Shear wave velocities in the upper crust of the Quadrilátero Ferrífero, Minas Gerais: Rayleigh-wave tomography

Taghi Shirzad, Marcelo Assumpção, Bruno Collaço, Jackson Calhau, Marcelo B. Bianchi, José Roberto Barbosa, Raphael Fernandes Prieto, Dionisio U. Carlos


We applied a combination of ambient seismic noise and classical earthquake-receiver techniques to characterize the shallow crustal shear-wave velocities in the Quadrilátero Ferrífero (QF), Minas Gerais state, SE Brazil, to a depth of about 4 km. Ambient seismic noise was recorded by up to 26 stations. To improve the signal of the extracted empirical Green's function (EGF), we correlated short time windows of 10 min with 70% overlapping before stacking. To test the accuracy of the retrieved EGF signals, we compared the results obtained from ambient seismic noise correlation with results from an earthquake occurred near FABR station. After measuring dispersion using frequency-time analysis (FTAN), we applied strict quality criteria (e.g., eliminating paths with residuals larger than two standard deviations, or lengths smaller than 3 wavelengths). The Fast Marching Surface wave Tomography (FMST) method was used to obtain group velocity maps. Then, the local dispersion curves were inverted to obtain a 3D Vs model. The resulting 3D model shows low velocity anomalies in the middle of the QF, compared with high velocities in the Archean part of the São Francisco Craton to the west. The low velocity metasedimentary layer in the QF is about 1.5 km thick.


seismology, inversion; tomography, surface wave; ambient seismic noise; Quadrilátero Ferrífero

Full Text:



Alkmim, F.F., and S. Marshak, 1998, Transamazonian orogeny in the São Francisco craton, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero: Precambrian Research, 90, 29–58. DOI: 10.1016/S0301- 9268(98)00032-1.

Alkmim, F.F., and M.A. Martins-Neto, 2012, Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil: Marine and Petroleum Geology, 33, 127–139. DOI: 10.1016/j.marpetgeo.2011.08.011.

Assumpção, M., J.R. Barbosa, J. Berrocal, A.M. Bassini, J.A.V. Veloso, V.I. Mârza, M.G. Huelsen, and L.C. Ribotta, 1997, Seismicity patterns and focal mechanisms in southeastern Brazil: Rev. Bras. Geof., 15, 2, 119–132. DOI: 10.1590/S0102- 261X1997000200002.

Assumpção, M., D. James, and A. Snoke, 2002, Crustal thicknesses in SE Brazilian shield by receiver function analysis: implications for isostatic compensation: J. Geophys. Res., 107, B1, ESE2-1— ESE2-14. DOI: 10.1029/2001JB000422.

Assumpção, M., S.L. Dias, I. Zevallos, and J.B. Naliboffc, 2016, Intraplate stress field in South America from earthquake focal mechanisms: Journal of South American Earth Sciences, 71, 278– Shirzad et al. 237 Braz. J. Geophysics, 40, 2, 2022 295. DOI: 10.1016/j.jsames.2016.07.005.

Bensen, G.D., M.H. Ritzwoller, M.P. Barmin, A.L. Levshin, F. Lin, M.P. Moschetti, N.M. Shapiro, and Y. Yang, 2007, Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements: Geophys. J. Int., 169, 1239–1260. DOI: 10.1111/j.1365-246X.2007.03374.x.

Bianchi, M.B., M. Assumpção, M.P. Rocha, J.M. Carvalho, P.A. Azevedo, S.L. Fontes, F.L. Dias, J.M. Ferreira, A.F. Nascimento, M.V. Ferreira, and I.S.L. Costa, 2018, The Brazilian Seismographic Network (RSBR): Improving Seismic Monitoring in Brazil: Seismological Research Letters, 89, 2A, 452–457. DOI: 10.1785/0220170227.

Bonnefoy-Claudet, S., F. Cotton, and P.-Y. Bard, 2006, The nature of noise wavefield and its applications for site effects studies: a literature review: Earth Sci. Rev., 79, 3, 205–227. DOI: 10.1016/j.earscirev.2006.07.004.

Calkins, J.A., G.A. Abers, G. Ekström, K.C. Creager, and S. Rondenay, 2011, Shallow structure of the Cascadia subduction zone beneath western Washington from spectral ambient noise correlation: Journal of Geophysical Research, 116, B07302. DOI: 10.1029/2010JB007657.

Christensen, N. I., and W. D. Mooney, 1995, Seismic Velocity Structure and Composition of the Continental Crust: A Global View: Journal of Geophysical Research: Solid Earth, 100, 9761–9788. DOI: 10.1029/95JB00259.

Dias, F. L., M. Assumpção, P. S. Peixoto, M. B. Bianchi, B. Collaço, and J. Calhau, 2020, Using seismic noise levels to monitor social isolation: An example from Rio de Janeiro, Brazil: Geophysical Research Letters, 47, e2020GL088748. DOI: 10.1029/2020GL088748.

Dorr, J.V.N., 1969, Physiographic stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil: U.S. Geological Survey, Professional Paper, 641–A, A1–A110. DOI: 10.3133/pp641A.

Dorr, J.V.N., J.E. Gair, J.G. Pomerene, and G.A. Rynearson, 1957, Revisão da estratigrafia précambriana do Quadrilátero Ferrífero: DNPMDFPM, Rio de Janeiro, Brazil, 31 p. (Avulso 81). Dziewonski, A., S. Bloch, and M. Landisman, 1969, A technique for the analysis of transient seismic signals: Bull. Seismol. Soc. Am., 59, 427–444. DOI: 10.1785/BSSA0590010427.

Eberhart-Phillips, D., 1986, Three-dimensional velocity structure in the northern California Coast Ranges from inversion of local earthquake arrival times: Bull. Seismol. Soc. Am., 76, 1025?1052. DOI: 10.1785/BSSA0760041025.

Eberhart-Phillips, D., 1993, Local earthquake tomography: earthquake source regions, in Iyer, H.M., and K. Hirahara, Eds., Seismic Tomography: Theory and Practice: Chapman and Hall, London, 613?643, chapter 22.

Feng, M., S. van der Lee, and M. Assumpção, 2007, Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves: J. Geophys. Res., 112, B04312. DOI: 10.1029/2006JB004449.

Goutorbe, B., D.L.O. Coelho, and S. Drouet, 2015, Rayleigh wave group velocities at periods of 6–23 s across Brazil from ambient noise tomography: Geophysical Journal International, 203, 2, 869–882. DOI: 10.1093/gji/ggv343.

Guo, Z., X. Gao, H. Shi, and W. Wang, 2013, Crustal and uppermost mantle S-wave velocity structure beneath the Japanese islands from seismic ambient noise tomography: Geophysical Journal International, 193, 394–406. DOI: 10.1093/gji/ggs121.

Herrin, E., and T. Goforth, 1977, Phase-matched filters: Application to the study of Rayleigh Waves, Bull. Seism, Soc. Am., 67, 1259–1275. DOI: 10.1785/BSSA0670051259.

Herrmann, R.B., and C.J. Ammon, 2002, Computer programs in seismology-surface waves, receiver functions and crustal structure. Saint Louis University, Department of Earth and Atmospheric Sciences, Missouri, USA. Available on: uterPrograms.html Herz, N., 1970, Gneissic and igneous rocks of the Quadrilátero Ferrífero, Minas Gerais, Brazil: U.S. Geological Survey Professional Paper, 641-B: B1– B58. DOI: 10.3133/pp641B.

Huang, Y.-C., H. Yao, B.-S. Huang, R.D. van der Hilst; K.-L. Wen, W.-G. Huang, C.-H. Chen, 2010, Phase velocity variation at periods 0.5–3 s in the Taipei basin of Taiwan from correlation of ambient seismic noise: Bull. Seism. Soc. Am., 100, 5A, 2250–2263. DOI: 10.1785/0120090319.

Lévêque, J.-J., L. Rivera, and G. Wittilinger, 1993, On the use of the checkerboard test to assess the resolution of tomographic inversion: Geophysical Journal International, 115, 1, 313–318. DOI: 10.1111/j.1365-246X.1993.tb05605.x.

Machado, N., C.M. Noce, E.A. Ladeira, O.A. Belo de Oliveira, 1992, U-Pb geochronology of Archean magmatism and Proterozoic metamorphism in the Quadrilátero Ferrífero, southern São Francisco Craton, Brazil: Geological Society of America Bulletin, 104, 1221–1227. DOI: 10.1130/0016- 7606(1992)1042.3.CO;2.

Mallat, S., 2004, A Wavelet Tour of Signal Processing: Academic Press, 832 pp.

Marchioreto, A., and M. Assumpção, 1997, Invers?o Tomográfica com ondas Rayleigh no sul do Cráton do S?o Francisco e Faixa de Dobramentos BrasíliaUruaçu: 5th International Congress of the Brazilian Geophysical Society, Nov 1997, cp-299-00320. DOI: 10.3997/2214-4609-pdb.299.322. 238 Shear Wave Velocities in Upper Crust of the Quadrilátero Ferrífero, MG Braz. J. Geophysics, 40, 2, 2022

Menke, M., 1989, Geophysical Data Analysis: Discrete Inverse Theory: Academic Press, 302 pp.

Naghavi, M., M.R. Hatami, T. Shirzad, and H. Rahimi, 2019, Radial Anisotropy in the Upper Crust Beneath the Tehran Basin and Surrounding Regions: Pure and Applied Geophysics, 176, 787– 800. DOI: 10.1007/s00024-018-1986-7.

Noce, C.M., N. Machado, and W. Teixeira, 1998, U-Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (Southern São Francisco Craton): age constraints for Archean and Paleoproterozoic magmatism and metamorphism: Revista Brasileira de Geociências, 28, 95–102. DOI: 10.25249/0375-7536.199895102.

Pedersen, H. A., and F. Krüger, 2007, Influence of the seismic noise characteristics on noise correlations in the Baltic shield: Geophys. J. Int., 168, 197–210. DOI: 10.1111/j.1365-246X.2006.03177.x.

Rawlinson, N., and M. Sambridge, 2005, The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media: Exploration Geophysics, 36, 4, 341– 350. DOI: 10.1071/EG05341 Safarkhani, M., and T. Shirzad, 2019, Improving C1 and C3 Empirical Green’s Functions from ambient seismic noise in NW Iran using RMS ratio stacking method: Journal of Seismology, 23, 787–799. DOI: 10.1007/s10950-019-09834-1.

Safarkhani, M., and T. Shirzad, 2021, Improvement in the Empirical Green's Function Extraction Using Root Mean Square Ratio Stacking: Journal of the Earth and Space Physics, 46, 4, 39–48. DOI: 10.22059/jesphys.2020.281801.1007119

Schultz, A.P., and R.S. Crosson, 1996, Seismic velocity structure across the central Washington Cascade Range from refraction interpretation with earthquake sources: Journal of Geophysical Research, 10, B12, 27899–27915. DOI: 10.1029/96JB02289.

Seats, K.J., J.F. Lawrence, and G.A. Prieto, 2012, Improved ambient noise correlation functions using Welch’s method: Geophys. J. Int., 188, 513–523. DOI: 10.1111/j.1365-246X.2011.05263.x.

Shapiro, N.M., and S.K. Singh, 1999, A systematic error in estimating surface-wave group-velocity dispersion curves and a procedure for its correction: Brief Report, Bull. Seismol. Soc. Am. 89, 4, 1138– 1142. DOI: 10.1785/BSSA0890041138.

Shirzad, T., and M. Assumpcão, 2019, Extracting optimum interstation empirical Green’s function in west-central Brazil: 3rd Brazilian Seismology Symposium, Vinhedo, São Paulo, Brazil.

Shirzad, T., and Z.H. Shomali, 2013, Shallow crustal structures of the Tehran basin in Iran resolved by ambient noise tomography: Geophys. J. Int., 196, 1162–1176. DOI: 10.1093/gji/ggt449. Shirzad, T., and Z.H.

Shomali, 2014, Shallow crustal radial anisotropy beneath the Tehran basin of Iran from seismic ambient noise tomography: Physics of the Earth and Planetary Interiors, 231, 16–29. DOI: 10.1016/j.pepi.2014.04.001.

Shirzad, T., M. Assumpção, and M. Bianchi, 2020, Ambient seismic noise tomography in west-central and Southern Brazil, characterizing the crustal structure of the Chaco-Paraná, Pantanal and Paraná basins: Geophysical Journal International, 220, 3, 2074–2085. DOI: 10.1093/gji/ggz548.

Shirzad, T., M. Safarkhani, and M. Assumpção, 2022, Extracting reliable empirical Green’s functions using weighted cross-correlation functions of ambient seismic noise in West-Central and Southern Brazil: Geophys. J. Int., 230, 2, 1441– 1464. DOI: 10.1093/gji/ggac126.

Snieder, R., 2004, Extracting the Green’s function from the correlation of coda waves: a derivation based on stationary phase: Phys. Rev. E., 69, 046610. DOI: 10.1103/PhysRevE.69.046610.

Spier, C. A., P. M. Vasconcelos, and M. B. Oliveira, 2006, 40Ar/39Ar geochronological constraints on the evolution of lateritic iron deposits in the Quadrilátero Ferrífero, Minas Gerais, Brazil, Chemical Geology, 234, 1–2, 79–104. DOI: 10.1016/j.chemgeo.2006.04.006.

Stutzmann, E. M., Schimmel, G. Patau, and A. Maggi, 2009, Global climate imprint on seismic noise: Geochem. Geophys. Geosyst., 10, 11, Q11004. DOI: 10.1029/2009GC002619.

Wapenaar, K., 2004, Retrieving the elastodynamic Green’s function of an arbitrary inhomogeneous medium by cross correlation: Phys. Rev. Lett., 93, 254301. DOI: 10.1103/PhysRevLett.93.254301.

Webb, S.C., 1998, Broadband seismology and noise under the ocean: Rev. Geophys., 36, 105–142. DOI: 10.1029/97RG02287.

Wessel, P., W.H.F. Smith, R. Scharroo, J. Luis, and F. Wobbe, 2013, Generic Mapping Tools: Improved Version Released: Eos, Transactions, American Geophysical Union, 94, 45, 409. DOI: 10.1002/2013EO450001.

Xie, J., Y. Yang, Y. Luo, 2020, Improving crosscorrelations of ambient noise using an rms-ratio selection stacking method: Geophys. J. Int., 222, 2, 989–1002. DOI: 10.1093/gji/ggaa232.

Yang, Y., M.H. Ritzwoller, A.L. Levshin, and N.M. Shapiro, 2007, Ambient noise Rayleigh wave tomography across Europe: Geophysical Journal International, 168, 259–274. DOI: 10.1111/j.1365-246X.2006.03203.x.

Zhou, Y., F.A. Dahlen, and G. Nolet, 2004, Threedimensional sensitivity kernels for surface wave observables: Geophysical Journal International, 158, 142–168. DOI: 10.1111/j.1365-246X.2004.02324.x.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons