Thermal State of the Lithosphere of Patagonia Via Data of the Xenoliths
Abstract
Ultramafic xenoliths and minerals present in intrusive rocks make it possible to infer the temperature and pressure of the upper mantle and lower crust, since they preserve their physical and chemical characteristics while being transported by magmatic processes. Thermal models incorporating thermo-barometric data have been developed to estimate the thermal field. Thus, the objective of this work is to use mineralogical temperature and pressure equilibrium information to estimate lithospheric thermal field in the Patagonian region bounded by latitudes 40º - 52º S and longitudes 67º - 71º W, these coordinates correspond to the Argentine provinces of Río Negro, Chubut and Santa Cruz. Experimental mineral temperature data indicate ranges of 917-1029 ºC in the Chubut province, 877-1253 ºC in the Río Negro region and 728-1196 ºC in the Santa Cruz province. The average heat flux and temperature values at the Moho depth are 40 mWm-2 and 734 ºC, respectively. Río Negro province has the highest temperature (760 ± 45 ºC) and the lowest thermal thickness value (75 ± 11 km), while Santa Cruz province has the highest heat flux (44 ± 7 mWm-2) at Moho depth, which indicates that there are possibly two plumes responsible for the deposition of xenoliths in the region: one in Río Negro province and the other in Santa Cruz.
Keywords
Full Text:
PDFReferences
Alexandrino, C. H., and V. M. Hamza, 2008, Estimates of heat flow and heat production and a thermal model of the São Francisco Craton: International Journal of Earth Sciences, 97, 2, 289–306, doi: 10.1007/s00531-007-0291-y.
Alexandrino, C. H., C. A. M. Tarrillo, A. F. Silva, J. O. Batista, C. E. C. Nogueira, 2022, Thermal state of the lithosphere in Eastern Paraguay and in Andean Domain (South American Platform): International Journal of Terrestrial Heat Flow and Applied Geothermics, 5, 55–61, doi: 10.31214/ijthfa.v5i1.87.
Artemieva, I.M., and W.D. Mooney, 2001, Thermal
thickness and evolution of Precambrian lithosphere: A global study: Journal of Geophysical Research: Solid Earth, 106, B8, 16387–16414, doi: 10.1029/2000JB900439.
Aulbach, S., W. L. Griffin, S. Y. O'Reilly, and T. E. McCandless, 2004, Genesis and evolution of the lithospheric mantle beneath the Buffalo Head Terrane, Alberta (Canada): Lithos, 77, 1–4, 413–451, doi: 10.1016/j.lithos.2004.04.020.
Ávila, P., and F. M. Dávila, 2018, Heat flow and lithospheric thickness analysis in the Patagonian asthenospheric windows, southern South America: Tectonophysics, 747–748, 99–107, doi: 10.1016/j.tecto.2018.10.006.
Bjerg, E.A., T. Ntaflos, G. Kurat, G. Dobosi, and C. H. Labudía, 2005, The upper mantle beneath Patagonia, Argentina, documented by xenoliths from alkali basalts: Journal of South American Earth Sciences, 18, 2, 125–142, doi: 10.1016/j.jsames.2004.09.002.
Brey, G.P. and T. Köhler, 1990, Geothermobarometry in Four-Phase Lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers: Journal of Petrology, 31, 6, 1353–1378, doi: 10.1093/petrology/31.6.1353.
Caminos, R., J. L. Panza, M. P. Etcheverría, N. E. Pezzutti, and D. C. Rastelli, 1999, Geología Argentina. Instituto de Geología y Recursos Minerales: Servicio Geológico Minero Argentino, Buenos Aires, Annals, 29, 796 p.
Cardoso, R. R., V. M. Hamza, and C. Alfaro, 2010, Geothermal Resource Base for South America: A Continental Perspective: World Geothermal Congress 2010, Bali, Indonesia, Proceedings World Geothermal Congress, April 2010, p. 25–29.
Chulick, G. S., S. Detweiler and W. D. Mooney, 2013, Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins: Journal of South American Earth Sciences, 42, 260–276, doi: 10.1016/j.jsames.2012.06.002.
Dymshits, A. M., I. S. Sharygin, V. G. Malkovets, I. V. Yakovlev, A. A. Gibsher, T. A. Alifirova, S. S. Vorobei, S. V. Potapov, and V. K. Garanin, 2020, Thermal state, thickness, and composition of the lithospheric mantle beneath the Upper Muna kimberlite field (Siberian Craton) constrained by clinopyroxene xenocrysts and comparison with Daldyn and Mirny fields: Minerals, 10, 549, doi: 10.3390/min10060549.
Giacosa, R., D. Fracchia, and N. Heredia, 2012, Structure of the Southern Patagonian Andes at 49°?S: Geologica Acta, 10, 3, 265–282.
Greenfield, A. M. R., E. D. Ghent, and J. K. Russell, 2013, Geothermobarometry of spinel peridotites from southern British Columbia: implications for the thermal conditions in the upper mantle: Canadian Journal of Earth Sciences, 50, 10, 1019–1032, doi: 10.1139/cjes-2013-0037.
Harder, M. and J.K. Russell, 2006, Thermal state of the upper mantle beneath the Northern Cordilleran Volcanic Province (NCVP), British Columbia, Canada: Lithos, 87, 1–2, 1–22, doi: 10.1016/j.lithos.2005.05.002.
Jaupart, C. and J.C. Mareschal, 1999, The thermal structure and thickness of continental roots: Lithos, 48, 93–114, doi: 10.1016/S0024-4937(99)00023-7.
Kukkonen, I. T. and A. Jõeleht, 1995, Geothermal modeling of the lithosphere in the central Baltic Shield and its southern slope: Tectonophysics, 255, 25–45, doi: 10.1016/0040-1951(95)00131-X.
Kukkonen, I. T., and P. Peltonen, 1999, Xenolith-controlled geotherm for the central Fennoscandian Shield: implications for lithosphere-asthenosphere relations: Tectonophysics, 304, 301–315, doi: 10.1016/S0040-1951(99)00031-1.
Lewis, T. J., R. D. Hyndman, and P. Flück, 2003, Heat flow, heat generation, and crustal temperatures in the northern Canadian Cordillera: Thermal control of tectonics: J. Geophys. Res.: Solid Earth, 108, B6, 2316, doi: 10.1029/2002JB002090.
Lloyd, S., S. van der Lee, G. S. França, M. Assumpção, and M. Feng, 2010, Moho map of South America from receiver functions and surface waves: J. Geophys. Res., 115, B11315, doi: 10.1029/2009JB006829.
Mallmann, G., 2004, Processos e componentes mantélicas no Norte da Patagônia (Argentina) e relações com a subducção Andina: evidências petrográficas, geoquímicas e isotópicas em xenólitos ultramáficos mantélicos: M.S. dissertation, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. http://hdl.handle.net/10183/3909.
Ntaflos, T., E. A. Bjerg, C. H. Labudia, and G. Kurat, 2007, Depleted lithosphere from the mantle wedge beneath Tres Lagos, southern Patagonia, Argentina: Lithos, 94, 1–4, 46–65, doi: 10.1016/j.lithos.2006.06.011.
Özisik, M. N. and D. W. Hahn, 2012, Heat conduction: 3rd ed., New York. John Wiley & Sons. 718 pp.
Pankhurst, R. J., P. T. Leat, P. Sruoga, C. W. Rapela, M. Márquez, B. C. Storey, and T. R. Riley, 1998, The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province: Journal of Volcanology and Geothermal Research, 81, 1–2, 113–136, ISSN 0377-0273, doi: 10.1016/S0377-0273(97)00070-X.
Pankhurst, R. J., C. W. Rapela, C. M. Fanning, and M. Márquez, 2006, Gondwanide continental collision and the origin of Patagonia: Earth-Science Reviews, 76, 3–4, 235–257, doi: 10.1016/j.earscirev.2006.02.001.
Rieck Jr., N., R. V. Conceição, E. Koester, and C. Dantas, 2007, O manto litosférico continental na região do Cerro de Los Chenques, Argentina: evidências de heterogeneidade e metassomatismo: Geologia USP, Série Científica, 7, 1, 1–17, doi: 10.5327/Z1519-874x2007000100001.
Rudnick, R. L., W. F. McDonough, and R. J. O'Connell, 1998, Thermal structure, thickness and composition of continental lithosphere: Chemical Geology, 145, 395–411, doi: 10.1016/S0009-2541(97)00151-4.
Russell, J. K. and M. G. Kopylova, 1999. A steady state conductive geotherm for the North central Slave, Canada: Inversion of petrological data from the Jericho kimberlite pipe: Journal of Geophysical Research, 104, B4, 7089–7101.
Russell, J. K., G. M. Dipple, and M. G. Kopylova, 2001, Heat production and heat flow in the mantle lithosphere to the Slave craton, Canada: Physics of the Earth and Planetary Interiors, 123, 1, 27–44, doi: 10.1016/S0031-9201(00)00201-6.
Schilling, M. E., R. W. Carlson, A. Tassara, R. V. Conceição, G. W. Bertotto, M. Vásquez, D. Muñoz, T. Jalowitzki, F. Gervasoni, and D. Morata, 2017, The origin of Patagonia revealed by Re-Os systematics of mantle xenoliths. Precambrian Research, 294, 15–32, doi: 10.1016/j.precamres.2017.03.008.
Seipold, U., 1998, Temperature dependence of thermal transport properties of crystalline rocks — a general law: Tectonophysics, 291, 1–4, 161–171, doi: 10.1016/S0040-1951(98)00037-7.
Seipold, U. 2001, Der Wärmetransport in kristallinen Gesteinen unter den Bedingungen der kontinentalen Kruste: Scientific Technical Report STR01/13, GeoForschungs-Zentrum Potsdam, Germany. 142 pp.
Vieira, P. F. and V. M. Hamza, 2019, Assessment of Geothermal Resources of South America – A New Look: International Journal of Terrestrial Heat Flow and Applied Geothermics, 2, 1, 46–57, doi: 10.31214/ijthfa.v2i1.32.
DOI: http://dx.doi.org/10.22564/brjg.v40i2.2167
This work is licensed under a Creative Commons Attribution 4.0 International License.
a partir do v.37n.4 (2019) até o presente
v.15n.1 (1997) até v.37n.3 (2019)
Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br
Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.