geração de domos de lava ácidos da Formação Serra Geral na região de São Marcos-Antônio Prado (RS). Geologia USP. Série Científica, São Paulo, SP, Brazil, 12, 2, p. 49–64, doi: 10.5327/Z1519-874X2012000200004.

Macdonald, G.A., 1953, Pahoehoe, aa, and block lava: American Journal of Science, 251, 3, 169–191, doi: 10.2475/ajs.251.3.169.

Marsh, B.D., 2015, Magma chambers, in Sigurdsson, H., The Encyclopedia of Volcanoes: Academic Press, 2nd ed., chapter 8, p. 185–201, doi: 10.1016/B978-0-12-385938-9.00008-0.

Millward, D., S.R. Young, B. Beddoe-Stephens, E.R. Phillips, and C.J. Evans, 2002, Gamma-ray, Spectral Gamma-ray, and Neutron-density Logs for Interpretation of Ordovician Volcanic Rocks, West Cumbria, England in Lovell M., and N. Parkinson, Eds., Geological Applications of Well Logs: AAPG Methods in Exploration Series, No. 13, Chapter 18, doi: 10.1306/Mth13780C18.

Mizusaki, A.M.P., R. Petrini, P. Bellieni, P. Comin-Chiaramonti, J. Dias, De Min, A., and E.M. Piccirillo, 1992, Basalt magmatism along the passive continental margin of SE Brazil (Campos Basin). Contributions to Mineralogy and Petrology, 111, 2, 143–160, doi: 10.1007/BF00348948.

Nelson, C.E., D.A. Jerram, and R.W. Hobbs, 2009, Flood basalt facies from borehole data: implications for prospectivity and volcanology in volcanic rifted margins. Petroleum Geoscience, 15, 4, 313–324, doi: 10.1144/1354-079309-842.

Nelson, C.E., D.A. Jerram, J.A. Clayburn, A.M. Halton, and J. Roberge, 2015, Eocene volcanism in offshore southern Baffin Bay: Marine and Petroleum Geology, 67, 678–691, doi: 10.1016/j.marpetgeo.2015.06.002.

Pasqualon, N.G., E.F. de Lima, C.M. dos Santos Scherer, L.D.M.M. Rossetti, and F.R. da Luz, 2019, Lithofacies association and stratigraphy of the Paredão Volcano, Trindade Island, Brazil: Journal of Volcanology and Geothermal Research, 380, 48–63, doi: 10.1016/j.jvolgeores.2019.05.011.

Peate, D.W., C.J. Hawkesworth, and M.S. Mantovani, 1992, Chemical stratigraphy of the Paraná lavas (South America): classification of magma types and their spatial distribution: Bulletin of Volcanology, 55, 1, 119–139, doi: 10.1007/BF00301125.

Penna, R., S. Araújo, A. Geisslinger, R. Sansonowski, L. Oliveira, J. Rosseto, and M. Matos, 2019, Carbonate and igneous rock characterization through reprocessing, FWI imaging, and elastic inversion of a legacy seismic data set in Brazilian presalt province: The Leading Edge, 38, 1, 11–19, doi: 10.1190/tle38010011.1.

Pires, G.L.C., and E.M. Bongiolo, 2016, The nephelinitic-phonolitic volcanism of the Trindade Island (South Atlantic Ocean): Review of the stratigraphy, and inferences on the volcanic styles and sources of nephelinites: Journal of South American Earth Sciences, 72, 49–62, doi: 10.1016/j.jsames.2016.07.008

Planke, S., 1994, Geophysical response of flood basalts from analysis of wire line logs: Ocean Drilling Program Site 642, Vøring volcanic margin: Journal of Geophysical Research: Solid Earth, 99, B5, 9279-9296, doi: 10.1029/94JB00496.

Planke, S., T. Rasmussen, S.S. Rey, R. and Myklebust, 2005, Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Møre basins: Petroleum Geology Conference Series, Geological Society, London, 6, 1, 833–844, doi: 10.1144/0060833.

Ran, Q., Y. Wang, Y. Sun, L. Yan, and M. Tong, 2014, Lithological Identification and Prediction of Volcanic Rock, in Volcanic gas reservoir characterization: Gulf Professional Publishing, Elsevier, chapter 5, 163–201, doi: 10.1016/B978-0-12-417131-2.00005-3

Riccomini, C., L.G. Sant’Anna, and C.C.G. Tassinari, 2012, Pré-sal: geologia e exploração: Revista USP, 95, 33–42, doi: 10.11606/issn.2316-9036.v0i95p33-42.

Rossetti, L.M., E.F. Lima, B.L. Waichel, C.M. Scherer, and C.J. Barreto, 2014, Stratigraphical framework of basaltic lavas in Torres Syncline main valley, southern Parana-Etendeka Volcanic Province: Journal of South American Earth Sciences, 56, 409–421, doi: 10.1016/j.jsames.2014.09.025

Rossetti, L., E.F. Lima, B.L. Waichel, M.J. Hole, M. S. Simões, and C.M. Scherer, 2018, Lithostratigraphy and volcanology of the Serra Geral Group, Paraná-Etendeka Igneous Province in southern Brazil: Towards a formal stratigraphical framework: Journal of Volcanology and Geothermal Research, 355, 98–114, doi: 10.1016/j.jvolgeores.2017.05.008

Scherer, C.M.S., 2000, Eolian dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil: morphology and origin: Sedimentary Geology, 137, 1–2, 63–84, doi: 10.1016/S0037-0738(00)00135-4

Scherer, C. M., and K. Goldberg, 2007, Palaeowind patterns during the latest Jurassic–earliest Cretaceous in Gondwana: Evidence from aeolian cross-strata of the Botucatu Formation, Brazil: Palaeogeography, Palaeoclimatology, Palaeoecology, 250, 1–4, 89–100, doi: 10.1016/j.palaeo.2007.02.018

Scherer, C.M., and E.L. Lavina, 2006, Stratigraphic evolution of a fluvial-eolian succession: the example of the Upper Jurassic – Lower Cretaceous Guará and Botucatu formations, Paraná Basin, Southernmost Brazil: Gondwana Research, 9, 4, 475–484, doi: 10.1016/j.gr.2005.12.002

Self, S., L. Keszthelyi, and T. Thordarson, 1998, The importance of pahoehoe: Annual Review of Earth and Planetary Sciences, 26, 1, 81–110, doi: 10.1146/annurev.earth.26.1.81

Spacapan, J.B., O. Palma, O. Galland, K. Senger, R. Ruiz, R. Manceda, and H.A. Leanza, 2020, Low resistivity zones at contacts of igneous intrusions emplaced in organic?rich formations and their implications on fluid flow and petroleum systems: A case study in the northern Neuquén Basin, Argentina: Basin Research, 32, 1, 3–24, doi: 10.1111/bre.12363.

Thomaz Filho, A., A.M.P. Mizusaki, and L. Antonioli, 2008, Magmatismo nas bacias sedimentares brasileiras e sua influência na geologia do petróleo: Revista Brasileira de Geociências, 38, Suppl. 2, 128–137, doi: 10.25249/0375-7536.2008382S128137.

Umino, S., 2012, Emplacement mechanism of off?axis large submarine lava field from the Oman Ophiolite: Journal of Geophysical Research: Solid Earth, 117, B11, doi: 10.1029/2012JB009198

Waichel, B.L., E.F. de Lima, A.R. Viana, C.M. Scherer, G.V. Bueno, and G. Dutra, 2012, Stratigraphy and volcanic facies architecture of the Torres Syncline, Southern Brazil, and its role in understanding the Paraná-Etendeka Continental Flood Basalt Province: Journal of Volcanology and Geothermal Research, 215, 74–82, doi: 10.1016/j.jvolgeores.2011.12.004.

Walker, G.P.L., 1971, Compound and simple lava flows and flood basalts: Bulletin Volcanologique, 35, 3, 579–590, doi: 10.1007/BF02596829

Watton, T.J., D.A. Jerram, T. Thordarson, and R.J. Davies, 2013, Three-dimensional lithofacies variations in hyaloclastite deposits: Journal of Volcanology and Geothermal Research, 250, 19–33, doi: 10.1016/j.jvolgeores.2012.10.011.

Watton, T.J., K.A. Wright, D.A. Jerram, and R.J. Brown, 2014, The petrophysical and petrographical properties of hyaloclastite deposits: Implications for petroleum exploration. AAPG Bulletin, 98, 3, 449–463, doi: 10.1306/08141313029.

White, J.D., J. McPhie, and S.A. Soule, 2015, Submarine lavas and hyaloclastite in Sigurdsson, H., The encyclopedia of volcanoes: Academic Press, 2nd ed., pp. 363–375, doi: 10.1016/B978-0-12-385938-9.00019-5.

Winter, W.R., R.J. Jahnert, and A.B. França, 2007, Bacia de Campos: Boletim de Geociências da PETROBRAS, 15, 2, 511–529.

Zou, C.N., Z. Yang, S.Z. Tao, X.J. Yuan, R.K. Zhu, L.H. Hou, S.T. Wu, L. Sun, G.S. Zhang, B. Bai, L. Wang, X.H. Gao, and Z.L. Pang, 2013, Continuous hydrocarbon accumulation over a large area as a distinguishing characteristic of unconventional petroleum: The Ordos Basin, North-Central China: Earth-Science Reviews, 126, 358–369, doi: 10.1016/j.earscirev.2013.08.006.

DOI: http://dx.doi.org/10.22564/brjg.v40i1.2156

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons