Analysis of Seismic Refraction and Surface Wave Data for the Evaluation of Layers and Saturation of Solid Waste from a Landfill in Brasília, Brazil

Victória Basileu de Oliveira Lima, Victor José Cavalcanti Bezerra Guedes, Welitom Rodrigues Borges, Marcelo Peres Rocha, Luciano Soares da Cunha

Abstract


The present work discusses the characterization of landfilled solid waste and saturated zones considering the response of P and S-wave velocities (Vp and Vs), Poisson ratio (υ), Young’s modulus (E) and shear modulus (G0), obtained from velocity models in an area located in the former Jockey Clube Controlled Landfill. The obtained Vp values ranged from 231 to 1,160 m/s, while Vs values range from 124 to 449 m/s. The calculated υ ranged from 0.11 to 0.4, while G0 and E ranged from 15 to 319 kPa and from 42 to 901 kPa, respectively. The values of G0 and E indicate that the landfilled material is poorly competent. The combined interpretation of Vp, Vs and elastic parameters allowed the definition of three main layers in the surveyed area and their respective distance from soil surface, defined as: 1) Civil construction residual material, of around 10 meters thick; 2) A solid waste layer, of around 18 meters thick, marked as a lower Vs and higher υ interval, possibly associated with saturated material; and 3) the estimated natural landfill terrain, below the depth of 28 meters, composed by the oxisol.

Keywords


multi-channel analysis of surface waves; elastic properties; wave velocities; SRT; seismic refraction tomography

Full Text:

PDF

References


Abreu, A.E.S., and O.M. Vilar, 2013, In-place MSW unit weight measurement in São Carlos, Brazil: Proceedings Thirteenth International Landfill Symposium, Cagliari, Italy.

Abreu, A.E.S., O.C.B. Gandolfo, and O.M. Vilar, 2016, Characterizing a Brazilian sanitary landfill using geophysical seismic techniques: Waste Manag., 53, 116–127. 10.1016/j.wasman.2016.03.048.

Alam, M.I., and P. Jaiswal, 2017, Near Surface Characterization Using VP/VS and Poisson’s Ratio from Seismic Refractions: J. Environ. Eng. Geophys., 22, 101–109. DOI: 10.2113/JEEG22.2.101.

Alfaia, R.G. de S.M., A.M. Costa, and J.C. Campos, 2017, Municipal solid waste in Brazil: A review: Waste Manag. Res. 35, 1195–1209. DOI: 10.1177/0734242X17735375.

Anbazhagan, P., G.L. Sivakumarbabu, P. Lakshmikanthan, and K.S. Vivekanand, 2016, Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India: Waste Manag. Res., 34, 205–213. DOI: 10.1177/0734242X15622814.

Aranda, N., R.L. Prado, V.R. Elis, M.G. Miguel, O.C.B. Gandolfo, and B. Conicelli, 2019, Evaluating elastic wave velocities in Brazilian municipal solid waste: Environ. Earth Sci., 78, 1–16. DOI: 10.1007/s12665-019-8490-y.

Baechle, G.T., Eberli, G.P., Weger, R.J., and Massaferro, J.L., 2009, Changes in dynamic shear moduli of carbonate rocks with fluid substitution: Geophysics, 74, 3, E135–E147. DOI: 10.1190/1.3111063.

Berge, P.A., and H. Bertete-Aguirre, 2000, Laboratory Velocity Measurements Used For Recovering Soil Distributions From Field Seismic Data: 13th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems: Environmental & Engineering Geophysical Society. Arlington, Virginia, USA. p. 662. DOI: 10.3997/2214-4609-pdb.200.2000_024.

Campos, H.K.T., 2018, Como fechamos o segundo maior lixão do mundo: Rev. Bras. Planej. e Orçamento, 8, 204–253.

Campos, J.E.G., M.A. Dardenne, F.H. Freitas-Silva, and M.A.C. Martins-Ferreira, 2013, Geologia do Grupo Paranoá na porção externa da Faixa Brasília: Brazilian J. Geol. 43, 461–476. DOI: 10.5327/Z2317-48892013000300004.

Carey, P.J., N. Koragappa, and J.J. Gurda, 1993, A case study of the Brookhaven Landfill, Long Island, New York: Proc. WasteTech ‘93, Mar. Del Rey, CA. Natl. Solid Waste Manag. Assoc. Washington, D.C.

Carpenter, P.J., K.R. Reddy, and M.D. Thompson, 2013, Seismic Imaging of a Leachate-Recirculation Landfill: Spatial Changes in Dynamic Properties of Municipal Solid Waste: J. Hazardous, Toxic, Radioact. Waste, 17, 331–341. DOI: 10.1061/(asce)hz.2153-5515.0000175.

Castelli, F., V. Lentini, and M. Maugeri, 2013, Stability Analysis of Landfills in Seismic Area: Geo-Congress 2013, Stability and Performance of Slopes and Embankments. American Society of Civil Engineers – ASCE. 1226–1239. DOI: 10.1061/9780784412787.124.

Cavalcanti, M.M., W.R. Borges, R. Stollberg, M.P. Rocha, L. Soares, E.X. Seimetz, V. Nogueira, and F.R. Olivera e Sousa, 2014, Levantamento Geofísico (Eletrorresistividade) nos limites do Aterro Controlado do Jokey Clube, Vila Estrutural, Brasília – DF, Brazil: Geociências, 33: 298–313.

Choudhury, D., and P. Savoikar, 2009, Simplified method to characterize municipal solid waste properties under seismic conditions: Waste Manag., 29, 924–933. DOI: 10.1016/j.wasman.2008.05.008.

Clayton, C.R.I., 2011, Stiffness at small strain: Research and Practice: Geotechnique, 61, 5–37. DOI: 10.1680/geot.2011.61.1.5.

Cossu, R., R. Di Maio, S. Fais, A. Fraghi, P. Ligas, and A. Menghini, 2005, Physical and structural characterisation of an old landfill site by a multimethodological geophysical approach: 10th Int. Waste Manag. Landfill Symp. Sardinia, Italy. 1–8.

De Iaco, R., A.G. Green, H.R. Maurer, and H. Horstmeyer, 2003, A combined seismic reflection and refraction study of a landfill and its host sediments: J. Appl. Geophys., 52, 139–156. DOI: 10.1016/S0926-9851(02)00255-0.

Del Greco, O., A. Fassino, and A. Godiohtt, 2007, Seismic investigation for the assessment of the elastic settlement in MSW landfill: 11th International Waste Management and Landfill Symposium. Cagliari, Italy.

Foti, S., F. Hollender, F. Garofalo, D. Albarello, M. Asten, P.Y. Bard, C. Comina, C. Cornou, B. Cox, G. Di Giulio, T. Forbriger, K. Hayashi, E. Lunedei, A. Martin, D. Mercerat, M. Ohrnberger, V. Poggi, F. Renalier, D. Sicilia, and V. Socco, 2018, Guidelines for the good practice of surface wave analysis: a product of the InterPACIFIC project: Bulletin of Earthquake Engineering, 16, 2367–2420. DOI: 10.1007/s10518-017-0206-7.

Gaël, D., R. Tanguy, M. Nicolas, and N. Frédéric, 2017, Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites: J. Appl. Geophys., 145, 74–83. DOI: 10.1016/j.jappgeo.2017.07.013.

Geometrics, Inc., 2009, SeisImager/SW Manual. Windows Software for Analysis of Surface Waves: Manual v. 3.0. 314pp.

Guedes, V.J.C.B., V.B.O. Lima, W.R. Borges, and L.S. da Cunha, 2020, Comparison of the geoelectric signature with different electrode arrays at the Jockey Club Landfill of Brasília – DF, Brazil: Rev. Bras. Geofis., 38, 41–51. DOI: 10.22564/rbgf.v38i1.2034.

Hayashi, K., and T. Takahashi, 2001, High resolution seismic refraction method using surface and borehole data for site characterization of rocks: International Journal of Rock Mechanics and Mining Sciences, 38, 807–813. DOI: 10.1016/S1365-1609(01)00045-4.

Hayashi, K., 2008, Development of the Surface-wave Methods and Its Application to Site Investigations: PhD Thesis, Kyoto University, 278 pp.

Herbst, R., I. Kapp, H. Krummel, and E. Lück, 1998, Seismic sources for shallow investigations: a field comparison from Northern Germany: Journal of Applied Geophysics, 38, 301–317. DOI: 10.1016/S0926-9851(97)00037-2

Hoornweg, D., and P. Bhada-Tata, 2012, What a Waste: A Global Review of Solid Waste Management, 12th ed.: Urban Development Series Knowledge Papers, World Bank, Washington, DC, USA. http://hdl.handle.net/10986/17388.

Houston, W.N., S. Houston, J.W. Liu, A. Elsayed, and C.O. Sanders, 1995, In-situ testing methods for dynamic properties of MSW landfills, 54th ed.: Geotechnical Special Publication. ASCE. San Diego, CA, USA. 73–82.

Kassab, M.A., and A. Weller, 2015, Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt: Egypt. J. Pet., 24, 1–11. DOI: 10.1016/j.ejpe.2015.02.001.

Kearey, P., M. Brooks, and I. Hill, 2009, Geofísica de exploração: Oficina de Textos. São Paulo, Brazil. 488pp.

Konstantaki, L.A., R. Ghose, D. Draganov, G. Diaferia, and T. Heimovaara, 2015, Characterization of a heterogeneous landfill using seismic and electrical resistivity data: Geophysics, 80, EN13–EN25. DOI: 10.1190/geo2014-0263.1.

Konstantaki, L.A., R. Ghose, D. Draganov, and T. Heimovaara, 2016, Wet and gassy zones in a municipal landfill from P- and S-wave velocity fields: Geophysics, 81, EN75–EN86. DOI: 10.1190/GEO2015-0581.1.

Matasovic, N., and E. Kavazanjian Jr., 2006, Seismic Response of a Composite Landfill Cover: Journal of Geotechnical and Geoenvironmental Engineering, 132, 448–455. DOI: 10.1061/(ASCE)1090-0241(2006)132:4(448).

Mavko, G., T. Mukerji, and J. Dvorkin, 2010, The Rock Physics Handbook: Cambridge University Press, Cambridge. DOI: 10.1017/CBO9780511626753.2.

Milsom, J., 2003, Field Geophysics, 3rd ed.: John Wiley & Sons Ltd., The Geological Field Guide Series. 182 pp.

Moser, T.J., 1991, Shortest path calculation of seismic rays: Geophysics, 56, 59–67. DOI: 10.1190/1.1442958.

Paixão Filho, J.L., and M. Miguel, 2017, Long-Term Characterization of Landfill Leachate: Impacts of the Tropical Climate on its Composition: Am. J. Environ. Sci., 13, 2, 116–127. DOI: 10.3844/ajessp.2017.116.127.

Park, C.B., and R.D. Miller, 1997, Multichannel Analysis of Surface Waves (MASW) – Active and passive methods: The Leading Edge, 26, 60–64.

Park, C.B., R.D. Miller, and J. Xia, 1999, Multichannel analysis of surface waves: Geophysics, 64, 800–808. DOI: 10.1190/1.1444590.

Sharma, S., P. Jaiswal, R. Raj, and E.A. Atekwana, 2021, In-situ biofilm detection in field settings using multichannel seismic Biofilm Inversion: J. Appl. Geophys., 193, 104423. DOI: 10.1016/j.jappgeo.2021.104423.

Sheriff, R.E., and L.P. Geldart, 1995, Exploration Seismology, 2nd ed.: University Press, Cambridge, 592 pp. DOI: 10.1017/CBO9781139168359.

Strobbia, C., 2003, Surface wave methods. Acquisition, processing and inversion: PhD Thesis, Politecnico di Torino, Italy. 317 pp.

Toney, L.D., R.E. Abbott, L.A. Preston, D.G. Tang, T. Finlay, and K. Phillips?Alonge, 2019, Joint body? and surface?wave tomography of Yucca Flat, Nevada, using a novel seismic source: Bulletin of the Seismological Society of America, 109, 5, 1922–1934. DOI: 10.1785/0120180322.

Uhlemann, S., S. Hagedorn, B. Dashwood, H. Maurer, D. Gunn, T., Dijkstra, and J. Chambers, 2016, Landslide characterization using P- and S-wave seismic refraction tomography — The importance of elastic moduli: J. Appl. Geophys., 134, 64–76. DOI: 10.1016/j.jappgeo.2016.08.014.

White, D.J., 1989, Two-dimensional seismic refraction tomography: Geophysical Journal International, 97, 223–245 DOI: 10.1111/j.1365-246X.1989.tb00498.x.

Wongpornchai, P., R. Phatchaiyo, and N. Srikoch, 2009, Seismic refraction tomography of Mae-Hia Landfill Sites, Mueang District, Chiang Mai: World Acad. Sci. Eng. Technol., 32, 678–681.

Yordkayhun, S., and J.N. Suwan, 2012, A university-developed seismic source for shallow seismic surveys: Journal of Applied Geophysics, 82, 110–118. DOI: 10.1016/j.jappgeo.2012.02.008.

Zekkos, D., J.D. Bray, E. Kavazanjian, N. Matasovic, E.M. Rathje, M.F.Riemer, and K.H. Stokoe, 2006. Unit Weight of Municipal Solid Waste: J. Geotech. Geoenvironmental Eng., 132, 1250–1261. DOI: 10.1061/(asce)1090-0241(2006)132:10(1250).

Zekkos, D., J.D. Bray, and M.F. Riemer, 2008, Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing: Can. Geotech. J., 45, 45–58. DOI: 10.1139/T07-069.

Zekkos, D., N. Matasovic, R. El-Sherbiny, A. Athanasopoulos-Zekkos, I. Towhata, and M. Maugeri, 2011, Dynamic Properties of Municipal Solid Waste: International Symposium on Waste Mechanics, New Orleans, Louisiana, USA. 112–134. DOI: 10.1061/41146(395)4.

Zekkos, D., A. Sahadewa, R.D. Woods, and K.H. Stokoe, 2014, Development of Model for Shear-Wave Velocity of Municipal Solid Waste: J. Geotech. Geoenvironmental Eng., 140, 04013030. DOI: 10.1061/(ASCE)GT.1943-5606.0001017.




DOI: http://dx.doi.org/10.22564/brjg.v40i2.2163

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons