Regional-residual separation and enhancement methods applied to regional analysis of potential data: Structure of Florianopolis and Rio de Janeiro fracture zones in the western South Atlantic

Marcelo Carvalho, André Ferraz, André Luiz Ferrari, Sidney Luiz de Matos Mello, Luiz Antônio Pierantoni Gambôa

Abstract


Topographic, gravimetric and magnetic data has been employed to map regional tectonic elements in the South Atlantic presenting major oceanic tectonic structures which had previously lacked continuity when approaching the continental margin. The creation of such contoured maps has proven that numerical transform methods involving regional/residual separation and derivatives of gravity and magnetics can enhance geophysical signatures and unveil hidden structures, especially in the transition from the continental margins to the oceanic basin. In assessing the tectonic trend of the Florianopolis and Rio de Janeiro fracture zones close to the Brazilian continental margin, the fracture zones change direction from E-W in the oceanic region to NE-SW in the continental margin, probably displaced by the cretaceous hinge line in the northern portion of the Santos Basin. The continental structures associated with possible transcurrent and transfer zones that gave rise to the fracture zones of Rio de Janeiro and Florianopolis, probably played an essential role in the evolution of both the SE margin of the Santos Basin and the African conjugated margin. Analysis demonstrates the magnetic and gravimetric signatures of fracture zones can serve as important constraints for reconstructing continental margins in the rift and post-rift.


Keywords


Bouguer gravity anomaly; potential fields; offshore Brazil; continental crust

Full Text:

PDF

References


Bonatti, E., M. Ligi, L. Gasperini, A. Peyve, Y. Raznitsin, and Y.J. Chen, 1994, Transform migration and vertical tectonics at the Romanche Fracture Zone, equatorial Atlantic: Journal of Geophysical Research, 99, 21779–21802, doi: 10.1029/94jb01178.

Cande, S.C., J.L. Labrecque, and W.F. Haxby, 1988, Plate kinematics of the South Atlantic Chron C34 to present: Journal of Geophysical Research, 93, 13479–13492, doi: 10.1029/jb093ib11p13479.

Darros, De Matos R.M., 2021, Magmatism and hotspot trails during and after continental break-up in the South Atlantic: Marine and Petroleum Geology, 129, p. 105077, doi: 10.1016/j.marpetgeo.2021.105077.

Eagles, G., 2007, New angles on South Atlantic opening: Geophysical Journal International, 168, 1, 353–361, doi: 10.1111/j.1365-246X.2006.03206.x.

Ferraz, A., L. Gamboa, E.V. Santos Neto, and R. Baptista, 2019, Crustal structure and CO2 occurrences in the Brazilian basins: Interpretation, 7, 4, 37–45, doi: 10.1190/INT-2019-0038.1.

Gamboa, L.A.P., and P.D. Rabinowitz, 1981, The Rio Grande fracture zone in the western South Atlantic and its tectonic implications: Earth and Planetary Science Letters, 52, 410–418, doi: 10.1016/0012-821X(81)90193-X.

Gamboa, L., A. Ferraz, R. Baptista, E.V. Santos Neto, 2019, Geotectonic Controls on CO2 Formation and Distribution Processes in the Brazilian Pre-salt Basins: Geosciences, 9, 6, 252, doi: 10.3390/geosciences9060252.

Gamboa, L., A. Ferraz, L. Drehmer, and L. Demercian, 2021, Seismic, Magnetic and Gravity Evidence of Marine Incursions in the Santos Basin during Early Aptian, in Mello, M.R., P.O. Yilmaz, and B.J. Katz, eds., The Supergiant Lower Cretaceous Pre-Salt Petroleum Systems of the Santos Basin: AAPG Memoir, 124, chapter 10, p. 257–272, doi: 10.1306/13722322MSB.10.1853.

Geosoft, 2021, Oasis Montaj. Version 2021.2.1. Seequent, 2021. https://seequent.com.

Gerya, T., 2012, Origin and models of oceanic transform faults: Tectonophysics, 522–523, 34–54, doi: 10.1016/j.tecto.2011.07.006.

Gomes, P.O., B.S. Gomes, J.J.C. Palma, K. Jinno, and J.M. De Souza, 2000, Ocean-continent transition and tectonic framework of the oceanic crust at the continental margin off NE Brazil: Results of LEPLAC project, in Mohriak, W., and M. Taiwani, eds., Atlantic Rifts and Continental Margins: Washington DC, American Geophysical Union, Geophysical Monograph Series, 115, p. 261–291, doi: 10.1029/GM115p0261.

Granot, R., and J. Dyment, 2015, The Cretaceous opening of the South Atlantic Ocean: Earth and Planetary Science Letters, 414, 156–163, doi: 10.1016/j.epsl.2015.01.015.

Heine, C., J. Zoethout, and R.D. Müller, 2013, Kinematics of the South Atlantic rift: Solid Earth, 4, 215–253, doi: 10.5194/se-4-215-2013.

Hensen, C., J.C. Duarte, P. Vannucchi, A. Mazzini, M.A. Lever, P. Terrinha, L. Géli, P. Henry, H. Villinger, J. Morgan, M. Schmidt, M-A. Gutscher, R. Bartolome, Y. Tomonaga, A. Polonia, E. Gràcia, U. Tinivella, M. Lupi, M.N. Ça?atay, M. Elvert, D. Sakellariou, L. Matias, R. Kipfer, A.P. Karageorgis, L. Ruffine, V. Liebetrau, C. Pierre, C. Schmidt, L. Batista, L. Gasperini, E. Burwicz, M. Neres, and M. Nuzzo, 2019, Marine Transform faults and fracture zones: A joint perspective integrating seismicity, fluid flow and life: Frontiers in Earth Science, 7, 39, doi: 10.3389/feart.2019.00039.

Li, X., 2006, Understanding 3D analytic signal amplitude: Geophysics, 71, L13, doi: 10.1190/1.2184367.

Maus, S., U. Barckhausen, H. Berkenbosch, N. Bournas, J. Brozena, V. Childers, F. Dostaler, J.D. Fairhead, C. Finn, R.R.B. Von Frese, C. Gaina, S. Golynsky, R. Kucks, H. Lühr, P. Milligan, S. Mogren, R.D. Müller, O. Olesen, M. Pilkington, R. Saltus, B. Schreckenberger, E. Thébault, F. Caratori Tontini, 2009, EMAG2: A 2-arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 10, 8, Q08005, doi: 10.1029/2009GC002471.

Mohriak, W.U., and B.R. Rosendahl, 2003, Transform zones in the South Atlantic rifted continental margins: Geological Society, London, Special Publications, 210, 1, 211–228, doi: 10.1144/GSL.SP.2003.210.01.13.

Mohriak, W.U., M. Nóbrega, M.E. Odegard, B.S. Gomes, and W.G. Dickson, 2010, Geological and geophysical interpretation of the Rio Grande Rise, south-eastern Brazilian margin: extensional tectonics and rifting of continental and oceanic crusts: Petroleum Geoscience, 16, 3, 231–245, doi: 10.1144/1354-079309-910.

Mohriak, W.U., J.C.H. De Almeida, and A.C. Gordon, 2022, South Atlantic Ocean: postbreakup configuration and Cenozoic magmatism, in Santos, A.C. dos and P.C. Hackspacher, eds., Meso-Cenozoic Brazilian Offshore Magmatism: Geochemistry, Petrology, and Tectonics, Elsevier, chapter 1, 1–45, doi: 10.1016/B978-0-12-823988-9.00007-1.

Morgan, W.J., 1968, Rises, trenches, great faults, and crustal blocks: Journal of Geophysical Research, 73, 1959–1982, doi: 10.1029/jb073i006p01959.

Nabighian, M.N., 1972, The Analytic Signal of Two-Dimensional Magnetic Bodies with Polygonal Cross-Section: Its Properties and Use for Automated Anomaly Interpretation: Geophysics, 37, 507–517, doi: 10.1190/1.1440276.

Nettleton, L.L., 1954, Regionals, residuals, and structures: Geophysics, 19, 1, 1–22, doi: 10.1190/1.1437966.

Norris, R.J., and V.G. Toy, 2014, Continental transforms: A view from the Alpine Fault: Journal of Structural Geology, 64, 3–31, doi: 10.1016/j.jsg.2014.03.003.

Parker, R.L., 1973, The Rapid Calculation of Potential Anomalies: Geophysical Journal International, Royal Astronomical Society, 31, 447–455, doi: 10.1111/j.1365-246X.1973.tb06513.x.

Quirk, D.G., M. Hertle, J.W. Jeppesen, M. Raven, W.U. Mohriak, D.J. Kann, M. Nørgaard, M.J. Howe, D. Hsu, B. Coffey, and M.P. Mendes, 2013, Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic, Geological Society, Special Publications, 369, 185, doi: 10.1144/SP369.20.

Rabinowitz, P.D., and J. Labrecque, 1979, The Mesozoic South Atlantic Ocean and evolution of its continental margins: Journal of Geophysical Research, 84, B11, 5973–6002, doi: 10.1029/JB084iB11p05973.

Renne, P.R., M. Ernesto, I.G. Pacca, R.S. Coe, J.M. Glen, M. Prévot, and M. Perrin, 1992, The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary: Science, 258, 975–979, doi: 10.1126/science.258.5084.975.

Roest, W.R., J. Verhoef and M. Pilkington, 1992, Magnetic interpretation using the 3-D analytic signal: Geophysics, 57, 116–125, doi: 10.1190/1.1443174.

Sandwell, D.T., 1986, Thermal stress and the spacings of transform faults: Journal of Geophysical Research, 91, 6405–6417, doi: 10.1029/jb091ib06p06405.

Sandwell, D.T., R.D. Müller, W.H.F. Smith, E. Garcia, and R. Francis, 2014, New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure: Science, 346, 65–67, doi: 10.1126/science.1258213.

?engör, A.M.C., Zabci, C., and Natal’in, B.A., 2019, Continental Transform Faults: Congruence and Incongruence With Normal Plate Kinematics, in Duarte, J.C. Transform Plate Boundaries and Fracture Zones, Elsevier, chapter 9, p. 169–247, doi: 10.1016/B978-0-12-812064-4.00009-8.

SMITH, W.H.F., and P. WESSEL, 1990, Gridding with continuous curvature splines in tension: Geophysics, 55, 293–305, doi: 10.1190/1.1442837.

Stanton, N., S.L. Mello, and S.E. Sichel, 2006, Morfoestrutura da Cordilheira Mesoceânica no Atlâtico Sul entre 0ºS e 50ºS: Revista Brasileira de Geofísica, 24, 2, 231–241, doi: 10.1590/s0102-261x2006000400016.

Tozer, B., D.T. Sandwell, W.H.F. Smith, C. Olson, J.R. Beale, and P. Wessel, 2019, Global Bathymetry and Topography at 15 Arc Sec: SRTM15+: Earth and Space Science, 6, 1847–1864, doi: 10.1029/2019EA000658.

Verduzco, B., J.D. Fairhead, C.M. Green, and C. MacKenzie, 2004, New insights into magnetic derivatives for structural mapping: The Leading Edge, 23, 1, 116–119, doi: 10.1190/1.1651454.

Wessel, P., K.J. Matthews, R.D. Müller, A. Mazzoni, J.M. Whittaker, R. Myhill, and M.T. Chandler, 2015, Semiautomatic fracture zone tracking: Geochemistry, Geophysics, Geosystems, 16, 7, 2462–2472, doi: 10.1002/2015GC005853.

Wilson, J.T., 1965, A New Class of Faults and their Bearing on Continental Drift: Nature, 207, 343–347, doi: 10.1038/207343a0.




DOI: http://dx.doi.org/10.22564/brjg.v40i2.2165

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons