Groundwater Level Variation Analysis Using Hydrogeophysical Methods in an Area of Campo Sujo in Cerrado, Chapada dos Veadeiros Region, Goiás

Gustavo Xavier Vilarinho, Welitom Rodrigues Borges, Marcelo Henrique Leão Santos, Rodrigo Almeida Heringer, Luciano Soares Cunha, Rafael Silva Oliveira, Thiago Lima Mendes, Rafael de Oliveira Xavier, Larissa da Silveira Verona


Cerrado’s campo sujo areas have been one of the main focuses of anthropic occupation in the Chapada dos Veadeiros region, Brazil’s Central Plateau, as they are easily accessible flattened areas with less dense vegetation. They are usually associated with wetlands representing excellent water reservoirs and groundwater recharge zones. The environmental characterization and analysis of water level variation are essential to investigate the impacts of human occupation. Hydrogeophysics represents one of the main subsurface research tools due to its easy application and efficiency in identifying the water level, with emphasis on Ground-penetrating radar (GPR), and electrical resistivity tomography (ERT). An analysis of GPR sections with 200, 400, and 900 MHz frequency antennas associated with the resistivity model was carried out to identify structures, and map the groundwater level. The overlapping data compose a hydrogeophysical model with good correlation to direct measurements of water level in a monitoring well, and soil horizons mapped in a trench. The GPR proved to be efficient in mapping the water level, mainly about to the survey with a 400 MHz antenna, shown as a horizontal reflector associated with attenuation portions of the reflection signal, registering in profile the lowering of the water level from 1.68 m in May to 3.35 m in August. The resistivity model showed a good correlation with the variations between the mapped soil horizons. The analysis shows that constructing a hydrogeophysical model is an excellent alternative for identifying the water level, and characterizing the shallow subsurface by applying non-invasive techniques. The study area represents a preserved area of campo sujo, and the research data can be used for comparison with future surveys, in addition to representing a base hydrogeophysics methodology that showed promising results for the physiographic characteristics of the area, which can be replicated in regions of similar geoenvironmental aspects.


hydrogeophysics; aquifer; GPR; DC resistivity; savanna

Full Text:



Abiye, T., K. Masindi, H. Mengistu and M. Demlie, 2018, Understanding the groundwater-level fluctuations for better management of groundwater resource: A case in the Johannesburg region, Groundwater for Sustainable Development, Volume 7, 2018, Pages 1-7, ISSN 2352-801X, doi: 10.1016/j.gsd.2018.02.004.

Allaire S. E., S. Roulier and A. J. Cessna, 2009, Quantifying preferential flow in soils: A review of different techniques. J Hydrol 378:179–204, doi: 10.1016/j.jhydrol.2009.08.013.

Arora, B. and B. P. Mohanty, 2017, Influence of spatial heterogeneity and hydrological perturbations on redox dynamics: a column study. Procedia Earth Planet Sci 17:869–872, doi: 10.1016/j.proeps.2017.01.046.

Arora, B., N. F. Spycher, C. I. Steefel, S. Molins, M. Bill, M. E. Conrad, W. Dong, B. Faybishenko, T.K. Tokunaga, J. Wan, K. H. Williams and S. B. Yabusaki, 2016, Influence of hydrological, biogeochemical and temperature transients on subsurface carbon fluxes in a flood plain environment. Biogeochemistry 127:367–396, doi: 10.1007/s10533-016-0186-8.

Binley, A., S. S. Hubbard, J. A. Huisman, A. Revil, D. A. Robinson, K. Singha and L. D. Slater, 2015, The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resour Res. 2015 Jun,51(6):3837-3866, doi: 10.1002/2015WR017016. Epub 2015 Jun 15. PMID: 26900183, PMCID: PMC4744786.

Braga, A. C. D. O, 2006, Métodos da eletrorresistividade e polarização induzida aplicados nos estudos da captação e contaminação de águas subterrâneas: uma abordagem metodológica e prática. ii, 121 f. Thesis (livre-docência) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas, 2006.

Campos, J. E. G., M. A. Dardenne, F. H. Freitas-Silva and M. A. C. Martins-Ferreira, 2013, Geologia do Grupo Paranoá na porção externa da Faixa Brasília. Braz. J. Geol. 43(3): 461-476, doi: 10.5327/Z2317-48892013000300004.

Casagrande, M. F. S., L. M. Furlan, C. A. Moreira, F. T. G. Rosa and V. Rosolen, 2021, Non-invasive methods in the identification of hydrological ecosystem services of a tropical isolated wetland (Brazilian study case), Environmental Challenges, Volume 5, 100233, ISSN 2667-0100, doi: 10.1016/j.envc.2021.100233.

Costall, A. R. and B. Harris, 2018, Rapid Estimation of Volumetric Groundwater Recharge in the Vadose Zone via Ground Penetrating Radar, ASEG Extended Abstracts, 2018:1, 1-7, DOI: 10.1071/ASEG2018abP091.

Deiana, R., G. Cassiani, A. Villa, A. Bagliani and V. Bruno, 2008, Calibration of a Vadose Zone Model Using Water Injection Monitored by GPR and Electrical Resistance Tomography. Vadose Zone Journal, 7(1), 215. 2008, doi: 10.2136/vzj2006.0137.

Furlan, L. M., V. Rosolen and C. A. Moreira, 2021, The interactive pedological-hydrological processes and environmental sensitivity of a tropical isolated wetland in the Brazilian Cerrado. SN Appl. Sci. 3, 144, doi: 10.1007/s42452-021-04174-7.

Haque, A., G. Ali and P. Badiou, 2018 Hydrological dynamics of prairie pothole wetlands: Dominant processes and landscape controls under contrasted conditions. Hydrological Processes, v. 32, n. 15, p. 2405-2422, doi: 10.1002/hyp.13173.

ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade. 2021. Plano de Manejo do Parque Nacional da Chapada dos Veadeiros. Ministério do Meio Ambiente - MMA. Brasília, DF, Brazil. Available on: . Access on: November 21, 2022.

Junk, W. J., M.T.F. Piedade, R. Lourival, F. Wittmann, P. Kandus, L.D Lacerda and J. Schöngart, 2014, Brazilian wetlands: their definition, delineation, and classification for research, sustainable management, and protection Aquatic. Conserv., 24 (2014), pp. 5-22, doi: 10.1002/aqc.2386.

Kirsch, R., 2009, Groundwater Geophysics: A Tool for Hydrogeology. Berlin, Germany. Springer, 556p, doi: 10.1007/978-3-540-88405-7

Latrubesse, E., E. Arima, M. Ferreira, S. Nogueira, F. Wittmann, M. Sversut Dias, F. Dagosta, M. Bayer, 2019, Fostering water resource governance and conservation in the Brazilian Cerrado biome. Conservation Science and Practice, doi: 10.1111/csp2.77

Lima, J.E.F.W., 2011, Situação e perspectivas sobre as águas do Cerrado. Ciência e Cultura 63, 27-29.

Martins F.A.L., 1999, Análise faciológica e estratigráfica do Paleo-Mesoproterozoico: Seqüência Araí no Parque Nacional da Chapada dos Veadeiros, Goiás. 1999. Master Dissertation, Instituto de Geociências, Universidade de Brasília, DF, Brazil, p. 137.

Martins-Ferreira, M. A. C. and J. E. G. Campos, 2017, Compartimentação geomorfológica como suporte para estudos de evolução geotectônica: aplicação na região da Chapada dos Veadeiros, GO. Revista Brasileira de Geomorfologia, v.18, número 3. 18(3): p. 501-519, doi: 10.20502/rbg.v18i3.1119.

Moreira, C.A., V. Rosolen, L. M. Furlan, R. C. Bovi and H. Masquelin, 2021, Hydraulic conductivity and geophysics (ERT) to assess the aquifer recharge capacity of an inland wetland in the Brazilian Savanna, Environmental Challenges, Volume 5, 100274, ISSN 2667-0100, doi: 10.1016/j.envc.2021.100274.

Oliveira-Filho, A. T., 1992, Floodplain “murundus” of Central Brazil: evidence for the termite-origin hypothesis. Journal of Tropical Ecology, Cambridge, v. 8, n. 1, p. 1-19, 1992, doi: 10.1017/S0266467400006027.

Oostrom, M., M. J. Truex, G. V. Last, C. E. Strickland and G. D. Tartakovsky, 2016, Evaluation of deep vadose zone contaminant flux into groundwater: Approach and case study. J Contam Hydrol 189:27–43, doi: 10.1016/j.jconhyd.2016.03.002.

Pimentel M.M., R. A. Fuck and N. F. Botelho, 1999, Granites and the geodynamic history of the Brasília Belt, central Brazil: a review. Lithos 46:463-483, doi: 10.1016/S0024-4937(98)00078-4.

Pimentel, M. M., 2016, The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: a geochronological and isotopic approach. Brazilian Journal of Geology, v. 46, n. 1, p.67-82, jun. 2016.

Robinson, D. A., C. S. Campbell, J. W. Hopmans, B. K. Hornbuckle, S. B. Jones, R. Knight, F. Ogden, J. Selker and O. Wendroth, 2008, Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J., 7:358–389, doi: 10.2136/vzj2007.0143.

Rodriguez, R. G., B. R. Scanlon, C. W. King, F. V. Scarpare, A. C. Xavier and F. F. Pruski, 2018, Biofuel-water-land nexus in the last agricultural frontier region of the Brazilian Cerrado, Applied Energy, Volume 231, 2018, 1330-1345, ISSN 0306-2619, doi: 10.1016/j.apenergy.2018.09.121.

Rosolen, V., D. A. Oliveira and G. T. Bueno, 2015, Vereda and Murundu wetlands and changes in Brazilian environmental laws: challenges to conservation Wetl. Ecol. Manag., 23 (2015), pp. 285-292, doi: 10.1007/s11273-014-9380-4.

Rubin, Y. and S. S. Hubbard, 2005, Hydrogeophysics, 523 pp., Springer, N. Y, doi: 10.1007/1-4020-3102-5.

Sano, S. M., S. P. Almeida and J. F. Ribeiro, 2008, Cerrado: ecologia e flora. 2 v. Brasília, DF, Brazil: Embrapa Cerrados.

Santos, H. G., 2018, Sistemas Brasileiro de Classificação de Solos. 5. ed. Brasília, DF, Brazil: Embrapa.

Saintenoy, A. and J. W. Hopmans, 2011, Ground Penetrating Radar: water table detection sensitivity to soil water retention properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4, pp.748-753, doi: 10.1109/JSTARS.2011.2171920.

Shiki, S., J. F. G. Silva and A. Ortega, 1997, Agricultura, meio ambiente e sustentabilidade do cerrado brasileiro. Centro de Documentação e Pesquisa Socioeconômica, Departamento de Economia e Departamento de Geografia da Universidade Federal de Uberlândia MG, Brazil.

Tanizaki, M. L. N., J. E. G. Campos and M. A. Dardenne, 2015, Estratigrafia do Grupo Araí: registro de rifteamento paleoproterozoico no Brasil Central. Brazilian Journal of Geology, 45(1): 95-108, doi: 10.1590/23174889201500010007.

Tran, A. P, B. Dafflon, S. S. Hubbard, M. B. Kowalsky, P. Long, T. K. Tokunaga and K. H. Williams, 2016, Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion: Hydrol Earth Syst Sci 20:3477–3491, doi: 10.5194/hess-20-3477-2016.

Wan, J., T. K. Tokunaga, W. Dong, K. H. Williams, Y. Kim, M. E. Conrad, M. Bill, W. J. Riley and S. S. Hubbard, 2018, Deep unsaturated zone contributions to carbon cycling in semiarid environments: J Geophys Res Biogeosci, 123, 3045–3054, doi: 10.1029/2018JG004669.

Zhou, Q. Y., J. Shimada and A. Sato, 2001, Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resources Research, 37(2), 273–285. https://doi:10.1029/2000wr900284.

Zhu,W., S. Zhao, Z. Qiu, N. He, Y. Li, Z. Zou and F. Yang, 2022, Monitoring and Analysis of Water Level–Water Storage Capacity Changes in Ngoring Lake Based on Multisource Remote Sensing Data. Water 2022, 14, 2272, doi: 10.3390/w14142272.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

>> Brazilian Journal of Geophysics - BrJG (online version): ISSN 2764-8044
a partir do v.37n.4 (2019) até o presente

Revista Brasileira de Geofísica - RBGf (online version): ISSN 1809-4511
v.15n.1 (1997) até v.37n.3 (2019)

Revista Brasileira de Geofísica - RBGf (printed version): ISSN 0102-261X
v.1n.1 (1982) até v.33n.1 (2015)


Brazilian Journal of Geophysics - BrJG
Sociedade Brasileira de Geofísica - SBGf
Av. Rio Branco 156 sala 2509
Rio de Janeiro, RJ, Brazil
Phone/Fax: +55 21 2533-0064


Creative Commons