Rock physics modeling with mineralogical inversion in sandstone reservoir

Fábio Júnior Damasceno Fernandes, Leonardo Teixeira, Antonio Fernando Menezes Freire, Wagner Moreira Lupinacci


Reservoir characterization is a valuable tool for the oil and gas industry. A better understanding of the reservoir demands the integration of petrophysical properties and elastic parameters. This integration is commonly performed with the aid of rock physics models. The elastic properties of solid-phase components are important parameters for rock physics models calibration. In this paper, we use an adaptation of mineralogical inversion to estimate the volumes of quartz, feldspar, and clay minerals that incorporate previously calculated clay volume and porosity. Clay volume estimation is performed from neutron and bulk density logs. We chose this method due to the presence of feldspar minerals in the reservoirs. Our workflow consists of petrophysics properties estimation, mineralogical inversion, rock physics model calibration in Well A, and compressional-wave velocity estimation in Well B. The mineralogical inversion in Well A provided average volumes of 64% quartz and 16% feldspar and previously estimated 20% clay minerals. When applied to Well B, the calibrated soft-sand model is a better approximation for high porosity data points than the constant-cement model, and the error between original and estimated logs is about 2.9%, suggesting that the approach can be extended to other wells in the study area.


reservoir characterization; mineralogical inversion; rock physics models; compressional-wave velocity estimation

Full Text:



Alkmim, F.F., and S. Marshak, 1998. Transamazonian orogeny in the São Francisco craton, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero: Precambrian Research, 90, 29–58, doi: 10.1016/S0301-9268(98)00032-1.

Alkmim, F. F., and M.A. Martins-Neto, 2012. Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil: Marine and Petroleum Geology, 33, 127–139, doi: 10.1016/j.marpetgeo.2011.08.011.

Assumpção, M., J.R. Barbosa, J. Berrocal, A.M. Bassini, J.A.V. Veloso, V.I. Mârza, M.G. Huelsen, and L.C. Ribotta, 1997. Seismicity patterns and focal mechanisms in southeastern Brazil, Rev. Bras. Geof., 15, 2, 119–132. DOI: 10.1590/S0102-261X1997000200002.

Assumpção, M., D. James, and A. Snoke, 2002. Crustal thicknesses in SE Brazilian shield by receiver function analysis: implications for isostatic compensation: J. Geophys. Res., 107, B1, ESE2-1—ESE2-14, DOI: 10.1029/2001JB000422.

Assumpção, M., S.L. Dias, I. Zevallos, and J.B. Naliboffc, 2016. Intraplate stress field in South America from earthquake focal mechanisms: Journal of South American Earth Sciences, 71, 278–295. DOI: 10.1016/j.jsames.2016.07.005.

Bensen, G.D., M.H. Ritzwoller, M.P. Barmin, A.L. Levshin, F. Lin, M.P. Moschetti, N.M. Shapiro, and Y. Yang, 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements: Geophys. J. Int. 169, 1239–1260.

Bianchi, M.B., M. Assumpção, M.P. Rocha, J.M. Carvalho, P.A. Azevedo, S.L. Fontes, F.L. Dias, J.M. Ferreira, A.F. Nascimento, M.V. Ferreira, and I.S.L. Costa, 2018. The Brazilian Seismographic Network (RSBR): Improving Seismic Monitoring in Brazil. Seismological Research Letters, 89, 2A, 452–457, doi: 10.1785/0220170227.

Bonnefoy-Claudet, S., F. Cotton, P.-Y. Bard, 2006. The nature of noise wavefield and its applications for site effects studies: a literature review: Earth Sci. Rev., 79, 3, 205–227, doi: 10.1016/j.earscirev.2006.07.004.

Calkins, J.A., G.A. Abers, G. Ekström, K.C. Creager, and S. Rondenay, 2011, Shallow structure of the Cascadia subduction zone beneath western Washington from spectral ambient noise correlation: Journal of Geophysical Research, 116, B07302, doi: 10.1029/2010JB007657

Christensen, N. I., and W. D. Mooney, 1995. Seismic Velocity Structure and Composition of the Continental Crust: A Global View: Journal of Geophysical Research: Solid Earth, 100, 9761-9788, doi: 10.1029/95JB00259.

Dias, F. L., M. Assumpção, P. S. Peixoto, M. B. Bianchi, B. Collaço, and J. Calhau, 2020. Using seismic noise levels to monitor social isolation: An example from Rio de Janeiro, Brazil: Geophysical Research Letters, 47, e2020GL088748, doi: 10.1029/2020GL088748.

Dorr, J.V.N., 1969. Physiographic stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil: U.S. Geological Survey, Professional Paper, 641–A, 110, doi: 10.3133/pp641A.

Dorr, J.V.N., J.E. Gair, J.G. Pomerene, and G.A. Rynearson, 1957. Revisão da estratigrafia pré-cambriana do Quadrilátero Ferrífero. Rio de Janeiro, DNPM-DFPM, 31 p. (Avulso 81).

Dziewonski, A., S. Bloch, and M. Landisman, 1969. A technique for the analysis of transient seismic signals: Bull. Seismol. Soc. Am., 59, 427–444, doi: 10.1785/BSSA0590010427.

Eberhart-Phillips, D., 1986. Three-dimensional velocity structure in the northern California Coast Ranges from inversion of local earthquake arrival times: Bull. Seismol. Soc. Am., 76, 1025?1052, doi: 10.1785/BSSA0760041025.

Eberhart-Phillips, D., 1993. Local earthquake tomography: earthquake source regions, in Iyer, H.M., and K. Hirahara, Eds., Seismic Tomography: Theory and Practice: Chapman and Hall, London, 613?643,

Feng, M., S. van der Lee, and M. Assumpção, 2007. Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves: J. Geophys. Res., 112, B04312, doi: 10.1029/2006JB004449.

Goutorbe, B., D.L.O. Coelho, and S. Drouet, 2015. Rayleigh wave group velocities at periods of 6–23 s across Brazil from ambient noise tomography: Geophysical Journal International, 203, 2, 869–882, DOI: 10.1093/gji/ggv343

Guo, Z., X. Gao, H. Shi, and W. Wang, 2013. Crustal and uppermost mantle S-wave velocity structure beneath the Japanese islands from seismic ambient noise tomography: Geophysical Journal International, 193, 394–406, doi: 10.1093/gji/ggs121

Herrin, E.E., and T.T. Goforth, 1977. Phase-matched filters: Application to the study of Rayleigh Waves, Bull. Seism, Soc. Am., 67, 1259–1275.

Herrmann, R.B., and C.J. Ammon, 2002. Computer programs in seismology-surface waves, receiver functions and crustal structure. Saint Louis University, Department of Earth and Atmospheric Sciences, Missouri, USA. Available on:

Herz, N., 1970. Gneissic and igneous rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil. U.S. Geological Survey Professional Paper, 641-8:1-58

Huang, Y.-C., H. Yao, B.-S. Huang, R.D. van der Hilst; K.-L. Wen, W.-G. Huang, C.-H. Chen, 2010, Phase velocity variation at periods 0.5–3 s in the Taipei basin of Taiwan from correlation of ambient seismic noise: Bull. Seism. Soc. Am., 100, 5A, 2250–2263, doi: 10.1785/0120090319

Lévêque, J.-J., L. Rivera, and G. Wittilinger, 1993, On the use of the checkerboard test to assess the resolution of tomographic inversion: Geophysical Journal International, 115, 1, 313–318, doi: 10.1111/j.1365-246X.1993.tb05605.x

Machado, N., C.M. Noce, E.A. Ladeira, O.A. Belo de Oliveira, 1992, U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco Craton, Brazil: Geological Society of America Bulletin, 104, 1221–1227

Mallat, S., 2004, A Wavelet Tour of Signal Processing, Academic Press, pp 832, 14–20.

Marchioreto, A., and M. Assumpção, 1997. Invers?o Tomográfica com ondas Rayleigh no sul do Cráton do S?o Francisco e Faixa de Dobramentos Brasília-Uruaçu: 5th International Congress of the Brazilian Geophysical Society, Nov 1997, cp-299-00320, doi: 10.3997/2214-4609-pdb.299.322

Menke, M., 1989. Geophysical data analysis discrete inverse theory. Academic Press, First edition, pp 302.

Naghavi, M., M.R. Hatami, T. Shirzad, H. Rahimi, 2019; Radial Anisotropy in the Upper Crust Beneath the Tehran Basin and Surrounding Regions: Pure and Applied Geophysics, 176, 787–800, doi: 10.1007/s00024-018-1986-7

Noce, C. M., N. Machado, and W. Teixeira, 1998, U-Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (Southern São Francisco Craton): age constraints for Archean and Paleoproterozoic magmatism and metamorphism: Revista Brasileira de Geociências, 28, 95–102.

Pedersen, H. A., F. Krüger, and the SVEKALAPKO Seismic Tomography Working Group, 2007. Influence of the seismic noise characteristics on noise correlations in the Baltic shield, Geophys. J. Int. 168, 197–210, doi: 10.1016/S0065-2687(03)46002-0

Rawlinson, N., Sambridge, M., 2005. The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media: Exploration Geophysics, 36, 4, 341–350, doi: 10.1071/EG05341

Safarkhani, M., Shirzad, T., 2019. Improving C1 and C3 Empirical Green’s Functions from ambient seismic noise in NW Iran using RMS-ratio stacking method: Journal of Seismology, 23, 787–799.

Safarkhani, M., Shirzad, T. 2021. Improvement in the Empirical Green's Function Extraction Using Root Mean Square Ratio Stacking: J. Earth Space Phys, 6, 4, 39–48, doi: 10.22059/jesphys.2020.281801.1007119

Schultz, A.P., Crosson, R.S., 1996. Seismic velocity structure across the central Washington Cascade Range from refraction interpretation with earthquake sources,: Journal of Geophysical Research, 10, B12, 27899–27915, doi: 10.1029/96JB02289

Seats, K.J., Lawrence J.F., and Prieto, A.G., 2012. Improved ambient noise correlation functions using Welch’s method: Geophys. J. Int., 188, 513–523.

Shapiro, N. M., Singh, S. K., 1999. Short note: A systematic error in estimating surface-wave group-velocity dispersion curve and a procedure for its correlation: Bull. Seismol. Soc. Am. 89, 4, 1138–1142.

Shirzad, T., and M. Assumpca?o, 2019. Extracting optimum interstation empirical Green’s function in west-central Brazil: 3rd Brazilian Seismology Symposium, Vinhedo, São Paulo, Brazil.

Shirzad, T., and Z.H. Shomali, 2013. Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography: Geophys. J. Int., 196, 1162–1176, doi: 10.1093/gji/ggt449.

Shirzad, T., and Z.H. Shomali, 2014. Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography, 231, doi: 16–29. 10.1016/j.pepi.2014.04.001.

Shirzad, T., M. Assumpção, and M. Bianchi, 2020. Ambient seismic noise tomography in west-central and Southern Brazil, characterizing the crustal structure of the Chaco-Paraná, Pantanal and Paraná basins: Geophysical Journal International, 220, 3, 2074-2085, doi: 10.1093/gji/ggz548.

Shirzad, T., M. Safarkhani, and M. Assumpção, 2022. Extracting reliable empirical Green’s functions using weighted cross-correlation functions of ambient seismic noise in West-Central and Southern Brazil: Geophys. J. Int., 230, 2, 1441–1464, doi: 10.1093/gji/ggac126.

Snieder, R., 2004. Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase: Phys. Rev. E., 69, 046610, doi: 10.1103/PhysRevE.69.046610.

Spier, C. A., P. M. Vasconcelos, and M. B. Oliveira, 2006, 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil, Chemical Geology, 234, 1–2, 79–104, doi: 10.1016/j.chemgeo.2006.04.006.

Stutzmann, E. M., Schimmel, G. Patau, and A. Maggi, 2009. Global climate imprint on seismic noise: Geochem. Geophys. Geosyst., 10, 11, Q11004, doi: 10.1029/2009GC002619.

Wapenaar, K., 2004. Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation. Phys Rev Lett 93, 254301, doi: 10.1103/PhysRevLett.93.254301

Webb, S., 1998. Broadband seismology and noise under the ocean, Rev. Geophys., 36, 105–142.

Wessel, P., W.H.F. Smith, R. Scharroo, J. Luis, and F. Wobbe, 2013. Generic Mapping Tools: Improved Version Released: Eos, Transactions, American Geophysical Union, 94, 45, 409, doi: 10.1002/2013EO450001.

Xie, J., Y. Yang, Y. Luo, 2020. Improving cross-correlations of ambient noise using an rms-ratio selection stacking method, Geophys. J. Int., 222, 2, 989–1002, doi: 10.1093/gji/ggaa232.

Yang, Y., M.H. Ritzwoller, A.L. Levshin, and N.M. Shapiro, 2007. Ambient noise Rayleigh wave tomography across Europe: Geophysical Journal International, 168, 259–274, doi: 10.1111/j.1365-246X.2006.03203.x

Zhou, Y., F.A. Dahlen, and G. Nolet, 2004. Three-dimensional sensitivity kernels for surface wave observables. Geophysical Journal International 158, 142–168, doi: 10.1111/j.1365-246X.2004.02324.x


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons