Earth's Paleomagnetic Field and its Changes Through Time

Marcia Ernesto, Daniele Brandt, Daniel Ribeiro Franco, George Caminha Maciel

Abstract


Paleomagnetism is the only way to access the behavior of the geomagnetic field of internal origin through geological time. Therefore, the complete description of the paleosecular variation (PSV) is fundamental for unraveling the evolution of the Earth's core. Modeling of PSV relies on observing the fluctuations in the direction and intensity of the field on the surface, the evaluation of the paleomagnetic data dispersion in different times and situations of low and high reversal rates, the kinematics of the virtual poles during reversals, and other aspects. Magneto-cyclostratigraphy is a powerful tool to constrain the age of sedimentary formations, and the recognition of patterns of magnetic variation represents a breakthrough in the development of cyclostratigraphy. This paper reviews some of the contributions to the subject of the Laboratory of Paleomagnetism at Instituto de Astronomia, Geofísica e Ciências Atmosféricas the University of São Paulo.



Keywords


geomagnetic field; secular variation; virtual geomagnetic pole kinematics;

Full Text:

PDF

References


Berger, A., M.F. Loutre, and J. Laskar, 1992, Stability of the astronomical frequencies over the Earth’s history for paleoclimate studies: Science, 255, 560–566, doi: 10.1126/science.255.5044.560

Biggin, A.J., D.J. Van Hinsbergen, C.G. Langereis, G.B. Straathof, and M.H. Deenen, 2008, Geomagnetic secular variation in the Cretaceous Normal Superchron and in the Jurassic: Phys. Earth Planet. Int., 169, 3–19, doi: 10.1016/j.pepi.2008.07.004

Biggin, A.J., and C.G. Langereis, 2009, The intensity of the geomagnetic field in the late?Archaean: New measurements and an analysis of the updated IAGA palaeointensity database: Earth, Planets and Space, 6, 9–22, doi: 10.1186/BF03352881

Biggin, A.J., E.J. Piispa, L.J. Pesonen, R. Holme, G.A. Paterson, T. Veikkolainen, and L. Tauxe, 2015, Palaeomagnetic field intensity variations suggest Mesoproterozoic inner?core nucleation: Nature, 526, 245–248, doi: 10.1038/nature15523

Bond, G., B. Kromer, J. Beer, R. Muscheler, and M.N. Evans, W. Showers, S. Hoffmann, R. Lotty-Bond, I. Hajdas and G. Bonani, 2001, Persistent solar influence on North Atlantic climate during the Holocene: Science, 294, 2130–2136, doi: 10.1126/science.1065680

Bono, R.K., A.J. Biggin, R. Holme, C.J. Davies, D.G. Meduri, and J. Bestard, 2020, Covariant giant Gaussian process models with improved reproduction of palaeosecular variation: G-Cubed, 21, e2020GC008960, doi: 10.1029/2020GC008960

Brandt, D., M. Ernesto, C. Constable, D.R. Franco, L.C. Weinschutz, P.O.C. Rodrigues, L. Hinnov, P. Jaqueto, P.B. Strauss, and J. Feinberg, 2019, New late Pennsylvanian paleomagnetic results from Paraná Basin (southern Brazil) and the validity of the recent Giant Gaussian Process model for the Kiaman Superchron: J. Geophys. Res., 124, doi: 10.1029/2018JB016968.

Brandt, D., C. Constable, and M. Ernesto, 2020, Giant Gaussian process models of geomagnetic paleosecular variation: a directional outlook: Geophys. J. Intern., 222, 1526–1541, doi: 10.1093/gji/ggaa258

Brandt, D., M. Ernesto, and C. Constable, 2021, Consistent and contrasting aspects of the geomagnetic field across epochs with distinct reversal frequencies revealed by modeling the Kiaman Superchron: G-Cubed 22, e2021GC009866, doi: 10.1029/2021GC009866

Brunhes, B., 1906, Recherches sur la direction d’aimantation des roches volcaniques: J. Phys. Theor. Appl. 5, 705–724, doi: 10.1051/jphystap:019060050070500

Butler, F.B., 1992, Paleomagnetism: Magnetic domains to geologic terranes: Blackwell Scientific Publications, Oxford, 319 p.

Cabot, S.H.C., and G. Laughlin, 2022, Stacked periodograms as a probe of exoplanetary populations: The Astronomical Journal, 163, 206, 9 pp., doi: 10.3847/1538-3881/ac54b5

Caetano-Chang, M.R., and S.M. Ferreira, 2006, Ritmitos de Itu: Petrografia e Considerações paleodeposicionais: Geociências, 25, 345–358.

Caminha-Maciel, G., and M. Ernesto, 2013, Characteristic wavelengths in VGP trajectories from magnetostratigraphic data of the Early Cretaceous Serra Geral lava piles, southern Brazil, in Jovane, L., E. Herrero-Bervera, L. Hinnov, B.A. Housen, Eds., Magnetic methods and the Timing of Geological Processes: The Geological Society of London, Special Publications, 373, 293–307, doi: 10.1144/SP373.15

Caminha-Maciel, G., and M. Ernesto, 2019, LSTperiod Software: Spectral Analysis of Multiple Irregularly Sampled Time Series: Annals of Geophys., 62, doi: 10.4401/ag-7923.

Caminha-Maciel, G., and M. Ernesto, 2020, Kinematics of the virtual geomagnetic poles during the Brunhes-Matuyama times, in Tema E., A. Di Chiara, E. Herrero-Bervera, Eds., 2020, Geomagnetic Field Variations in the Past: New Data, Applications and Recent Advances: Geological Society of London, Special Publications, 497, 193–204, doi: 10.1144/SP497-2019-80.

Clement, B.M., 1991, Geographical distribution of transitional VGP's: evidence for non-zonal equatorial symmetry during the Matuyama-Brunhes geomagnetic reversal: Earth Planet. Sci. Lett., 104, 48–58, doi: 10.1016/0012-821X(91)90236-B

Constable, C.G., and R.L. Parker, 1988, Statistics of the geomagnetic secular variation for the past 5 m.y.: J. Geophys. Res., 93, B10, 11569–11581, doi: 10.1029/JB093iB10p11569

Cromwell, G., C. Johnson, L. Tauxe, C. Constable, and N. Jarboe, 2018, PSV10: A global data set for 0–10 Ma time?averaged field and paleosecular variation studies: Geochemistry, Geophysics, Geosystems, 19, 1533–1558, doi: 10.1002/2017GC007318.

Debret, M., V. Bout-Roumazeilles, F. Grousset, M. Desmet, J.F. McManus, N. Masse, D. Sebag, J.-R. Petit, Y. Copard, and A. Trentesaux, 2007, The origin of the 1500-year climate cycles in Holocene North-Atlantic records: Clim. Past, 3, 569–575, doi: 10.5194/cp-3-569-2007

Doubrovine, P.V., T. Veikkolainen, L.V. Pesonen, E. Piispa, S. Ots, A.V. Smirnov, E.V. Kulakov, and A.J. Biggin, 2019, Latitude dependence of geomagnetic paleosecular variation and its relation to the frequency of Magnetic reversals: observations from the Cretaceous and Jurassic: G-Cubed, 20, 1240–1279, doi: 10.1029/2018GC007863

Engbers, Y.A., R.K. Bono, and A. Biggin, 2022, PSVM: A global database for the Miocene indicating elevated paleosecular variation relative to the last 10 Myrs: G-Cubed, 23, e2022GC010480, doi: 10.1029/2022GC010480

Ernesto, M., F.Y. Hiodo, and I.G. Pacca, 1979, Estudo paleomagnético de sequência de derrames basálticos da Formação Serra Geral em Santa Catarina: Anais Acad. Brasil. Ciênc., 51, 328–332.

Ernesto, M., and I.G. Pacca, 1981, Spectral analysis of Permocarboniferous geomagnetic variation data from glacial rhythmites: J. R. Astron. Soc., 67, 641–647, doi: 10.1111/j.1365-246X.1981.tb06943.x

Ernesto, M., and I.G. Pacca, 1988, Paleomagnetism of the Parana Basin flood volcanics, southern Brazil, in Piccirillo, E.M. and A.J. Melfi Eds., The Mesozoic flood volcanism of the Parana Basin: petrogenetic and geophysical aspects, IAG/USP, 229–255.

Ernesto, M., I.G. Pacca, F.Y. Hiodo, and A.J.R. Nardy, 1990, Paleomagnetism of the Mesozoic Serra Geral Formation, southern Brazil: Phys. Earth Planet. Int., 64, 153–175, doi: 10.1016/0031-9201(90)90035-V

Evans, M.E., and G.S. Hoye, 2007, Testing the GAD throughout geological time: Earth Planets Space, 59, 697–701, doi: 10.1186/BF03352732

Franco, D.R., and L.A. Hinnov, 2013, Anisotropy of magnetic susceptibility and sedimentary cycle data from Permo-Carboniferous rhythmites (Paraná Basin, Brazil): a multiple proxy record of astronomical and millennial scale palaeoclimate change in a glacial setting: Geological Society, London, Special Publications, 373, 355–374, doi: 10.1144/SP373.11

Franco, D.R., L.A. Hinnov, and M. Ernesto, 2011, Spectral analysis and modeling of microcyclostratigraphy in late Paleozoic glaciogenic rhythmites, Paraná Basin, Brazil: G-Cubed, 12, Q09003, doi: 10.1029/2011GC003602

Franco, D.R., M. Ernesto, C.F. Ponte-Neto, L.A. Hinnov, T.S. Berquó, J.D. Fabris, and C.A. Rosière, 2012a, Magnetostratigraphy and mid-paleolatitude VGP dispersion during the Permo-Carboniferous Superchron: results from Paraná Basin (southern Brazil) rhythmites: Geophys. J. Int., 191, 993–1014, doi: 10.1111/j.1365-246X.2012.05670.x

Franco, D.R., L.A. Hinnov, and M. Ernesto, 2012b, Millennial-scale climate cycles in Permian-Carboniferous rhythmites: Permanent feature throughout geologic time?: Geology, 40, 19–22, doi: 10.1130/G32338.1

Franco, D.R., W.P. Oliveira, F.B.V. Freitas, D. Takahashi, C.F. Ponte-Neto, and I.M.C. Peixoto, 2019, Paleomagnetic evidence for inverse correspondence between the relative contribution of the axial dipole field and CMB heat flux for the past 270 Myr: Scientific Reports, 9, 282, doi: 10.1038/s41598-018-36494-x

Gradstein, F.M., J.G. Ogg, and F.J. Hilgen, 2012, On the Geologic Time Scale: Newsletters on Stratigraphy, 45, 171–188, doi: 10.1127/0078-0421/2012/0020

Handford, B.T., A.J. Biggin, M.M. Haldan, and C.G. Langereis, 2021, Analyzing Triassic and Permian geomagnetic paleosecular variation and the implications for ancient field morphology: G-Cubed, 22, e2021GC009930, doi: 10.1029/2021GC009930

He, H., C. Deng, P. Wang, Y. Pan, and R. Zhu, 2012, Toward age determination of the termination of the Cretaceous Normal Superchron: G-Cubed, 13, Q02002, doi: 10.1029/2011GC003901

Hillhouse, J., and A. Cox, 1976, Brunhes-Matuyama polarity transition. Earth Planet. Sci. Lett., 2, 51-64, doi: 10.1016/0012-821X(76)90025-X

Hinnov, L., and F.J. Hilgen, 2012, Cyclostratigraphy and astrochronology, in Gradstein F, Ogg J., Ogg G., and Smith D. Eds., A Geologic Time Scale: Elsevier, Amsterdam, 63–83, doi: 10.1016/b978-0-444-59425-9.00004-4

Gradstein, F.M., Ogg J.G., Schmitz M.D., and Ogg G.M., 2012, The Geologic Time Scale: Elsevier, doi: 10.1016/C2011-1-08249-8

Hoffman, K.A., 1991, Long-lived transitional states of the geomagnetic field and the two dynamo families: Nature, 354, 273–277, doi: 10.1038/354273a0

Johnson, C.L., C.G. Constable, L. Tauxe, R. Barendregt, L.L. Brown, R.S. Coe, P. Layer, V. Mejia, Opdyke N.D., Singer B.S., H. Staudigel, and D.B. Stone, 2008, Recent investigations of the 0–5 Ma geomagnetic field recorded by lava flows, G-Cubed, 9, doi: 10.1029/2007GC001696

Khokhlov, A., G. Hulot, and J. Carlut, 2001, Towards a self-consistent approach to palaeomagnetic field modelling. Geophys. J. Int., 145, 157–171, doi: 10.1111/j.1365-246X.2001.01386.x

Khokhlov, A., Hulot G., and C. Bouligand, 2006, Testing statistical palaeomagnetic field models against directional data affected by measurement errors: Geophys. J. Int., 167, 635–648, doi: 10.1111/j.1365-246X.2006.03133.x

Laj, C.A., A. Mazaud, M. Weeks, M. Fuller, and E. Herrero-Bervera, 1991, Geomagnetic reversal paths: Nature, 351, 447, doi: 10.1038/351447a0

Langereis, C.G., W. Krijgsman, G. Muttoni, and M. Menning, 2010, Magnetostratigraphy - concepts, definitions, and applications: Newsletter on Stratigraphy, 43/3, 207–233, doi: 10.1127/0078-0421/2010/0043-0207

Leandro, C.G., J.G. Savian, M.V.L. Kochhann, D.R. Franco, R. Coccioni, F. Frontalini, S. Gardin, L. Jovane, M. Figueiredo, L.R. Tedeschi, L. Janikian, R.P. Almeida, and R.I.F. Trindade, 2022, Astronomical tuning of the Aptian stage and its implications for age recalibrations and paleoclimatic events: Nature Commun., 13, 2941, doi: 10.1038/s41467-022-30075-3

Lisiecki, L.E., and M.E. Raymo, 2005, Pliocene-Pleistocene stack of globally distributed benthic stable Oxygen isotope records: PANGAEA [dataset], doi: 10.1594/PANGAEA.704257

Lomb, N.R., 1976, Least-squares frequency-analysis of unequally spaced data: Astrophys. Space Sci., 39, 447–462, doi: 10.1007/BF00648343

Love, J.J., 1998, Paleomagnetic volcanic data and geometric regularity of reversals and excursions: J. Geophys. Res., 1031, 12435–12452, doi: 10.1029/97JB03745

Mark, D.F., P.R. Renne, R.C. Dymock, V.C. Smith, J.E. Simon, L.E. Morgan, R.A. Staff, B.S. Ellis, and N.J.G. Pearce, 2017, High-precision 40Ar/39Ar dating of Pleistocene tuffs and temporal anchoring of the Matuyama-Brunhes boundary: Quaternary Geochron., 39, 1–23, doi: 10.1016/j.quageo.2017.01.002

McCracken, K.G., J. Beer, F. Steinhilber, and J. Abreu, 2013, A Phenomenological Study of the Cosmic Ray Variations Over the Past 9400 Years: Solar Physics, 286, 609–627, doi: 10.1007/s11207-013-0265-0

McElhinny, M.W., and P.L. McFadden, 1997, Palaeosecular variation over the past 5 Myr based on a new generalized database: Geophys. J. Int., 131, 240–252, doi: 10.1111/j.1365-246X.1997.tb01219.x

McFadden, P.L., R.T. Merrill, and M.W. McElhinny, 1988, Dipole/quadrupole family modeling of paleosecular variation: J. Geophys. Res., 93, 11,583–11,588, doi: 10.1029/JB093iB10p11583

McFadden, P.L., R.T. Merrill, M.W. McElhinny, and S. Lee, 1991, Reversals of the Earth’s magnetic field and temporal variations of the dynamo families: J. Geophys. Res., 96, 3923–3933, doi: 10.1029/90JB02275

Melott, A., A. Pivarunas, J. Meert, and B. Lieberman, 2018, Does the planetary dynamo go cycling on? Re-examining the evidence for cycles in magnetic reversal rate: Int. J. Astrobiology, 17, 44–50, doi: 10.1017/S1473550417000040

Oliveira, W.P., D.R. Franco, D. Brandt, M. Ernesto, C.F. Ponte-Neto, X. Zhao, F.B.V. Freitas, and R.S. Martins, 2018, Behavior of the paleosecular variation during the Permian-Carboniferous Reversed Superchron and comparisons to the low reversal frequency intervals since Precambrian times: Merrill, R.T., M.W. McElhinny, P.L., McFadden, 1996, The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle. International Geophysics Series, vol. 63, Academic Press, 531 p. 19, 1035–1048, doi: 10.1002/2017GC007262

Oliveira, W.P., G.A. Hartmann, F. Terra-Nova, D. Brandt, A.J. Biggin, Y.A. Engbers, R.K. Bono, J.F. Savian, D.R. Franco, R.I.F. Trindade, and T.R. Moncinhatto, 2021, Paleosecular Variation and the Time-Averaged Geomagnetic Field Since 10 Ma: G-Cubed, 22, e2021GC010063, doi: 10.1029/2021GC010063

Olson, P, and H. Amit, 2015, Mantle superplumes induce geomagnetic superchrons: Frontiers in Earth Science, 3, 38, doi: 10.3389/feart.2015.00038

Opdyke, D.N., and J.E.T. Channell, 1996, Magnetic Stratigraphy: Elsevier, eBook ISBN: 9780080535722.

Opdyke, N.D., D.V. Kent, D.A. Foster, and K. Huang, 2015, Paleomagnetism of Miocene volcanics on Sao Tome: Paleosecular variation at the Equator and a comparison to its latitudinal dependence over the last 5 Myr: Geochemistry, Geophysics, Geosystems, 16, 3870–3882, doi: 10.1002/2015GC005901

Pacca, I.G., and F.Y. Hiodo, 1976, Paleomagnetic analysis of Mesozoic Serra Geral basaltic lava flows in Southern Brazil: An. Acad. Brasil. Ciênc., 48 (Supl.), 207–214.

Pacca, I.G., and M. Ernesto, 1982, Utilização da variação paleossecular e de reversões do campo geomagnético para medidas de tempo decorrido entre eventos magmáticos sucessivos: Proceedings of the XXXII Congresso Brasileiro de Geologia, Salvador, BA, Brazil, 4: 1621–1628.

Panovska, S., M. Korte, and C.G. Constable, 2019, One hundred thousand years of geomagnetic field evolution: Reviews of Geophysics, 57, 1289–1337, doi: 10.1029/2019RG000656

Rocha-Campos, A.C., M. Ernesto, and D. Sundaram, 1981, Geological, palynological and paleomagnetic investigations on Late Paleozoic Varvites from the Paraná Basin, Brazil, in 3o Simpósio Regional de Geologia, Curitiba, PR, Brazil, Actas, 2, 162–175.

Santos, TP., D.R. Franco, C.F. Barbosa, A.L. Belem, T. Dokken, and A.L.S. Albuquerque, 2013, Millennial- to centennial-scale changes in sea surface temperature in the tropical South Atlantic throughout the Holocene: Palaeog. Palaeoclim. Palaeoecol., 392, 1–8, doi: 10.1016/j.palaeo.2013.08.019

Scargle, J.D., 1982, Studies in astronomical time-series analysis II. Statistical aspects of spectral analysis of unevenly spaced data: Astrophys. J., 263, 835–853, doi: 10.1086/160554

Siqueira, T.C.G.B., 2021, Variações temporais de longo período do campo geomagnético: análise espectral da paleointensidade relativa: Monography, UnED, CEFET/RJ, Petrópolis, RJ, Brazil, 52 p.

Sprain, C.J., A.J. Biggin, C.J. Davies, R.K. Bono, and D.G. Meduri, 2019, An assessment of long duration geodynamo simulations using new paleomagnetic modeling criteria (Qpm): Earth Planet. Sci. Lett., 526, 115758, doi: 10.1016/j.epsl.2019.115758

Strasser, A., F.J. Hilgen, P.H. Heckel, 2006, Cyclostratigraphy - concepts, definitions, and applications: Newsl. Stratigr., 42, 75–114, doi: 10.1127/0078-0421/2006/0042-0075

Tarantola, A., and K. Mosegaard, 2000, Mathematical basis for physical inference: Cornell University Library, New York, arXiv:math-ph/0009029v1, Access on: July 7th, 2022.

Tauxe, L., and D.V. Kent, 2004, A simplified statistical model for the geomagnetic field and the detection of shallow bias in paleomagnetic inclinations: Was the ancient magnetic field dipolar?, in Channell, J.E.T., D.V. Kent, W. Lowrie, and J.G. Meert, Eds., Timescales of the Paleomagnetic Field: AGU, Washington, D.C., 145, 101–115, doi: 10.1029/145GM08

Turner, G.M., and R. Thompson, 1982, Detransformation of the British geomagnetic secular variation record for Holocene times: Geophys. J.R. Astron. Soc., 70, 789–792, doi: 10.1111/j.1365-246X.1982.tb05983.x

Vestine, E.H., L. Laporte, C. Cooper, I. Lange, and W.C. Hendrix, 1947, Description of the Earth’s main magnetic field and its secular change, 1905-1945: Carnegie Inst. Wash. Publ., Washington, D.C., 578.

Verosub, K.L., 1988, Geomagnetic secular variation and the dating of Quaternary sediments in Easterbrook D.J. Ed., Dating Quaternary Sediments: Geol. Soc. America Special Papers, 227, 123–138, doi: 10.1130/SPE227-p123

Vigliotti, L., 2006, Secular variation record of the Earth’s magnetic field in Italy during the Holocene: constraints for the construction of a master curve: Geophys. J. Int., Geomagnetism, rock magnetism and palaeomagnetism, 165, 414–429, doi: 10.1111/j.1365-246X.2005.02785.x

Zhao, X., W. Soon, and V.M. Herrera, 2021, Holocene Millennial-Scale Solar Variability and the Climatic Responses on Earth: Universe, 7, 36, doi: 10.3390/universe7020036




DOI: http://dx.doi.org/10.22564/brjg.v40i6.2194

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.





 

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)

 

Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064
E-mail: editor@sbgf.org.br

Since 2022, the BrJG publishes all content under Creative Commons CC BY license. All copyrights are reserved to authors.

Creative Commons